

Table of Contents
Overview	3
Walkthrough: The Abstraction Process	6
Initializing the TNM staging library	6
Selecting a schema	6
Obtaining a schema discriminator	7
Retrieving a discriminator table	8
Example 1	8
Example 2	9
Building a table picklist	10
Abstracting required data items	11
Optional validation	12
Calculating derived stage group	12
Schemas	14
Enumerated Types	16
DataElement	16
SchemaIdentifier	18
TNMTableRole	19
ErrorCode	20
Explanation of codes	22
Notable Classes	26
Datacard	26
TableInfo	31
TNMTable	31
TNMSchema	36
TNM_Staging	39
API reference	40
General information	40
GetVersion	40
Data transfer	40
PopulateDatacardFromBuffer	40
PopulateBufferFromDatacard	41
Formatting Error Messages	41
FormatErrorCode	41
Formatting Storage and Display codes	42
GetStorageCode	42
GetDisplayCode	43
Schema selection and access	44
GetSchemaNumber	44
GetSchemaNumberBySchemaIdentifier	46
GetSchemaName	46
GetNumberOfSchemas	47
GetSchema	47
GetSchemaBySchemaIdentifier	48
Table access	48
GetNumberOfTables	48
GetTable	49
GetTableByDataElement	49
GetTableByRole	50
Coding required data elements	50
GetRequiredDataItems	51
Stage calculation	51
CalculateStage	52

[bookmark: _Toc456618099]Overview

The purpose of CDC’s TNM staging library is two-fold: to support collection of AJCC 7th edition staging data from reporting facilities by facilitating generation of authoritative site-specific pick-lists for clinical and pathologic T, N, M, and directly entered stage groups; and to provide an algorithm for deriving clinical and pathologic stage groups for use by NPCR central registries for quality control and data consolidation. The library is intended to be used for cancer cases diagnosed in 2016.
For the year 2016, there will be overlap between cases abstracted and diagnosed in 2016 and cases diagnosed earlier but not abstracted until 2016. For NPCR, the TNM staging library is intended to replace Collaborative Staging. Since TNM staging is only valid for 2016 and later, and Collaborative Staging is no longer used in 2016, for 2016, vendor software is expected to handle multiple staging systems and change workflows based on the diagnosis year. See Figure 1 for a description of how NPCR handles the two staging systems by year of diagnosis.
The scope of the TNM staging library does not include collection of data items other than those needed to derive TNM stage. For other collection requirements, contact your standard setter.

The TNM staging library exposes an API (Application Programming Interface) to support abstraction of TNM data items, generation of picklists, and derivation of TNM stage. Some familiarity with the NAACCR format is required and can be found here: http://www.naaccr.org/StandardsandRegistryOperations/VolumeII.aspx
The library is written in C#/.NET. A basic understanding of C# is required to use the API. A Windows environment with .NET Framework version 4.5 or higher is required.

[image:]
[bookmark: Figure_1]Figure 1

A general workflow of how TNM staging fits into the abstraction process:
· The abstractor enters the year of diagnosis. If the year is 2016 or later, continue with TNM staging. Otherwise, exit this workflow.
· The abstractor enters values for primary site and histologic type.
· Call the schema selection function to obtain a schema number
· If the function returns with a valid schema number, continue to the next step (building picklists)
· If the function indicates that staging is not applicable, fill in the derived clinical and pathologic stage group fields with default values of “88”. Exit this workflow.
· If the function indicates that a schema discriminator is required:
· Locate the schema discriminator table
· Construct a picklist and display it
· For site-specific factor (SSF) discriminators, construct a picklist using the schema discriminator table
· For non-SSF discriminators, construct a picklist using valid values from the NAACCR manual
· The abstractor selects a discriminator value
· Call the schema selection function again with the discriminator value included. Handle the return value according to the scenarios listed for the first call to the schema selection function. Repeat if necessary.
· Call the staging library to determine which data items are required to derive stage for the schema.
· For each required data item, construct a picklist and display it. See Figure 2 for a sample picklist.
· The abstractor selects a value for each required data item
· Populate a Datacard with input values
· Call the library’s stage calculation function
· Store calculation results in file or database table

[image:]
[bookmark: Figure_2]Figure 2: Example picklist table

[bookmark: _Toc456618100]Walkthrough: The Abstraction Process

What follows is a basic explanation of how TNM data items are abstracted. The walkthrough is divided into sections, with sample C# code snippets included in each section. Some code has been omitted for clarity or left as an exercise to the user.
A sample C# code file for the walkthrough has also been included with the library.

[bookmark: _Toc456618101]Initializing the TNM staging library

The first step to using the TNM staging library is to create an instance of TNM_Stage. This instance should be kept in memory until it is no longer needed by the calling program.

// The namespace used by the TNM staging library
using TNM_Staging;
// Declare program namespace, class, and containing method here
//
TNM_Stage stageObject = new TNM_Stage();

[bookmark: _Toc456618102]Selecting a schema

Next, create a Datacard (a data structure that supplies input values and receives derived stage group values) and set the values for primary site (NAACCR item #400, Primary Site) and histologic type (NAACCR item #522, Histologic Type ICD-O-3). These data items are always required to select a schema.
Then, call the schema selection function, GetSchemaNumber().

Datacard dc = new Datacard();
// Pick some default values for demonstration purposes
dc.site = "C111";
dc.histology = "8000";
// Get a schema number
int schemaNumber = 0;
DataElement requiredElement = DataElement.NONE;

ErrorCode errorCode = stageObject.GetSchemaNumber(ref dc, ref schemaNumber, ref requiredElement);

GetSchemaNumber() uses the Datacard values to identify a schema. The function return value indicates if a schema could be selected. The function takes two additional pass-by-reference parameters: one to hold the schema number, and one to indicate if another data item is required to select the schema when there are multiple candidates.
NOTE: Schema numbers (and all other index numbers for tables, columns, notes, etc.) start from 0.
There are three possible outcomes to selecting a schema:
· A schema could be identified
· A schema could not be identified because no schema is staged for that combination of values
· A schema could not be identified because multiple schemas are staged for that combination of values
In the first case, we proceed directly to abstracting TNM data items. In the second case, since a schema cannot be identified, we fill in default values for derived clinical and pathologic stage group, and skip abstracting the other TNM data items. In the third case, an additional element is required to select the schema: a schema discriminator.

if (errorCode == ErrorCode.OK)
{
// Do nothing, proceed directly to abstracting TNM data items
}
else if (errorCode == ErrorCode.SCHEMA_NOT_APPLICABLE)
{
// Fill in default values for derived clinical/pathologic stage group	
// Skip abstracting TNM data items
}
else if (errorCode == ErrorCode.SCHEMA_DISCRIMINATOR_REQUIRED)
{
// Build a schema discriminator picklist and let the user select a value
}

[bookmark: _Toc456618103]Obtaining a schema discriminator

The next step is to identify which data item is the schema discriminator. If a schema discriminator is not required, this step is skipped.
When a schema discriminator is required, GetSchemaNumber() will return the necessary information to the caller.
· The function returns a value of SCHEMA_DISCRIMINATOR_REQUIRED to indicate that a discriminator is required.
· Parameter schemaNumber is set to the number of one of the schemas that share the discriminator.
· Parameter requiredDataElement is set to the DataElement that matches the schema discriminator.

NOTE: In TNM staging 7th edition, only the following data items can be a schema discriminator
· Site-specific factor 10 (NAACCR Item # 2864)
· Site-specific factor 25 (NAACCR Item # 2879)
· Sex (NAACCR Item # 220)
· Grade (NAACCR Item # 440)

[bookmark: _Toc456618104]Retrieving a discriminator table

Discriminator tables are not included for certain schemas. The reason is that tables have only been mapped for data items that are TNM-specific. As a general rule of thumb, site-specific factors that are needed for staging have tables, while basic item such as Age, Behavior, Grade, and Sex do not.
Since the discriminator is returned as a DataElement, the API user should call GetTableByDataElement() to retrieve the table. If the function returns a value of TABLE_NOT_FOUND or the returned table is null, the user must construct their own discriminator table using the data item’s definition.

[bookmark: _Toc456618105]Example 1

Here’s an example where a discriminator table can be retrieved.
Choose the following values:
Site = C111, Hist = 8000

int schemaNumber = 0;
DataElement requiredElement = DataElement.NONE;
ErrorCode errorCode = stageObject.GetSchemaNumber(ref dc, ref schemaNumber, ref requiredElement);

GetSchemaNumber returns the following values:
errorCode == SCHEMA_DISCRIMINATOR_REQUIRED, schemaNumber = 56, requiredElement == SSF25

Retrieve the table:

TNMTable table = null;
// Get the table corresponding to the discriminator
errorCode = stageObject.GetTableByDataElement(schemaNumber, requiredElement, ref table);

errorCode == OK, table is assigned a valid TNMTable

[bookmark: _Toc456618106]Example 2

Here’s an example where a discriminator table cannot be retrieved.
Choose the following values:
Site = C481, Hist = 8000

int schemaNumber = 0;
DataElement requiredElement = DataElement.NONE;
ErrorCode errorCode = stageObject.GetSchemaNumber(ref dc, ref schemaNumber, ref requiredElement);

GetSchemaNumber returns the following:
errorCode = SCHEMA_DISCRIMINATOR_REQUIRED, schemaNumber = 60, requiredElement = SEX
Sex (NAACCR Item #220) is not coded as a TNM table. Instead, the API user must create their own table.

TNMTable table = null;
// Get the table corresponding to the discriminator
errorCode = stageObject.GetTableByDataElement(schemaNumber, requiredElement, ref table);

errorCode = TABLE_NOT_FOUND, table == null

[bookmark: _Toc456618107]Building a table picklist

Once a table has been obtained, the API user can iterate over the table’s notes, column titles, and individual cells to construct a picklist form. The picklist should then be displayed to the abstractor. Once a value has been selected, the datacard should be populated with the value, and GetSchemaNumber() called again. If the user selected a discriminator value for a valid schema, that schema will be selected.

