African Trypanosomiasis: A Re-emerging Public Health Threat

Anne C. Moore
Division of Parasitic Diseases
Centers for Disease Control and Prevention
African Trypanosomiasis: Background

- a classic example of an emerging infection, 1890-1930
- the leading public health problem in Africa in the first half of the 20th century
- nearly eliminated by 1960 using population screening, case treatment, chemoprophylaxis
- currently a re-emerging infection in central Africa
African Trypanosomiasis: The Basics

<table>
<thead>
<tr>
<th></th>
<th>West African</th>
<th>East African</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent:</td>
<td>T. brucei gambiense</td>
<td>T. brucei rhodesiense</td>
</tr>
<tr>
<td>Vector:</td>
<td>riverine tsetse fly</td>
<td>savanna tsetse fly</td>
</tr>
<tr>
<td>Distribution:</td>
<td>west /central Africa</td>
<td>east/south Africa</td>
</tr>
<tr>
<td>Reservoir:</td>
<td>human</td>
<td>antelope, cattle</td>
</tr>
<tr>
<td>Disease:</td>
<td>chronic</td>
<td>rapidly progressive</td>
</tr>
<tr>
<td>Mortality:</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>At risk:</td>
<td>rural populations</td>
<td>rural populations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>visitors to game reserves</td>
</tr>
</tbody>
</table>
New Cases of Human African Trypanosomiasis
Data collected by WHO, 1926-2000

* reporting incomplete for 1999 and 2000
New Cases of African Trypanosomiasis Detected in the Democratic Republic of Congo, 1926-2000*

No. of cases

Year

*DRC Ministry of Health statistics
New Cases of African Trypanosomiasis Detected in Angola, 1949-2000*

*Angola Ministry of Health statistics

No. of cases

number of cases number screened

No. screened

0 500 1000 1500 2000 2500 3000 3500

0 5000 10000 15000 20000 25000 30000 35000

Year

1980 1990
Villages in Ezo region, Sudan (n=13)

- Number of villages with sleeping sickness cases: 13 (1988), 7 (1997)
- Prevalence, parasite-confirmed: 9.3% (1988), 0.2% (1997)

(CDC logo)
West African Trypanosomiasis:
Problems in Accurately Estimating the Burden

- Inadequate levels of active case detection
 - At risk: 60 million
 - Screened for infection: < 2 million

- Disease distribution is uneven

- Passive case detection only minimally helpful
 - No health facilities in many areas at risk
 - Conflict or insecurity in epidemic foci
 - Clinical diagnosis is difficult until late in disease
 - Low sensitivity of parasitological diagnosis

Epidemic disease often remains unrecognized, even where there are functioning health facilities
East African Trypanosomiasis in U.S. travelers
1967-2001

No. of cases

- Non-Tanzanian exposure
- Tanzanian exposure
African Trypanosomiasis: Public Health Burden

Estimated prevalence: 350,000-500,000 cases
>95% *T. b. gambiense*

Health Burden: 2.05 million DALYS
(WHO, 2000)

For Africa, compare with:

- malaria: 36.8 DALYS
- tuberculosis: 8.7
- meningitis: 3.6
- schistosomiasis: 1.6
- polio: 0.8
Control of West African Trypanosomiasis

Primary strategy:
- Active case detection/population screening
- Case treatment
 - reduce mortality
 - reduce disease reservoir

Adjunct strategy:
- Vector control (traps)
 - Reduce man-tsetse contact
Cost-effectiveness of African Trypanosomiasis Control

<table>
<thead>
<tr>
<th>Disease/Intervention</th>
<th>$ per DALY averted</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS control, southern Sudan 1998 (IMC-CARE-CDC)</td>
<td>28</td>
</tr>
</tbody>
</table>

Compare with:

- “good value” for $25
- TB treatment (not DOT) $3
- Visceral leishmaniasis, Sudan epidemic $18
- Immunization DPT, polio, measles $25
- Acute respiratory infection $20--50
- Malaria (bed nets + insecticide) $19--85
Cost-effectiveness of African Trypanosomiasis Control

Periodic Screening vs. Delayed Intervention

<table>
<thead>
<tr>
<th>Scenario</th>
<th>$ per DALY averted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen at 3 year intervals</td>
<td>10.28 (range 3.84-13.41)</td>
</tr>
<tr>
<td>Delayed intervention at 9 years</td>
<td>17.41 (range 11.97-21.50)</td>
</tr>
</tbody>
</table>

