A Greenhouse Study to Model Potential Field Use of Genetically Modified Bacterial Symbionts for Chagas Disease Control

Chagas Disease

Impact: 16-18 million cases

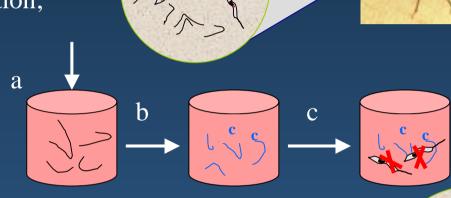
Mortality: 50,000 deaths per year At risk: 90 million in 21 countries

Agent: Trypanosoma cruzi

Vector: triatomine bugs

Distribution: The Americas

Control: Three multi-national control programs (Southern Cone, Andean Pact,


and Central American)

Potential Obstacles: Incomplete insecticide coverage, reinfestation of treated homes, insecticide resistance, program sustainability

Vector-Symbiont-Intervention

1.Triatomines harbor bacterial symbionts essential for survival and reproduction; symbionts passed by coprophagy.

-CRUZIGARD


2. Genetically transform symbionts to express an anti-trypanosomal agent

3. Bugs would feed on artificial feces (CRUZIGARD) containing genetically modified symbionts, resulting in diminished Chagas transmission (Paratransgenic vector).

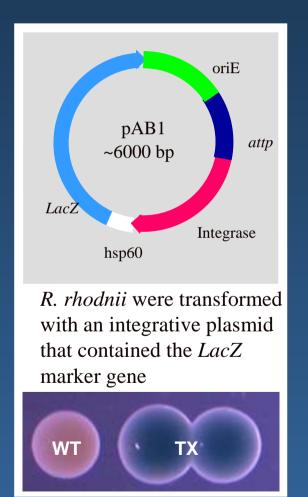
A Theoretical Strategy for Controlling Chagas Disease Transmission Using Genetically Modified Symbionts

- Apply genetically modified bacterial formulation to new homes or to insecticide-treated homes.
- Insects infest or reinfest homes.
- Triatomine nymphs ingest modified bacteria.
- Genetically modified symbionts are amplified and dispersed by newly-infected insects.

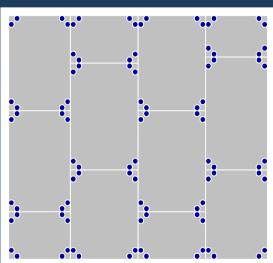
Greenhouse Study of Transgenic Insects: Containment

- Two sets of barriers, both secured to the floor
- Contains a "clean" area for decontamination

Greenhouse Study of Transgenic Insects: Release and Maintenance

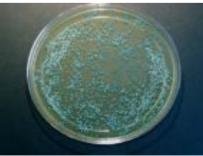

- 36 fed and mated *R*.

 prolixus females released into the hut (5/1/01)
- Bugs given bloodmeal through condom to 37°C
- Temperature and humidity monitored constantly