TNMTable table = null;
// Get the table corresponding to the discriminator, if possible
errorCode = stageObject.GetTableByDataElement(schemaNumber, requiredElement, ref table);

// Discriminator table found, iterate over the table to build a picklist
// For the purposes of this sample, assume that a table is returned
if (errorCode == ErrorCode.OK)
{
string value = "";

// Iterate over notes
for (int i = 0; i < table.NumNotes(); i++)
errorCode = table.GetNote(i, out value);

// Iterate over columns
for (int i = 0; i < table.NumColumns(); i++)
errorCode = table.GetColumnTitle(i, out value);

// Iterate over cells
// Storage codes are usually in the first column
for (int i = 0; i < table.NumRows(); i++)
{
 		for (int j = 0; j < table.NumColumns(); j++)
errorCode = table.GetValue(i, j, out value);
}

// Build a picklist form
// Left as an exercise for the reader
}
else
{
// No table found, check the identity of the discriminator and build a picklist manually
// Left as an exercise for the reader
}

// Display picklist to user
// Left as an exercise for the reader

string discriminatorValue = "";
// Assume discriminator value is set by the user, but set it manually for this example
discriminatorValue = "010";

// Set discriminator value in Datacard
dc.PutDatacardValue(requiredElement, discriminatorValue);
// Call GetSchemaNumber() with updated datacard
errorCode = stageObject.GetSchemaNumber(ref dc, ref schemaNumber, ref requiredElement);
while (errorCode == ErrorCode.SCHEMA_DISCRIMINATOR_REQUIRED)
{
// Repeat the discrimnator process until a valid schema discrimnator is obtained
// discriminatorValue = new value
dc.PutDatacardValue(requiredElement, discriminatorValue);
errorCode = stageObject.GetSchemaNumber(ref dc, ref schemaNumber, ref requiredElement);
}

[bookmark: _Toc456618108]Abstracting required data items

Now that we have a valid schema number, we can abstract the TNM data items required for staging. The list of required data items varies from schema to schema, so a function has been provided to retrieve those items. Though the items are returned as a single list, they can be categorized by whether they have an associated table or not, just as in the case of the schema discriminator.
We introduce a new class, TableInfo, that contains information on which table to retrieve.
TableInfo has three member variables:
· tableNumber – the integer position of the table in its parent schema
· dataElement – denotes the identity of the data item
· naaccrItemNumber – the NAACCR Item # of the data item

If tableNumber is valid (greater than or equal to 0), then the schema contains a table for that data item. To retrieve the table, we use another function, GetTable(), that works like GetTableByDataElement() except it takes a table number instead of a data element.
Otherwise, the API user must use dataElement and naaccrItemNumber to identify the data item and create their own picklist.

// Get required data items
List<TableInfo> requiredItems = stageObject.GetRequiredDataItems(schemaNumber);

// Iterate over the required data items
foreach (TableInfo info in requiredItems)
{
TNMTable table = null;
if (info.tableNumber >= 0)
{
errorCode = stageObject.GetTable(schemaNumber, info.tableNumber, ref table);
if (errorCode == ErrorCode.OK)
{
// Build a picklist from the table
// See the schema discriminator example for code to iterate through a
// table's contents
}
}
else
{
 	// Build a picklist from an external source
}
}

[bookmark: _Toc456618109]Optional validation

Any optional validation goes here. This includes handling of blank values and other default values, whose treatment will vary from vendor to vendor.

[bookmark: _Toc456618110]Calculating derived stage group

Once the datacard has been populated, call CalculateStage() to derive TNM stage group. If the API user is starting with a record buffer, PopulateDatacardFromBuffer() can be used to populate the datacard directly.
CalculateStage will return an ErrorCode indicating if schema selection was successful:
· OK: a schema was selected
· SCHEMA_NOT_APPLICABLE: staging is not applicable for this schema
SCHEMA_DISCRIMINATOR_REQUIRED: a schema could not be selected because a schema discriminator is required
CalculateStage takes two additional pass-by-reference parameters (ErrorCodes), one for clinical staging and one for pathologic staging. The ErrorCodes indicate the results of clinical and pathologic staging. For a comprehensive list of ErrorCodes, consult the ErrorCodes section.
ErrorCodes can be translated into messages strings by the function FormatErrorCode() and displayed to the user, if necessary.
Serious errors that can prevent the library from functioning properly are classified under ErrorCode SYSTEM_EXCEPTION and written to a log file, “system_exception.txt”, in the library directory. This log is used for debugging system errors.

// Call the stage calculation function
ErrorCode clinicalError = ErrorCode.OK;
ErrorCode pathologicError = ErrorCode.OK;
errorCode = stageObject.CalculateStage(ref dc, ref clinicalError, ref pathologicError);

if (errorCode == ErrorCode.OK)
{
// Get error messages
if (clinicalError != ErrorCode.OK)
{
string msg = stageObject.FormatErrorCode(clinicalError);
}
if (pathologicError != ErrorCode.OK)
{
string msg = stageObject.FormatErrorCode(pathologicError);
}
}

[bookmark: _Schemas][bookmark: _Toc456618111]Schemas

The full list of TNM schemas has been included here for reference. TNM schemas were developed specifically for TNM staging and are not the same as Collaborative Stage schemas, so this is the official list.
Each schema is listed with its display name, an identifier (that can be used to look up the schema), and the number of the AJCC chapter from which it originated.
	Schema Name
	Schema Identifier
	AJCC Chapter #

	Adrenal TNM7
	Adrenal
	47

	Ampulla of Vater TNM7
	AmpullaOfVater
	23

	Anus TNM7
	Anus
	15

	Appendix: Carcinoid TNM7
	AppendixCarcinoid
	13

	Appendix: Carcinoma TNM7
	AppendixCarcinoma
	13

	Bile Ducts: Cystic Duct TNM7
	BileDuctsCysticDuct
	20

	Bile Ducts: Distal TNM7
	BileDuctsDistal
	22

	Bile Ducts: Intrahepatic TNM7
	IntrahepaticBileDucts
	19

	Bile Ducts: Perihilar TNM7
	BileDuctsPerihilar
	21

	Bone TNM7
	Bone
	27

	Breast TNM 7
	Breast
	32

	Cervix Uteri TNM7
	CervixUteri
	35

	Colon and Rectum TNM7
	ColonRectum
	14

	Conjunctiva, Carcinoma TNM7
	ConjunctivaCarcinoma
	49

	Corpus Uteri Adenosarcoma TNM7
	CorpusUteriAdenosarcoma
	36

	Corpus Uteri Carcinomas TNM7
	CorpusUteriCarcinomas
	36

	Corpus Uteri Sarcomas TNM7
	CorpusUteriSarcomas
	36

	Eyelid, Carcinoma TNM7
	Eyelid
	48

	Fallopian Tube TNM7
	FallopianTube
	38

	Gallbladder TNM7
	Gallbladder
	20

	Gastrointestinal Stromal Tumor, Colon, Rectum, Appendix
	GISTColonRectumAppendix
	16

	Gastrointestinal Stromal Tumor, Gastric
	GISTStomach
	16

	Gastrointestinal Stromal Tumor, Omentum
	GISTOmentum
	16

	Gastrointestinal Stromal Tumor, Peritoneum
	GISTPeritoneum
	16

	Gastrointestinal Stromal Tumor, Small Intestine and Esophagus
	GISTSmallIntestineEsophagus
	16

	Gestational Trophoblastic Disease TNM7
	GestationalTrophoblasticDisease
	39

	Kidney TNM7
	Kidney
	43

	Lacrimal Gland, Carcinoma TNM7
	LacrimalGland
	53

	Larynx: GlotticTNM7
	LarynxGlottic
	5

	Larynx: SubglotticTNM7
	LarynxSubglottic
	5

	Larynx: SupraglotticTNM7
	LarynxSupraglottic
	5

	Lip and Oral Cavity TNM7
	LipOralCavity
	3

	Liver TNM7
	Liver
	18

	Lung TNM7
	Lung
	25

	Lymphomas, Hodgkin and Non-Hodgkin TNM7
	Lymphoma
	57A

	Lymphomas, Primary Cutaneous TNM7
	LymphomaCutaneousMF
	57B

	Lymphoma, Ocular Adnexa TNM7
	LymphomaOcularAdnexa
	55

	Major Salivary Glands (Parotid, Submandibular, and Sublingual) TNM7
	SalivaryGlandsMajor
	7

	Malignant Melanoma of Ciliary Body and Choroid TNM7
	MelanomaCiliaryBody
	51

	Malignant Melanoma of the Conjunctiva TNM7
	MelanomaConjunctiva
	50

	Malignant Melanoma of the Iris TNM7
	MelanomaIris
	51

	Melanoma Skin TNM7
	MelanomaSkin
	31

	Merkel Cell Carcinoma TNM7
	MerkelCellCarcinoma
	30

	Mucosal Melanoma of the Head and Neck TNM7
	MelanomaHeadAndNeck
	9

	Nasal Cavity and Sinuses: Maxillary Sinus TNM7
	MaxillarySinus
	6

	Nasal Cavity and Sinuses: Nasal Cavity and Ethmoid Sinus TNM7
	NasalCavityEthmoidSinus
	6

	Neuroendocrine Tumors: Colon or Rectum TNM7
	NeuroendocrineTumorsColonRectum
	17

	Neuroendocrine Tumors: Sm. Intestine, Ampulla TNM7
	NeuroendocrineTumorsSmIntestineAmpulla
	17