Assumptions:
- Basic health infrastructure exists
- Analytic horizon is fixed at 9 years
- SS duration untreated is 3 years
- Population screening decreases prevalence by 2/3
- Population is 50,000 and is static except for SS deaths
- Initial SS prevalence 0.5%
- SS prevalence doubling time 1.75 years
Barriers to Control of African Trypanosomiasis

- Insufficient resources
- War and civil disturbance
- Crisis in African trypanosomiasis chemotherapy
 - Rising rates of melarsoprol treatment failure
 - Disappearing arsenal of therapeutic drugs
Melarsoprol Therapy for African Trypanosomiasis

- Introduced: 1949
- Indication: CNS African trypanosomiasis
- Use: 60-90% of patients
- Efficacy: 92-95% for almost 5 decades
- Problem foci: Angola, Sudan, Uganda
Melarsoprol Treatment Failure Rates, 1997-2001

northern Angola, 25%

southern Sudan, 16-21%

Uganda, 30%
Melarsoprol Treatment Failure

Possible Cause

<table>
<thead>
<tr>
<th>Possible Cause</th>
<th>Available Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>pharmacokinetic differences</td>
<td>identical drug levels in responders and relapse patients</td>
</tr>
<tr>
<td>HIV co-infection</td>
<td>more data needed</td>
</tr>
<tr>
<td>drug resistance</td>
<td>very few isolates tested for susceptibility</td>
</tr>
<tr>
<td></td>
<td>IC$_{50}$ 9-36 ng/ml Uganda relapses (n=3)*</td>
</tr>
<tr>
<td></td>
<td>IC$_{50}$ 9-72 ng/ml Uganda responders (n=8)*</td>
</tr>
<tr>
<td></td>
<td>IC$_{50}$ 1-14 ng/ml banked Ivory Coast relapses (n=10)*</td>
</tr>
<tr>
<td>altered affinity for protected sites</td>
<td>no data</td>
</tr>
</tbody>
</table>

* R. Brun, Swiss Tropical Institute
Availability of Treatment Drugs for African Trypanosomiasis

<table>
<thead>
<tr>
<th>Drug</th>
<th>Indication</th>
<th>Status in summer, 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>pentamidine</td>
<td>early SS</td>
<td>donation phasing out</td>
</tr>
<tr>
<td>suramin</td>
<td>early SS</td>
<td>halt of production</td>
</tr>
<tr>
<td>melarsoprol</td>
<td>CNS</td>
<td>future production uncertain (environmental concerns)</td>
</tr>
<tr>
<td>eflornithine</td>
<td>CNS, Gambian</td>
<td>not produced</td>
</tr>
<tr>
<td>nifurtimox</td>
<td>CNS, Gambian</td>
<td>halt of production</td>
</tr>
</tbody>
</table>
Finally!
A solution for women who suffer from unwanted facial hair!
African Trypanosomiasis: Recent developments

- All 5 drugs are being produced
- All 5 drugs are donated to WHO for sleeping sickness treatment for 5 years
- New drug research and development
 - Consortium for sleeping sickness drug discovery and development ((U of North Carolina, Gates Foundation)
 - MSF Drugs for Neglected Diseases initiative
African Trypanosomiasis: Additional Recent Developments

- WHO-coordinated activities to strengthen surveillance, control, research (support from Aventis)
 - GIS-based global disease surveillance
 - Sentinel surveillance for treatment failure and drug resistance
 - Financial and technical support for training, population screening, treatment center rehabilitation
 - Formation of a clinical trials group
 - Creation of a specimen bank

- PATTEC (Pan African Tsetse and Trypanosomiasis Eradication Campaign), October 2001
Summary: African Trypanosomiasis

- A re-emerging infection of serious dimensions in central Africa
- Resurgence has not led to expanded control measures
- Effective treatment and disease control are threatened by
 - increasing treatment failure rates
 - lack of secure, long-term availability of therapeutic drugs
Acknowledgements

Jean Jannin, World Health Organization
Christian Burri, Swiss Tropical Institute
Reto Brun, Swiss Tropical Institute
C. Miaka Mia Bilengé, DRC Ministry of Health
Théophile Josenando, Angola Ministry of Health
Michaleen Richer, International Medical Corps
Bronwen Blake, MSF-Holland
Matthew Trowbridge, Emory University
Deborah McFarland, Emory University