Prevention Effectiveness: Some examples

Martin Meltzer, Ph.D. Senior Health Economist Office of Surveillance NCID/CDC

Economic analyses of health interventions

Two categories of analyses
 Statistical analyses - "complete" data
 Mathematical model - incomplete data

Principles of Modeling

First: Define the question

Cut the suit to fit the cloth (data)

>Always, always ask: "What if"

>Identify "drivers"

Household-level economics of using permethrin treated bednets: Kenya

Meltzer MI, Terlouw DJ, Kolczak MS, Odhacha A, ter Kuile FO, Vulule JM, Alaii JA, Nahlen BL, Hawley WA, Phillips-Howard PA

The question

What are the costs and benefits?

- Household perspective
- > Reduced morbidity < 5 yrs</p>

Problem: Bednets given out free

- > No valuation of nets
- > No costs of maintenance
- > No perfect data set

Solution

Calculate threshold Threshold = household reductions in direct + indirect costs due to bednets

Direct costs = visits to clinic

Indirect costs: Time lost from work

Results: Household expenditure (KSH, per 2 week interval)

Base household	32	12; 52
Had bednet	-15	-23; -7
< 20 yrs ed.	-25	-43; -7
2 children	+20	+12; +28
1 st survey Mar-Feb	+25	+17; +33

Base: No nets, 1 child < 5 yrs, > 20yrs ed., survey data from Nov-Dec.

Modeling potential responses to smallpox as a bioterrorist weapon

Martin Meltzer¹, Inger Damon¹, Jim LeDuc¹, Don Millar²

- 1) CDC, NCID, Atlanta, GA
- 2) Don Millar & Assoc., Atlanta, GA.

Emerg Infect Dis 2001, 7:959-969 + 2 online appendices http://www.cdc.gov/ncidod/eid/vol7no6/meltzer.htm

The problem

- Smallpox potential weapon
- Effectiveness of potential interventions
 Vaccination & quarantine
- Number of doses need for stockpile

Results: Vaccination + Quarantine

Results: Sensitivity analyses

Trans.	Quarantine	Vaccine	Total cases
3	25%	33%	4240
2	10%	25%	10512
	10 /0	2070	10012
5	25%	33%	54.5 million
	Trans. 3 2 5	Trans. Quarantine 3 25% 2 10% 5 25%	Trans. Quarantine Vaccine 3 25% 33% 2 10% 25% 5 25% 33%

Results: Doses per case

<u>Site</u>	<u>Yr</u>	<u>Suscept</u>	<u>Cases</u>	Doses per case
India	1968	8%	40	34
Brazil	1969	57%	246	9
Botswana	1973	27%	30	1,667
Yugo.	1972	n/a	175	102,857
Cardiff	1962	n/a	47	<u>19,148</u>
		N = 14	Mean	14,411
			Med	2,511

Results: Doses in stockpile

	Trans. rate: 3	Trans. rate: 2
# of cases	4,200	1,548
Start	Day 30	Day 45
Initial infected	100	100
Median doses	9 million	3 million
95th percent	29 million	11 million
5th percent	15 thousand	5 thousand

Conclusions

- M.I.V. = Transmission rate
 - 3 infected per infective very high
- Need quarantine + vaccination to control
 Need 3 P's stockpile alone inadequate
- 40 million dose stockpile adequate
- Costly if delay in response
 May take 150 days to stop outbreak

Smallpox and modeling: Conclusions

First: Formulate precise question(s)
Build model to answer question(s)

➢ Build simple (not simplisitc) model to: Analyze "What if", <u>no</u> single answer Identify "drivers" → policy "targets"

Less "black box" - improve understanding