	Neuroendocrine Tumors: Stomach TNM7
	NeuroendocrineTumorsStomach
	17

	Orbit, Sarcoma TNM7
	Orbit
	54

	Ovary TNM7
	Ovary
	37

	Pancreas, Exocrine and Endocrine TNM7
	Pancreas
	24

	Penis TNM7
	Penis
	40

	Pharynx: Hypopharynx TNM7
	Hypopharynx
	4

	Pharynx: Nasopharynx TNM7
	Nasopharynx
	4

	Pharynx: Oropharynx TNM7
	Oropharynx
	4

	Pharynx: Pharyngeal Tonsil TNM7
	PharyngealTonsil
	4

	Pleural Mesothelioma TNM7
	PleuralMesothelioma
	26

	Primary Peritoneal Carcinoma [Female] TNM7
	PeritoneumFemaleGen
	37

	Prostate TNM7
	Prostate
	41

	Renal Pelvis and Ureter TNM7
	RenalPelvisUreter
	44

	Retinoblastoma TNM7
	Retinoblastoma
	52

	Skin, inc. Scrotum, Squamous Cell and Other TNM7
	SkinScrotumSquamousAndOther
	29

	Small Intestine TNM7
	SmallIntestine
	12

	Soft Tissue Sarcoma TNM7
	SoftTissueSarcoma
	28

	Stomach TNM7
	Stomach
	11

	Testis TNM7
	Testis
	42

	Urethra TNM7
	Urethra
	46

	Urinary Bladder TNM7
	Bladder
	45

	Vagina TNM7
	Vagina
	34

	Vulva TNM7
	Vulva
	33

	Esophagogastric Junction, Adenocarcinoma TNM7
	EsophagusGEJunctionAdeno
	10

	Esophagogastric Junction, Squamous TNM7
	EsophagusGEJunctionSquamous
	10

	Esophagus, Adenocarcinoma TNM7
	EsophagusAdenocarcinoma
	10

	Esophagus, Squamous Cell TNM7
	EsophagusSquamous
	10

	Thyroid, Anaplastic TNM7
	ThyroidAnaplastic
	8

	Thyroid, Medullary TNM7
	ThyroidMedullary
	8

[bookmark: _Toc456618112]
Enumerated Types

TNM staging uses enumerated types to refer to values without the need for constants.

[bookmark: _DataElement][bookmark: _Toc456618113]DataElement

DataElement represents a data element used in the calculation of TNM stage. Most DataElements have a one-to-one correspondence with NAACCR data items. For example, CLINICAL_T is “TNM Clin T” (Item # 940).
Some DataElements are intermediate variables used for stage calculation. These variables are only defined within the scope of the TNM staging library.
 DataElements are used to indicate a specific data element is needed:
· As input to/output from the datacard
· To select a schema when there are multiple candidates
· To retrieve a table to use as a picklist for abstraction

public enum DataElement
{
NONE = -1, CLINICAL_T, PATHOLOGIC_T, CLINICAL_N, PATHOLOGIC_N, CLINICAL_M, PATHOLOGIC_M,
CLINICAL_STAGE_GRP, PATHOLOGIC_STAGE_GRP, SSF1, SSF2, SSF3, SSF4, SSF5, SSF6, SSF7, SSF8,
SSF9, SSF10, SSF11, SSF12, SSF13, SSF14, SSF15, SSF16, SSF17, SSF18, SSF19, SSF20, SSF21,
SSF22, SSF23, SSF24, SSF25,
PRIMARY_SITE, HIST_ICD_O_3, YEAR_OF_DIAGNOSIS, TUMORSIZE, BEHAV, GRADE, AGE, SEX,
 TNM_EDITION, TNM_CLIN_DESCRIPTOR, TNM_PATH_DESCRIPTOR, DERIVED_CLINICAL_STAGE_GRP,
DERIVED_PATHOLOGIC_STAGE_GRP,
B_VALUE, S_VALUE, GRADE_CATEGORY, MITOTIC_RATE
};

Details:
· The “NONE” element denotes the absence of a valid data element.
· CLINICAL_STAGE_GRP/PATHOLOGIC_STAGE_GRP is used to denote directly coded stage group, and DERIVED_CLINICAL_STAGE_GRP/DERIVED_PATHOLOGIC_STAGE_GRP is used to denote derived TNM stage group.
· Intermediate data elements are placed at the higher end of the range, starting with B_VALUE. Intermediate data elements are not abstracted.

DataElements by integer value
	Number
	Enum

	-1
	NONE

	0
	CLINICAL_T

	1
	PATHOLOGIC_T

	2
	CLINICAL_N

	3
	PATHOLOGIC_N

	4
	CLINICAL_M

	5
	PATHOLOGIC_M

	6
	CLINICAL_STAGE_GRP

	7
	PATHOLOGIC_STAGE_GRP

	8
	SSF1

	9
	SSF2

	10
	SSF3

	11
	SSF4

	12
	SSF5

	13
	SSF6

	14
	SSF7

	15
	SSF8

	16
	SSF9

	17
	SSF10

	18
	SSF11

	19
	SSF12

	20
	SSF13

	21
	SSF14

	22
	SSF15

	23
	SSF16

	24
	SSF17

	25
	SSF18

	26
	SSF19

	27
	SSF20

	28
	SSF21

	29
	SSF22

	30
	SSF23

	31
	SSF24

	32
	SSF25

	33
	PRIMARY_SITE

	34
	HIST_ICD_O_3

	35
	YEAR_OF_DIAGNOSIS

	36
	TUMOR_SIZE

	37
	BEHAV

	38
	GRADE

	39
	AGE

	40
	SEX

	41
	TNM_EDITION

	42
	TNM_CLIN_DESCRIPTOR

	43
	TNM_PATH_DESCRIPTOR

	44
	DERIVED_CLINICAL_STAGE_GRP

	45
	DERIVED_PATHOLOGIC_STAGE_GRP

	46
	B_VALUE

	47
	S_VALUE

	48
	GRADE_CATEGORY

	49
	MITOTIC_RATE

[bookmark: _SchemaIdentifier][bookmark: _Toc456618114]SchemaIdentifier

SchemaIdentifier is the enumerated type for a schema identifier. Schema identifiers are used to refer to schemas when writing schema-specific logic. For example, if you want to check for the schema “Adrenal”, you would use the schema identifier Adrenal. The full list of schemas is listed in the Schemas section.
See the descriptions for GetSchemaNumberBySchemaIdentifier() and GetSchemaBySchemaIdentifier() for information on how to retrieve schema information by identifier.
A schema identifier is NOT a schema number and should not be treated as such.

public enum SchemaIdentifier
{
Adrenal,
AmpullaOfVater,
Anus,
 AppendixCarcinoid,
AppendixCarcinoma,
BileDuctsCysticDuct,
BileDuctsDistal,
IntrahepaticBileDucts,
BileDuctsPerihilar,
Bone,
Breast,
CervixUteri,
ColonRectum,
ConjunctivaCarcinoma,
CorpusUteriAdenosarcoma,
CorpusUteriCarcinomas,
CorpusUteriSarcomas,
EsophagusGEJunctionAdeno,
EsophagusGEJunctionSquamous,
EsophagusAdenocarcinoma,
EsophagusSquamous,
Eyelid,
FallopianTube,
Gallbladder,
GISTColonRectumAppendix,
GISTStomach,
GISTOmentum,
GISTPeritoneum,
GISTSmallIntestineEsophagus,
GestationalTrophoblasticDisease,
Kidney,
LacrimalGland,
LarynxGlottic,
LarynxSubglottic,
LarynxSupraglottic,
LipOralCavity,
Liver,
Lung,
Lymphoma,
LymphomaCutaneousMF,
LymphomaOcularAdnexa,
SalivaryGlandsMajor,
MelanomaCiliaryBody,
MelanomaConjunctiva,
MelanomaIris,
MelanomaSkin,
MerkelCellCarcinoma,
MelanomaHeadAndNeck,
MaxillarySinus,
NasalCavityEthmoidSinus,
NeuroendocrineTumorsColonRectum,
NeuroendocrineTumorsSmIntestineAmpulla,
NeuroendocrineTumorsStomach,
Orbit,
Ovary,
Pancreas,
Penis,
Hypopharynx,
Nasopharynx,
Oropharynx,
PharyngealTonsil,
PleuralMesothelioma,
PeritoneumFemaleGen,
Prostate,
RenalPelvisUreter,
Retinoblastoma,
SkinScrotumSquamousAndOther,
SmallIntestine,
SoftTissueSarcoma,
Stomach,
Testis,
ThyroidAnaplastic,
ThyroidMedullary,
ThyroidPapFollic,
Urethra,
Bladder,
Vagina,
Vulva
};

[bookmark: _TNMTableRole][bookmark: _Toc456618115]TNMTableRole

TNMTableRole is the enumerated type for a table role. The typical API user will use DataElement instead of TNMTableRole to interact with tables, so this section can be treated as optional.
A table’s role is its purpose in TNM staging. Some tables are used for defining picklists for input values, others are for calculating derived stage group, and others are used to derive intermediate variables that are used in calculating derived stage group.

public enum TNMTableRole
{
NONE = -1, CLINICAL_T, PATHOLOGIC_T, CLINICAL_N, PATHOLOGIC_N, CLINICAL_M, PATHOLOGIC_M,
CLINICAL_STAGE, PATHOLOGIC_STAGE, SSF1, SSF2, SSF3, SSF4, SSF5, SSF6, SSF7, SSF8, SSF9,
SSF10, SSF11, SSF12, SSF13, SSF14, SSF15, SSF16, SSF17, SSF18, SSF19, SSF20, SSF21,
SSF22, SSF23, SSF24, SSF25,
 DERIVED_CLINICAL_STAGE, DERIVED_PATHOLOGIC_STAGE, EXTRA
};

Details:
· The value “NONE” is used to indicate that a table with the desired role does not exist.
· The value “EXTRA” is used for all tables used to calculate intermediate variables.
· If tables in the same schema have identical table roles, they are differentiated by sub-role (a string value).