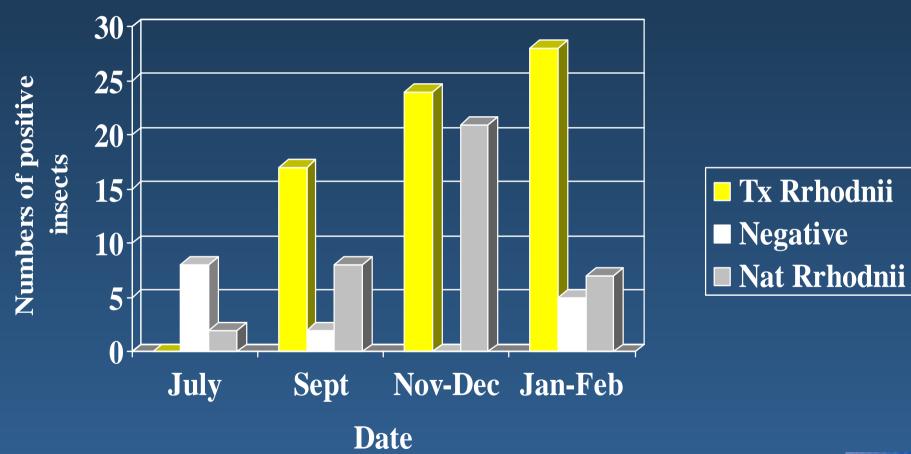


Composition and Placement of CRUZIGUARD

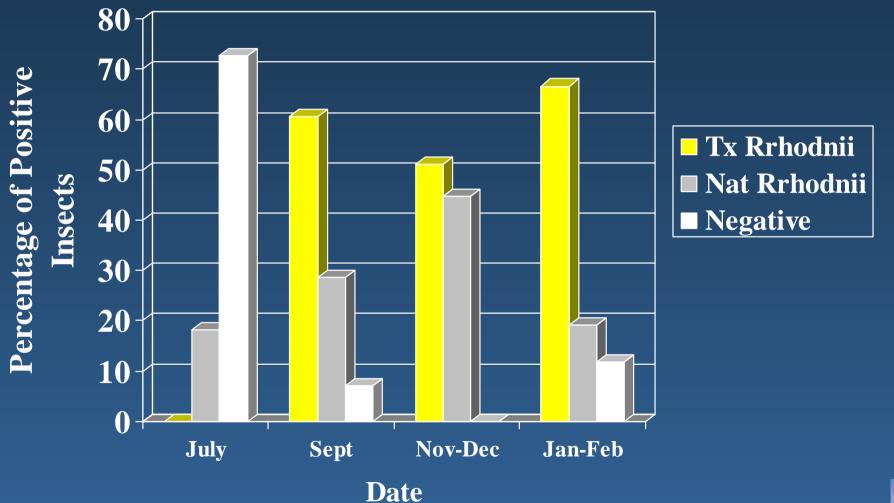
- Hut treated with CRUZIGUARD (5/31/01)
- Assay of CRUZIGUARD (6/29/01)
- Reapplied CRUZIGUARD (7/10/01)
- Stability of CRUZIGUARD assessed on weekly basis
- Analysis of F1 progeny initiated (7/16/01 to 2/01/02)



Midgut Assays of *R. prolixus* from Greenhouse Study

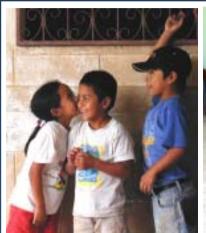


- R. prolixus bugs removed at varied intervals from greenhouse hut
- External surface of bugs washed in 10% bleach and 70% ethanol
- Abdomen ground in 1 ml of PBS (0.01M, pH7.2)
- Serial dilutions of midgut contents plated on BHI-Xgal plates
- 5-7 days after plating, counted CFU's


Greenhouse Study Summary

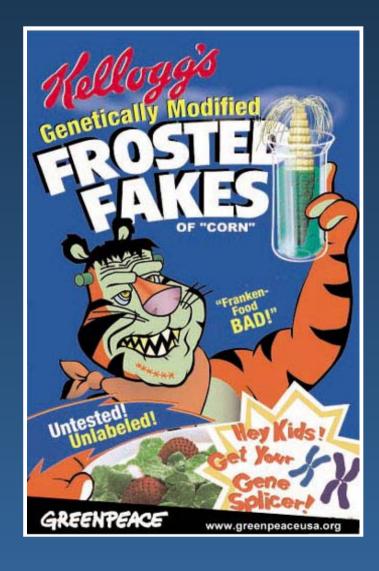
Greenhouse Study Summary

Summary and Future Studies



- In this study, we demonstrated:
 - Over 60 % of bugs acquired GM bacteria
 - An improved method for applying CRUZIGUARD
- In future iterations, we will:
 - Determine minimum concentration and density of GM bacteria for treating hut
 - Test other formulations of GM bacteria with added attractants that may enhance uptake
- Associated laboratory studies:
 - Assess in vivo competition between GM and wild-type bacteria
 - Develop improved anti-trypanosomal DNA constructs

Transgenic Control of Insect Vectors



- Public health concerns
 - Human safety (direct and indirect)
- Environmental and ecological concerns
 - ■Effects on non-target organisms and horizontal transfer of genes must be evaluated
- Political concerns
 - ■Effective interaction at local, national, and international levels
- Public perception
 - ■Effective/proactive communication
 - Whether scientifically valid or not public opinion can determine the future of entire programs

Collaborators

CDC – Atlanta

Ellen Dotson
Pritha Sen
Kalyani McCullough
Gena Groner
Amy Betz
Jennifer Anderson
C. Ben Beard

Yale University

Ravi Durvasula
Oleg Kruglov
Ranjini Sundaram
Frank Richards

Universidad del Valle de Guatemala – CDC/MERTU/G

Celia Cordon-Rosales
Pam Pennington
Cynthia Ralda
Jorge Salam
Alfonso Salam
Edgar Queme

Co-sponsored by the National Institutes of Health and the Association of Public Health Laboratories, EID Fellowship