TNMTableRole is also used to map DataElements to tables. Most TNMTableRoles (except EXTRA) have a corresponding DataElement. Conversely, DataElements that are either inputs to or outputs from tables can be mapped to a corresponding TNMTableRole.

[bookmark: _ErrorCode][bookmark: _Toc456618116]ErrorCode

ErrorCode is an enumerated type that defines all the possible error conditions that can occur when using the TNM staging library.

public enum ErrorCode
{
OK,
SYSTEM_EXCEPTION,
SCHEMA_NOT_APPLICABLE,
SCHEMA_DISCRIMINATOR_REQUIRED,
SCHEMA_INDEX_OUT_OF_BOUNDS,
TABLE_INDEX_OUT_OF_BOUNDS,
INVALID_CLINICAL_T,
INVALID_CLINICAL_N,
INVALID_CLINICAL_M,
INVALID_CLINICAL_STAGE_GROUP,
INVALID_PATHOLOGIC_T,
INVALID_PATHOLOGIC_N,
INVALID_PATHOLOGIC_M,
INVALID_PATHOLOGIC_STAGE_GROUP,
CLINICAL_T_TABLE_NOT_FOUND,
CLINICAL_N_TABLE_NOT_FOUND,
CLINICAL_M_TABLE_NOT_FOUND,
CLINICAL_STAGE_GROUP_TABLE_NOT_FOUND,
PATHOLOGIC_T_TABLE_NOT_FOUND,
PATHOLOGIC_N_TABLE_NOT_FOUND,
PATHOLOGIC_M_TABLE_NOT_FOUND,
PATHOLOGIC_STAGE_GROUP_TABLE_NOT_FOUND,
DERIVED_STAGE_TABLE_NOT_FOUND,
TABLE_NOT_FOUND,
STAGE_GROUP_NOT_DEFINED,
STAGE_GROUP_YP_NOT_REPORTABLE,
STAGE_GROUP_CANNOT_BE_CALCULATED,
STAGE_GROUP_IS_ERROR,
STAGE_GROUP_NOT_FOUND,
STAGING_ELEMENT_MISSING,
STORAGE_CODE_TYPE_NOT_VALID,
STORAGE_CODE_NOT_FOUND,
DISPLAY_CODE_TYPE_NOT_VALID,
DISPLAY_CODE_NOT_FOUND,
TABLE_ROW_OR_CODE_NOT_VALID,
NOTE_INDEX_NOT_VALID,
COLUMN_INDEX_NOT_VALID,
SITE_NOT_VALID,
HISTOLOGY_NOT_VALID
};

ErrorCodes by integer value

	Number
	Enum

	0
	OK

	1
	SYSTEM_EXCEPTION

	2
	SCHEMA_NOT_APPLICABLE

	3
	SCHEMA_DISCRIMINATOR_REQUIRED

	4
	SCHEMA_INDEX_OUT_OF_BOUNDS

	5
	TABLE_INDEX_OUT_OF_BOUNDS

	6
	INVALID_CLINICAL_T

	7
	INVALID_CLINICAL_N

	8
	INVALID_CLINICAL_M

	9
	INVALID_CLINICAL_STAGE_GROUP

	10
	INVALID_PATHOLOGIC_T

	11
	INVALID_PATHOLOGIC_N

	12
	INVALID_PATHOLOGIC_M

	13
	INVALID_PATHOLOGIC_STAGE_GROUP

	14
	CLINICAL_T_TABLE_NOT_FOUND

	15
	CLINICAL_N_TABLE_NOT_FOUND

	16
	CLINICAL_M_TABLE_NOT_FOUND

	17
	CLINICAL_STAGE_GROUP_TABLE_NOT_FOUND

	18
	PATHOLOGIC_T_TABLE_NOT_FOUND

	19
	PATHOLOGIC_N_TABLE_NOT_FOUND

	20
	PATHOLOGIC_M_TABLE_NOT_FOUND

	21
	PATHOLOGIC_STAGE_GROUP_TABLE_NOT_FOUND

	22
	DERIVED_STAGE_TABLE_NOT_FOUND

	23
	TABLE_NOT_FOUND

	24
	STAGE_GROUP_NOT_DEFINED

	25
	STAGE_GROUP_YP_NOT_REPORTABLE

	26
	STAGE_GROUP_CANNOT_BE_CALCULATED

	27
	STAGE_GROUP_IS_ERROR

	28
	STAGE_GROUP_NOT_FOUND

	29
	STAGING_ELEMENT_MISSING

	30
	STORAGE_CODE_TYPE_NOT_VALID

	31
	STORAGE_CODE_NOT_FOUND

	32
	DISPLAY_CODE_TYPE_NOT_VALID

	33
	DISPLAY_CODE_NOT_FOUND

	34
	TABLE_ROW_OR_CODE_NOT_VALID

	35
	NOTE_INDEX_NOT_VALID

	36
	COLUMN_INDEX_NOT_VALID

	37
	SITE_NOT_VALID

	38
	HISTOLOGY_NOT_VALID

[bookmark: _Toc456618117]Explanation of codes	Comment by Author:

The following table describes the error codes returned by the TNM staging library, organized by category.
Each code is accompanied by:
· An error message (which can be retrieved by calling a API function)
· A description of the error condition
· An explanation of whether the code represents an error (“E”) or non-error information (“I”)
· Suggested actions for the API user

	Error Code
	Error message
	Explanation
	Error or Informa-tional
	Suggested behavior of calling program

	System Exceptions

	[bookmark: SYSTEM_EXCEPTION]SYSTEM_EXCEPTION
	“A system exception has occurred. Check the log file ‘system_exception.txt’ for more details.”
	The library has caught an exception that would crash the library if not handled.
	E
	Check the log file and inform the developer.

			Codes Produced During Schema Selection

	[bookmark: SCHEMA_NOT_APPLICABLE]SCHEMA_NOT_APPLICABLE
	"Schema not applicable."
	A schema could not be identified from inputs (either from not being mapped, or from specifically being excluded)
	I
	Provide message to user that TNM staging is not applicable for this diagnosis and populate TNM fields with defaults for Not Applicable (generally 88).

	[bookmark: SCHEMA_DISCRIMINATOR_REQUIRED]SCHEMA_DISCRIMINATOR_REQUIRED
	“A valid schema discriminator is required.”
	A schema discriminator is required to identify a schema, but a valid discriminator value was not supplied. A discriminator value is valid if it has been included in a schema definition.
	E
	Present user with data item for discriminator and when value is selected, add it to the datacard and repeat function calls until valid value allows selection of schema.

	[bookmark: SITE_NOT_VALID]SITE_NOT_VALID
	“Site code not valid.”
	An invalid site code was supplied.
	E
	Prompt user to enter a valid site code, update the datacard, and call the function again.

	[bookmark: HISTOLOGY_NOT_VALID]HISTOLOGY_NOT_VALID
	“Histology code not valid.”
	An invalid histology code was supplied.
	
	Prompt user to enter a valid histology code, update the datacard, and call the function again.

	Codes Produced during Data Access

	[bookmark: SCHEMA_INDEX_OUT_OF_BOUNDS]SCHEMA_INDEX_OUT_OF_BOUNDS
	"Schema index out of bounds."
	Schema index is not valid (< 0 or >= number of schemas).
	E
	Report to developer.

	[bookmark: TABLE_INDEX_OUT_OF_BOUNDS]TABLE_INDEX_OUT_OF_BOUNDS
	"Table index out of bounds."
	Table index is not valid (< 0 or >= number of tables for the schema).
	E
	Report to developer.

	[bookmark: TABLE_ROW_OR_CODE_NOT_VALID]TABLE_ROW_OR_CODE_NOT_VALID
	"Table row or code not valid."
	The specified table row or column is invalid.
	E
	Report to developer.

	[bookmark: TABLE_NOT_FOUND]TABLE_NOT_FOUND
	“Table not found.”
	The specified table could not be found.
	E
	Report to developer.

	[bookmark: NOTE_INDEX_NOT_VALID]NOTE_INDEX_NOT_VALID
	“Note index not valid.”
	The specified note index is invalid.
	E
	Report to developer.

	[bookmark: COLUMN_INDEX_NOT_VALID]COLUMN_INDEX_NOT_VALID
	“Column index not valid.”
	The specified column index is invalid.
	E
	Report to developer.

	Codes Produced Pre-Derivation

	[bookmark: INVALID_CLINICAL_T]INVALID_CLINICAL_T
	"Invalid Clinical T value."
	The value was not found in the associated table.
	E
	Provide message to user that value entered is not valid and allow user to enter a new value. Then re-derive.

	[bookmark: INVALID_CLINICAL_N]INVALID_CLINICAL_N
	"Invalid Clinical N value."
	
	E
	

	[bookmark: INVALID_CLINICAL_M]INVALID_CLINICAL_M
	"Invalid Clinical M value."
	
	E
	

	[bookmark: INVALID_CLINICAL_STAGE_GROUP]INVALID_CLINICAL_STAGE_GROUP
	“Invalid Clinical Stage Group value”
	
	E
	

	[bookmark: INVALID_PATHOLOGIC_T]INVALID_PATHOLOGIC_T
	"Invalid Pathologic T value."
	
	E
	

	[bookmark: INVALID_PATHOLOGIC_N]INVALID_PATHOLOGIC_N
	"Invalid Pathologic N value."
	
	E
	

	[bookmark: INVALID_PATHOLOGIC_M]INVALID_PATHOLOGIC_M
	"Invalid Pathologic M value."
	
	E
	

	[bookmark: INVALID_PATHOLOGIC_STAGE_GROUP]INVALID_PATHOLOGIC_STAGE_GROUP
	“Invalid Pathologic Stage Group value”
	
	E
	

	[bookmark: CLINICAL_T_TABLE_NOT_FOUND]CLINICAL_T_TABLE_NOT_FOUND
	"Clinical T table not found."
	The indicated table could not be found in the schema. This is a system error – every schema should have one of each.
	E
	Report to developer.

	[bookmark: CLINICAL_N_TABLE_NOT_FOUND]CLINICAL_N_TABLE_NOT_FOUND
	"Clinical N table not found."
	
	E
	

	[bookmark: CLINICAL_M_TABLE_NOT_FOUND]CLINICAL_M_TABLE_NOT_FOUND
	"Clinical M table not found."
	
	E
	

	[bookmark: CLINICAL_STAGE_GROUP_TABLE_NOT_FOUND]CLINICAL_STAGE_GROUP_TABLE_NOT_FOUND
	“Clinical Stage Group table not found”
	
	E
	

	[bookmark: PATHOLOGIC_T_TABLE_NOT_FOUND]PATHOLOGIC_T_TABLE_NOT_FOUND
	"Pathologic T table not found."
	
	E
	

	[bookmark: PATHOLOGIC_N_TABLE_NOT_FOUND]PATHOLOGIC_N_TABLE_NOT_FOUND
	"Pathologic N table not found."
	
	E
	

	[bookmark: PATHOLOGIC_M_TABLE_NOT_FOUND]PATHOLOGIC_M_TABLE_NOT_FOUND
	"Pathologic M table not found."
	
	E
	

	[bookmark: PATHOLOGIC_STAGE_GROUP_TABLE_NOT_FOUND]PATHOLOGIC_STAGE_GROUP_TABLE_NOT_FOUND
	“Pathologic Stage Group not found.”
	
	E
	

	Codes Produced During Calculation/Derivation

	[bookmark: DERIVED_STAGE_TABLE_NOT_FOUND]DERIVED_STAGE_TABLE_NOT_FOUND
	"Appropriate derived stage table not found."
	An appropriate stage table could not be found. This can be due to missing values that are required to select a stage table.
	E
	Calling program must identify required data items and notify user that an element was missing and allow user to enter a value for the missing element. Then repeat derivation function.

	[bookmark: STAGE_GROUP_NOT_DEFINED]STAGE_GROUP_NOT_DEFINED
	“Stage Groups are not defined for this schema.”
	The schema is defined and T/N/M values can be supplied, but stage group is not calculated.

	I
	Provide message to user that no stage groups are defined and populate NPCR Derived Clin Stg Grp and NPCR Derived Path Stg Grp fields with default for Not Applicable (generally 88).

	[bookmark: STAGE_GROUP_YP_NOT_REPORTABLE]STAGE_GROUP_YP_NOT_REPORTABLE
	“yP stage is not collected by NPCR.”
	A pathologic stage group value is not calculated for cases with TNM Path Descriptor = 4 or 6.
	I
	Provide message to user that yP stage group is not collected by NPCR and populate NPCR Derived Path Stg Grp with default for Unknown (99).

	[bookmark: STAGE_GROUP_CANNOT_BE_CALCULATED]STAGE_GROUP_CANNOT_BE_CALCULATED
	"Stage group value cannot be calculated."
	A stage group value cannot be calculated because of specific business rules.
	E
	Provide message to user that combination of T, N, and M values does not allow derivation of stage group and user needs to enter different values(s). Then call derivation function again.

	[bookmark: STAGE_GROUP_IS_ERROR]STAGE_GROUP_IS_ERROR
	"Combination of TNM is logically or medically not possible.”
	A stage group value of “ERROR” was obtained – the combination of input values is logically or medically not possible, for example, in situ tumor with mets.
	E
	Provide message to user that combination of T, N, and M values produces an error and ask user to change the T, N, and/or M values. Then call derivation function again.

	[bookmark: STAGE_GROUP_NOT_FOUND]STAGE_GROUP_NOT_FOUND
	"Stage group value not found in table."
	A stage group value could not be found using the provided combination of input values.
	I
	Provide message to user that combination of T, N, and M values is an unknown stage group and populate NPCR Derived Clin Stg Grp and/or NPCR Derived Path Stg Grp with default for Unknown (99).

	[bookmark: STAGING_ELEMENT_MISSING]STAGING_ ELEMENT_MISSING
	“Data item needed to derive stage group is missing.”
	A data item needed to derive stage group is blank.
	I
	Provide message to user that a data item needed to derive stage group(s) is blank and ask user if this is OK. If user responds Yes, populate NPCR Derived Clin Stg Grp and/or NPCR Derived Path Stg Grp stage group(s) with default for Unknown (99). If user responds No, allow user to fill in missing item and re-derive.

	Codes Produced During Data Presentation

	[bookmark: STORAGE_CODE_TYPE_NOT_VALID]STORAGE_CODE_TYPE_NOT_VALID
	"Storage code type not valid."
	The specified storage type code does not exist.
	E
	Calling program needs to provide a valid code. User cannot do this.

	[bookmark: STORAGE_CODE_NOT_FOUND]STORAGE_CODE_NOT_FOUND
	"Storage code not found."
	The specified storage code does not exist.
	E
	Calling program needs to provide a valid code. User cannot do this.

	[bookmark: DISPLAY_CODE_TYPE_NOT_VALID]DISPLAY_CODE_TYPE_NOT_VALID
	"Display code type not valid."
	The specified display type code does not exist.
	E
	Calling program needs to provide a valid code. User cannot do this.

	[bookmark: DISPLAY_CODE_NOT_FOUND]DISPLAY_CODE_NOT_FOUND
	"Display code not found."
	The specified display code does not exist.
	E
	Calling program needs to provide a valid code. User cannot do this.

[bookmark: _Toc456618118]Notable Classes

This section contains a description of the relevant classes used by the staging library.

[bookmark: _Datacard][bookmark: _Toc456618119]Datacard

The Datacard class stores the input and output fields used in staging. When the user populates the required input fields with values and calls the stage calculation function, the output fields will be populated with the derived values.
Note: all strings are initially of indeterminate length. After stage calculation, the output fields will contain values of the correct field length.
Note: The fields for directly coded clinical/pathologic stage are named “clinical_stage” and “path_stage”. The fields for derived clinical/pathologic stage are named “derived_clinical_stage” and “derived_path_stage”.

public class Datacard
{
public string site;
public string histology;
public string diagnosis_year;
public string age;
public string behavior;
public string grade;
public string sex;

public string tnm_edition_num;
public string tnm_clin_descriptor;
public string tnm_path_descriptor;
public string clinical_stage;
public string path_stage;

public string ssf1;
public string ssf2;
public string ssf3;
public string ssf4;
public string ssf5;
public string ssf6;
public string ssf7;
public string ssf8;
public string ssf9;
public string ssf10;
public string ssf11;
public string ssf12;
public string ssf13;
public string ssf14;
public string ssf15;
public string ssf16;
public string ssf17;
public string ssf18;
public string ssf19;
public string ssf20;
public string ssf21;
public string ssf22;
public string ssf23;
public string ssf24;
public string ssf25;

public string clinical_T;
public string clinical_N;
public string clinical_M;
public string path_T;
public string path_N;
public string path_M;

public string derived_clinical_stage;
public string derived_path_stage;
};

Each member variable of Datacard corresponds to a NAACCR field. The following table describes the Datacard layout.

NOTE: The items named SSF 1-25 were imported into the TNM DLL from the Collaborative Stage system, version 0205. Only the SSFs required for TNM staging were imported. Pick lists for these SSFs generated from the TNM DLL will differ in one way from the CS originals: code 988 (Not applicable) is not included because these SSFs are required for staging. Code 988 will appear in pick lists generated from the CS DLL for the same items.

	Member variable
	NAACCR Field Name
	Item #
	Columns
	Field Length

	Input variables

	site
	Primary Site
	400
	540-543
	4

	histology
	Histologic Type ICD-O-3
	522
	550-553
	4

	diagnosis_year
	Date of Diagnosis (Year portion only)
	390
	530-533 (Year columns only)
	4

	age
	Age at Diagnosis
	230
	193-195
	3

	behavior
	Behavior Code ICD-O-3
	523
	554-554
	1

	grade
	Grade
	440
	555-555
	1

	sex
	Sex
	220
	192-192
	1

	tnm_edition_num
	TNM Edition Number
	1060
	938-939
	2

	tnm_clin_descriptor
	TNM Clin Descriptor
	980
	974-974
	1

	tnm_path_descriptor
	TNM Path Descriptor
	920
	956-956
	1

	clinical_stage
	TNM Clin Stage Group
	970
	970-973
	4

	path_stage
	TNM Path Stage Group
	910
	952-955
	4

	ssf1
	CS Site-Specific Factor 1
	2880
	1003-1005
	3

	ssf2
	CS Site-Specific Factor 2
	2890
	1006-1008
	3

	ssf3
	CS Site-Specific Factor 3
	2900
	1009-1011
	3

	ssf4
	CS Site-Specific Factor 4
	2910
	1012-1014
	3

	ssf5
	CS Site-Specific Factor 5
	2920
	1015-1017
	3

	ssf6
	CS Site-Specific Factor 6
	2930
	1018-1020
	3

	ssf7
	CS Site-Specific Factor 7
	2861
	1021-1023
	3

	ssf8
	CS Site-Specific Factor 8
	2862
	1024-1026
	3

	ssf9
	CS Site-Specific Factor 9
	2863
	1027-1029
	3

	ssf10
	CS Site-Specific Factor 10
	2864
	1030-1032
	3

	ssf11
	CS Site-Specific Factor 11
	2865
	1033-1035
	3

	ssf12
	CS Site-Specific Factor 12
	2866
	1036-1038
	3

	ssf13
	CS Site-Specific Factor 13
	2867
	1039-1041
	3

	ssf14
	CS Site-Specific Factor 14
	2868
	1042-1044
	3

	ssf15
	CS Site-Specific Factor 15
	2869
	1045-1047
	3

	ssf16
	CS Site-Specific Factor 16
	2870
	1048-1050
	3

	ssf17
	CS Site-Specific Factor 17
	2871
	1051-1053
	3

	ssf18
	CS Site-Specific Factor 18
	2872
	1054-1056
	3

	ssf19
	CS Site-Specific Factor 19
	2873
	1057-1059
	3

	ssf20
	CS Site-Specific Factor 20
	2874
	1060-1062
	3

	ssf21
	CS Site-Specific Factor 21
	2875
	1063-1065
	3

	ssf22
	CS Site-Specific Factor 22
	2876
	1066-1068
	3

	ssf23
	CS Site-Specific Factor 23
	2877
	1069-1071
	3

	ssf24
	CS Site-Specific Factor 24
	2878
	1072-1074
	3

	ssf25
	CS Site-Specific Factor 25
	2879
	1075-1077
	3

	clinical_T
	TNM Clin T
	940
	958-961
	4

	clinical_N
	TNM Clin N
	950
	962-965
	4

	clinical_M
	TNM Clin M
	960
	966-969
	4

	path_T
	TNM Path T
	880
	940-943
	4

	path_N
	TNM Path N
	890
	944-947
	4

	path_M
	TNM Path M
	900
	948-951
	4

	Output variables

	derived_clinical_stage
	NPCR Derived Clin Stg Grp
	3650
	896-899
	4

	derived_path_stage
	NPCR Derived Path Stg Grp
	3655
	900-903
	4

Notable Methods:
GetDatacardValue

String GetDatacardValue(DataElement element)

The function retrieves the value of the Datacard field for the given input DataElement.

PutDatacardValue

String PutDatacardValue(DataElement element, string value)

The function sets the given Datacard field to the given value.

Clear

Void Clear()

The function clears the Datacard fields.

[bookmark: _TableInfo][bookmark: _Toc456618120]TableInfo

TableInfo holds information about a DataElement and an associated table. A TableInfo object is used to provide information for a user to retrieve a table from the TNM staging library, or to identify a data item whose picklist must be constructed from an external source instead.
Note: The TNM staging library does not provide picklists for items that are not TNM-specific and are commonly abstracted (ex: Age, Behavior, Grade, Sex). They must be constructed from external sources, such as the NAACCR manual or the vendor’s own sources. The reasoning is that these data items will need to be entered anyway, and should not be entered more than once.

public class TableInfo
{
public int tableNumber;
public DataElement dataElement;
public int naaccrItemNumber;
}

Member variables:
· tableNumber – the number of the associated table. The user can call GetTable() with the schema number and table number to retrieve the table.
· If the value is -1, there is no associated table in the TNM staging library. The user should use the value of dataElement and naaccrItemNumber instead to identify the correct data item and create a table from an external source.
· dataElement – the DataElement that the table is used to code for.
· naaccrItemNumber – the NAACCR Item # of the associated DataElement.

[bookmark: _TNMTable][bookmark: _Toc456618121]TNMTable

A TNMTable holds the data for a schema table.
Schema tables have multiple purposes:
· converting input storage codes to display codes
· displaying picklists
· looking up stage group values
· calculating intermediate values.

API users will mainly use TNMTables to display picklists.

public class TNMTable
{
public string Title;
public string Subtitle;
public List<string> Notes;

public DiagnosisMode DiagnosisMode;
public TNMTableRole Role;
public string SubRole;
public TableLookupType LookupType;
public string ResultVar;

public List<TNMTableColumn> Columns;
public List<TNMTableRow> Rows;
}

Member Variables:
· Title: the table title
· Subtitle: the table subtitle
· Notes: a list of table notes. Notes provide instructions and clarification to the abstracter.
· DiagnosisMode: describes whether the table is used for clinical staging, pathologic staging, or both.
· Role: the table’s purpose in its parent schema
· SubRole: the table sub-role. Used to distinguish tables that share the same table role.
· LookupType: describes how to perform lookup in the table.
· ResultVar: the name of the data element returned by the table, if one exists
· Columns: a list of table columns. Contains the table column headers.
· Rows: a list of table rows. Contains the table data.

Notable Methods:

GetValue

ErrorCode GetValue(int row, int column, out string value)

	Parameter
	Type
	Description

	Row
	Int
	The row index (starting from 0)

	Column
	Int
	The column index (starting from 0)

	Value
	String (out)
	Receives the value of the indicated table cell

The function takes a row index and column index and sets value to the value of the indicated table cell. If the row number or column number is invalid, the function returns TABLE_ROW_OR_CODE_NOT_VALID.
By iterating over each column and row and calling this function for every cell, the API user can replicate the structure of a table in order to create a picklist.

GetColumnTitle

ErrorCode GetColumnTitle(int index, out string value)

	Parameter
	Type
	Description

	Index
	Int
	The column index (starting from 0)

	Value
	String (out)
	Receives the value of the indicated column title

The function takes a column index and sets value to the value of the associated table column. If the column index is invalid, the function returns COLUMN_INDEX_NOT_VALID.

NumColumns

Int NumColumns()

The function returns the number of table columns.

NumRows

Int NumRows()

The function returns the number of table rows.

GetNote

ErrorCode GetNote(int index, out string value)

	Parameter
	Type
	Description

	Index
	Int
	The note index (starting from 0)

	Value
	String (out)
	Receives the value of the associated note

The function takes a note index and sets value to the value of the associated note. If the note index is invalid, the function returns NOTE_INDEX_NOT_VALID.
Notes contain instructions for the abstractor.

NumNotes

Int NumNotes()

The function returns the number of notes.

[bookmark: _TNMSchema][bookmark: _Toc456618122]TNMSchema

A TNMSchema holds the data for a schema, a collection of site and histology codes that are staged with a common set of stage group values.
TNM staging schemas and Collaborative Stage schemas belong to distinct staging systems, so they cannot be treated interchangeably.
Schemas are ordered by schema number. By accessing schemas, the API user can obtain tables in order to create picklists.

public class TNMSchema
{
public string ID;
public string Title;
public string TNMChapter;
public List<SiteHistGrouping> Definition;
public List<string> Notes;
public List<TNMTable> Tables;
public Dictionary<DataElement, TNMTableRole> IntermediateVarMap;
public List<DataElement> requiredDataElementsForSchemaSelection;
}

Member variables:
· ID: a short identifier
· Title: the schema display name
· TNMChapter: AJCC chapter number
· Definition: a collection of site and histology code combinations that define the schema
· Tables: a List of tables
· IntermediateVarMap: a data structure containing information about intermediate variables used by the schema
· requiredDataElementsForSchemaSelection: a List of data elements (discriminators) that are necessary in order to select the schema

Notable Methods:
RequiredDataItems

List<TableInfo> RequiredDataItems()

The function returns the list of data items used to stage the schema, including both site-specific factors and non-site-specific factors. Primary site, histologic type, and schema discriminators are excluded from the list, as they have already been used to select the schema by the time the function is called.
Site-specific factors have schema tables which can be used as picklists; non-site-specific factors do not, and therefore must be coded from other sources, so to assist in the creation of picklists, separate functions for each type have been provided.

SiteHistGrouping

SiteHistGrouping is a helper class for defining a schema. A SiteHistGrouping contains the set of site codes, histology codes, and discriminator codes such that all codes in the grouping map to the same schema. A schema definition may consist of multiple SiteHistGroupings.

public SiteHistGrouping()
{
siteCodes = new List<string>();
histologyCodes = new List<string>();
discriminators = new List<string>();
notApplicable = false;
}

Member variables:
· siteCodes – the list of site codes in the grouping
· histologyCodes – the list of histology codes in the grouping
· discriminators – the list of discriminator codes in the grouping. The list will be empty if a discriminator is not needed. Does not identify the schema discriminator – that is done by GetSchemaNumber().
· notApplicable – Boolean flag. False if the grouping belongs to the schema definition; true if the grouping is excluded from the schema definition. (Some groupings are used to exclude codes from a schema definition; this usage is fairly rare).

[bookmark: _Toc456618123]TNM_Staging

All API functions are accessed from a class called TNM_Stage. To access the API, create an instance of TNM_Stage and dispose of it once it is no longer needed.
The API is described in detail in the section “API reference”.

[bookmark: _Toc456618124]API reference

The API reference section contains a description of all the API functions. It is organized by general functionality, with a brief explanation preceding each section.

[bookmark: _Toc456618125]General information

[bookmark: _Toc456618126]GetVersion

String GetVersion()

The function returns the library version.

[bookmark: _Toc456618127]Data transfer

The TNM staging library handles input and output via a Datacard. For existing records, a typical workflow is to extract a record from a flat file or database, store the record in a string buffer, transfer the record data to a Datacard, call the stage calculation function, and transfer the results from the Datacard to the buffer. To facilitate transfer between a buffer and a Datacard, a pair of functions have been provided.

[bookmark: _Toc456618128]PopulateDatacardFromBuffer

ErrorCode PopulateDatacardFromBuffer(ref Datacard dc, string record)

	Parameter
	Type
	Description

	Dc
	Datacard (ref)
	Datacard that receives values from the record buffer

	Record
	String
	Buffer used to populate the datacard

The function populates the input datacard from the record buffer.
The function returns SYSTEM_EXCEPTION if an exception occurs, and OK otherwise.

[bookmark: _Toc456618129]PopulateBufferFromDatacard

ErrorCode PopulateBufferFromDatacard(Datacard dc, ref string buffer)

	Parameter
	Type
	Description

	Dc
	Datacard
	Datacard used to populate the record buffer

	Buffer
	String (ref)
	Buffer that receives values from the datacard

The function populates the record buffer from the input datacard.
If the buffer is shorter than the NAACCR 16 standard record length, it will be padded with spaces before being populated.
The functions return SYSTEM_EXCEPTION if an exception occurs, and OK otherwise.

[bookmark: _Toc456618130]Formatting Error Messages

Functions in this section are used to format and display data for the abstractor.
The TNM staging library uses ErrorCodes to convey success or failure for API calls. Each ErrorCode can be converted to a descriptive error message.

[bookmark: _Toc456618131]FormatErrorCode

String FormatErrorCode(ErrorCode error)

	Parameter
	Type
	Description

	Error
	ErrorCode
	The error code to be translated

The function takes an input ErrorCode and returns the associated message string. If an API function returns an error code, the code can be passed to this function to obtain a descriptive message.
The full set of ErrorCodes and messages are detailed in the ErrorCodes section.

[bookmark: _Toc456618132]Formatting Storage and Display codes

The TNM staging library also provides functions to convert between storage codes and display codes. For the purposes of this API, the values stored in the NAACCR record are referred to as storage codes. The values that are readable by people are referred to as display codes. Both are defined in the AJCC manual. As abstractors generally work directly with storage codes, using the conversion functions is optional.
The TNM staging library uses the revised codes for clinical and pathologic AJCC T, N, and M defined in the NAACCR 16 manual.

Example codes (Clinical N):
Storage code: c2A
Display code: cN2A

[bookmark: _Toc456618133]GetStorageCode

ErrorCode GetStorageCode(string displayCode, int codeType, ref string storageCode)

	Parameter
	Type
	Description

	displayCode
	String
	Input display code

	codeType
	int
	Indicates the type of display code

	storageCode
	String (ref)
	Receives the value of the storage code corresponding to the display string

The function takes a display code and an integer indicating the display code’s field type, and assigns the equivalent storage code to storageCode.

Valid values for codeType:
	Value
	Field

	0
	Clinical T

	1
	Clinical N

	2
	Clinical M

	3
	Derived Clinical Stage

	4
	Pathologic T

	5
	Pathologic N

	6
	Pathologic M

	7
	Derived Pathologic Stage

If codeType is invalid, the function returns STORAGE_CODE_TYPE_NOT_VALID. If codeType is valid but displayCode is invalid, the function returns STORAGE_CODE_NOT_FOUND.

[bookmark: _Toc456618134]GetDisplayCode

ErrorCode GetDisplayCode(string storageCode, int codeType, ref string displayCode)

	Parameter
	Type
	Description

	storageCode
	String
	Input storage code

	codeType
	Int
	Indicates the type of storage code

	displayCode
	String (ref)
	Receives the value of the display code corresponding to the storage code

The function takes a storage code and an integer indicating the storage code’s field type, and assigns the equivalent display code to displayCode.
If codeType is invalid, the function returns DISPLAY_CODE_TYPE_NOT_VALID. If codeType is valid but storageCode is invalid, the function returns DISPLAY_CODE_NOT_FOUND.
See GetStorageCode for a description of valid codeTypes.

[bookmark: _Toc456618135]Schema selection and access

Selecting a schema is an important part of the abstraction process. A schema must be selected before any TNM fields can be abstracted. In order to select a schema, values for primary site and histologic type (and if necessary, a schema discriminator) must be entered. Once these values have been obtained, they can be passed to the API to obtain a schema number in order to access a schema’s data.
A schema discriminator is an additional data element, necessary to distinguish between schemas that share a common set of primary site and histologic type codes. The identity of the discriminator varies from group to group.
If the TNM staging library’s schema selection function is called and a schema discriminator is required, the function returns a specific error code and the required data element. The API user can then access the appropriate schema table to create a picklist or generate a picklist using content from the NAACCR manual, present the picklist to the abstractor to select a value, then call the schema selection function again with the updated information.

[bookmark: _Toc456618136]GetSchemaNumber

ErrorCode GetSchemaNumber(ref Datacard dc, ref int schemaNumber, ref DataElement requiredElement)

	Parameter
	Type
	Description

	Dc
	Datacard (ref)
	Input datacard used to determine the schema number

	schemaNumber
	Int (ref)
	Receives the number of the identified schema (starting from 0)

	requiredElement
	DataElement (ref)
	Receives the DataElement type of the schema discriminator

The function takes an input Datacard and uses its value to calculate a schema number, if possible. It returns an error code indicating if the calculation was successful.
Function return values:
· OK: a schema was successfully selected.
· SITE_ NOT_VALID: an invalid site code was supplied.
· HISTOLOGY_NOT_VALID: an invalid histology code was supplied.
· SCHEMA_NOT_APPLICABLE: a schema could not be selected using the input data because there is no schema for that combination of primary site and histologic type.
· SCHEMA_DISCRIMINATOR_REQUIRED: a schema could not be selected using the input data because a schema discriminator value is required and was not supplied.

Some schemas share a common set of primary site and histology codes. To distinguish between these schemas, an additional data element, a schema discriminator, is required. If a schema discriminator is required to select a schema, requiredElement will be set to the DataElement corresponding to the discriminator. This is done whether schema selection was successful or not.
If the function returns SCHEMA_DISCRIMINATOR_REQUIRED, then a valid discriminator value was not supplied to the function, and the value of requiredElement should be checked.
The API user can retrieve a table to use as picklist by calling the function GetTableByDataElement() with requiredElement set to the value of the desired DataElement. If a table is successfully retrieved, it can be used as a picklist. Otherwise, the API user must construct a picklist using the valid values defined in the NAACCR manual.

Note: the schema number returned by this function is only valid while the values of primary site, histologic type, and discriminator remain constant. If one of these fields is changed during the abstracting process, it can cause the selected schema to change. If one of these fields changes, the vendor software should call GetSchemaNumber() again and take appropriate action if the returned schema number changes.

When abstracting, the workflow of selecting a schema is as follows:
· Abstractor enters the year of diagnosis. If the year is 2016 or later, continue with TNM staging. Otherwise, exit this workflow and continue abstracting non-TNM data items.
· Abstractor enters values for primary site and histologic type
· Vendor software calls GetSchemaNumber() to identify a schema
· If the function returns a value of SCHEMA_DISCRIMINATOR_REQUIRED, continue to the next step.
· Otherwise, a valid schema number has been obtained, or a schema number cannot be obtained.
· If the function returns a value of OK: a valid schema number has been obtained. Exit this workflow and continue abstracting TNM data items.
· If the function returns a value of SCHEMA_NOT_APPLICABLE: TNM staging cannot be performed. Exit this workflow and fill in appropriate default values for TNM derived clinical/pathologic stage group.
· Vendor software calls GetTableByDataElement(), passing in the value of requiredElement, the schema discriminator.
· If the function returns a valid table, that table should be used to construct a picklist and displayed to the abstractor. See the section for TNMTable for useful functions.
· Otherwise, a picklist for requiredElement must be created from the field’s definition in the NAACCR 16 manual.
· The abstractor chooses a value from the picklist.
· Vendor software assigns the selected value to the Datacard.
· Vendor software calls GetSchemaNumber() again. Handle the result in the same way as the previous call (loop if the result is SCHEMA_DISCRIMINATOR_REQUIRED; finish otherwise.)

[bookmark: _Toc456618137]GetSchemaNumberBySchemaIdentifier

ErrorCode GetSchemaNumberBySchemaIdentifier(SchemaIdentifier id)

	Parameter
	Type
	Description

	Id
	SchemaIdentifier
	The identifier for the requested schema

The function returns the schema number of the schema that matches the input id. If for some reason there is no matching schema, the function returns -1.

[bookmark: _Toc456618138]GetSchemaName

ErrorCode GetSchemaName(int schemaNumber, ref string schemaName)

	Parameter
	Type
	Description

	schemaNumber
	Int
	Input schema number

	schemaName
	String (ref)
	Receives the name of the schema associated with the schema number

The function takes a schema number and sets schemaName to the display name of the schema with the associated schema number.
If the schema number is invalid, the function returns SCHEMA_INDEX_OUT_OF_BOUNDS.

[bookmark: _Toc456618139]GetNumberOfSchemas

Int GetNumberOfSchemas()

The function returns the total number of schemas in the TNM staging library. This value can be used in conjunction with GetSchema() to iterate through the list of schemas.

[bookmark: _Toc456618140]GetSchema

ErrorCode GetSchema(int schemaNumber, ref TNMSchema schema)

	Parameter
	Type
	Description

	schemaNumber
	Int
	Input schema number

	schema
	TNMSchema (ref)
	Receives a copy of the schema associated with the schema number

The function takes a schema number and assigns a copy of the associated schema to parameter schema. The caller is responsible for disposing of the schema object.
The function returns an ErrorCode indicating if the schema number is valid. If the schema number is invalid (less than 0 or greater than or equal to the total number of schemas), the function returns SCHEMA_INDEX_OUT_OF_BOUNDS and does not modify the schema parameter.

[bookmark: _Toc456618141]GetSchemaBySchemaIdentifier

ErrorCode GetSchemaBySchemaIdentifier(SchemaIdentifier id, ref TNMSchema schema)

	Parameter
	Type
	Description

	id
	SchemaIdentifier
	The id of the requested schema

	schema
	TNMSchema
	Receives a copy of the requested schema

The function takes a SchemaIdentifier and assigns a copy of the associated schema to parameter schema.
The function returns ErrorCode OK if the SchemaIdentifier is valid. If the SchemaIdentifier is invalid, the function returns SCHEMA_INDEX_OUT_OF_BOUNDS and does not modify the schema parameter.

[bookmark: _Toc456618142]Table access

This section contains functions for retrieving schema tables.

[bookmark: _Toc456618143]GetNumberOfTables

ErrorCode GetNumberOfTables(int schemaNumber, ref int numTables)

	Parameter
	Type
	Description

	schemaNumber
	Int
	Input schema number

	numTables
	Int (ref)
	Receives the number of tables in the associated schema

The function takes a schema number and sets numTables to the number of tables that the associated schema contains.
The function returns an ErrorCode indicating if the schema number is valid. If the schema number is invalid (less than 0 or greater than or equal to the total number of schemas), the function returns SCHEMA_INDEX_OUT_OF_BOUNDS.
Alternatively, the user can access the schema object directly to obtain the number of schema tables.

[bookmark: _Toc456618144]GetTable

ErrorCode GetTable(int schemaNumber, int tableNumber, ref TNMTable table)

	Parameter
	Type
	Description

	schemaNumber
	Int
	Input schema number (starting from 0)

	tableNumber
	Int
	Input table number (starting from 0)

	Table
	TNMTable (ref)
	Receives a copy of the associated table

The function takes a schema number and a table number, and assigns a copy of the associated table to parameter table. The caller is responsible for disposing of the table object.
The function returns an ErrorCode indicating if the schema number and table number are valid. If the schema number is invalid (less than 0, or greater than or equal to the total number of schemas), the function returns SCHEMA_INDEX_OUT_OF_BOUNDS. If the table number is invalid (less than 0, or greater than or equal to the number of tables for the schema), the function returns TABLE_INDEX_OUT_OF_BOUNDS.

[bookmark: _Toc456618145]GetTableByDataElement

ErrorCode GetTableByDataElement(int schemaNumber, DataElement dataElement, ref TNMTable table)

	Parameter
	Type
	Description

	schemaNumber
	Int
	Input schema number (starting from 0)

	dataElement
	DataElement
	Input data element

	Table
	TNMTable (ref)
	Receives a copy of the associated table

The function takes a schema number and a data element and assigns a copy of the associated table to parameter table. If there isn’t an associated table for the schema and data element, the function returns TABLE_NOT_FOUND and sets table to null.
If the user knows the table’s number, the user should call GetTable() instead.
This function only works for input tables.

[bookmark: _Toc456618146]GetTableByRole

ErrorCode GetTableByRole(int schemaNumber, TNMTableRole tableRole, ref TNMTable table)

	Parameter
	Type
	Description

	schemaNumber
	Int
	Input schema number (starting from 0)

	tableRole
	TNMTableRole
	Input table role

	Table
	TNMTable (ref)
	Receives a copy of the associated table

The function takes a schema number and a table role and assigns a copy of the associated table to parameter table.
The function returns an ErrorCode indicating if the schema number and table role are valid. If the schema number is invalid, the function returns SCHEMA_INDEX_OUT_OF_BOUNDS. If a table with the indicated role is not present in the schema, the function returns TABLE_NOT_FOUND.
This function performs a role similar to GetTableByDataElement(), except that all tables have a role, but not every table has an associated data element. The average API user does not need to use this function, but it has been included for completeness sake.

[bookmark: _Toc456618147]Coding required data elements

The set of data items needed to derive stage varies from schema to schema. The API has a function to retrieve these data items so their values can be entered and passed to the stage calculation function.
The list of required data items excludes schema discriminators, as the API user must have already selected a schema before obtaining the list of data items required for staging. For the same reason, the list of required data items excludes primary site and histologic type, because they have already been used to select a schema.
The API only indicates which data items are required for staging. Collection requirements are dependent on the standard setter and are outside the scope of the project.
Once the list of required data elements has been obtained, the appropriate picklists should be created and displayed to the abstractor if they have not already been.

[bookmark: _Toc456618148]GetRequiredDataItems

List<TableInfo> GetRequiredDataItems(int schemaNumber)

	Parameter
	Type
	Description

	schemaNumber
	Int
	Input schema number (starting from 0)

The function takes a schema number and returns the list of data items that are required to stage the associated schema. If the schema number is invalid, or the schema has no required data elements, the function returns an empty List.
The function returns the required items as a list of TableInfo. This allows the function to mix data items that have mapped TNM tables with ones that do not. The user should examine each TableInfo to check if it has a valid table number. If the table number is valid, the user can call GetTable() to retrieve the table. Otherwise, the user must identify the data item using a DataElement and NAACCR item #, and build their own picklist.

[bookmark: _Toc456618149]Stage calculation

The primary purpose of the TNM staging library is to derive TNM stage group. A function called CalculateStage has been provided for stage derivation. The remainder of the API is geared toward gathering the values necessary to derive stage and interpreting the results.
The TNM staging library attempts to derive as much information as possible. If a schema could not be selected because there is insufficient information, or a schema does not exist for the given inputs, CalculateStage will indicate as such. If a schema can be selected but is not stageable, CalculateStage will indicate that as well. Clinical and pathologic staging are handled separately, so it is possible for one to succeed and the other to fail. For this reason, success is reported separately for clinical and pathologic staging.

[bookmark: _Toc456618150]CalculateStage

ErrorCode CalculateStage(ref Datacard dc, ref ErrorCode clinicalError, ref ErrorCode pathologicError)

	Parameter
	Type
	Description

	Dc
	Datacard
	Input datacard

	clinicalError
	ErrorCode (ref)
	Receives the error code for clinical staging

	pathologicError
	ErrorCode (ref)
	Receives the error code for pathologic staging

The function takes an input datacard and derives TNM clinical and pathologic stage. After derivation, the stage group values are stored in the datacard.
The function returns an ErrorCode indicating the general status of staging. An ErrorCode of OK means a schema was selected and the schema is stageable. This indicates that stage derivation was attempted, but it does not necessarily mean clinical and pathologic staging were successful – a pair of pass-by-reference parameters, clinicalError and pathologicError, receive the ErrorCodes from clinical and pathologic staging respectively.

Function return values
The function returns an ErrorCode other than OK, indicating general failure, under the following conditions:
· If an invalid site code was supplied, the function returns SITE_NOT_VALID.
· If an invalid histology code was supplied, the function returns HISTOLOGY_NOT_VALID.
· If staging is not applicable for the supplied site, histology, and discriminator values, the function returns SCHEMA_NOT_APPLICABLE. Both derived clinical and pathologic stage group are defaulted to “88”.
· If a schema can be identified, but the schema does not have a derived stage table, the schema is not staged (Exception: Lymphoma, which takes derived stage group values from the directly coded stage group tables). The function returns STAGE_GROUP_NOT_DEFINED. Both derived clinical and pathologic stage group are defaulted to “88”.
· If a schema cannot be identified because a valid schema discriminator is required but was not supplied, the function returns SCHEMA_DISCRIMINATOR_REQUIRED.
If the function returns any of these ErrorConditions, clinical and pathologic staging are not attempted.

Clinical and pathologic staging
The library’s performs the following steps for clinical/pathologic staging:
· validate the input values
· select a stage table
· look up the input values in the stage table
· assign the derived stage group value to the appropriate output field.

Clinical and pathologic staging errors
The library sets ClinicalError or PathologicError to an ErrorCode other than ErrorCode.OK under the following conditions:
· If a stage group value cannot be derived because the input values have been disallowed by the library’s business rules, the associated parameter is set to STAGE_GROUP_CANNOT_BE_CALCULATED.
· For pathologic staging with TNM Path Descriptor = 4 or 6, staging is not performed. PathologicError is set to STAGE_GROUP_YP_NOT_REPORTABLE.
· If a required input table for T, N, or M is missing, the associated parameter is set to the ErrorCode for the invalid table. For example, if the schema is missing a Clinical T table, the ErrorCode is CLINICAL_T_TABLE_NOT_FOUND.
· This is a system error and should not occur in practice.
· If one or more input values for clinical or pathologic T, N, or M are invalid, the associated parameter is set to the ErrorCode for the first invalid value. For example, if Clinical T is the first invalid parameter, the error code is INVALID_CLINICAL_T.
· If a derived stage table could not be selected, the associated parameter will be set to DERIVED_STAGE_TABLE_NOT_FOUND.
· Inability to select a stage table can be caused by an invalid selection of input values. If this code is returned, examine the input values and reselect them if needed.
· If the derived stage group value is “ERROR”, the combination of input values is present in the stage table but not permitted under staging rules, and the relevant parameter is set to STAGE_GROUP_IS_ERROR.
· If the combination of input values could not be found in the stage table, the associated parameter is set to STAGE_GROUP_NOT_FOUND.
· If a valid value for a required data element for staging (other than T/N/M) was not supplied, the associated parameter is set to STAGING_ELEMENT_MISSING.

The ErrorConditions are described in the section on ErrorConditions, including a recommendation on how the software vendor should treat each one. Some are not errors in the strict sense, but provide information on why a stage group value was not derived.

27

image2.png
Sample Pick List Table in Test App

r——

.
it s cvimt s ogorr oy s
Dite ok o crind a0y g
R R

iy o e i i T

image1.png
Coding Stage Data in 2016 in Registry Plus
Default Behavior for NPCR Registries

sty Plus roducts il conan both 3 TNM DL, th s of wh v epend on s
Ve, PR ot cllic 1 or 3016 e s (57, 1)

s dagnosiyer

ves 20t6oreter?

ccesto ks fr T s
I AbsPus 3 Wi Pos, access o T
dervaton basedon ispay Tye. Fulaccess
o draton n Prepand S

oaccss o pckssfor S s exept 575,
Ragonl Nodes Posan Eaminad

Mo s dervaton

S Version npwtOrgntand Currn.
popuats fany S fem poplted

AccssoTumorieSummary nd sl sage

o cces ok s o M K.
Nosccssto T destion
ollccss .3 5t 0 derved s
[—

S Version nputOrginstand e
populated i any S poplted. €5
Verson Derhedpopued po deston

AccestoTumorioSummaryandallssge

