Patient Safety: Applying Industrial Quality Models in Healthcare Settings

Tempora mutantur, nos et mutamur in illis

Julie Louise Gerberding, MD MPH
Division of Healthcare Quality Promotion
National Center for Infectious Diseases
Quality problems are everywhere. Between the health care we have and the care we could have lies not just a gap, but a chasm. The frustration level of both patients and clinicians has never been higher. Health care today harms too frequently and routinely fails to deliver its potential benefits.

Crossing the Quality Chasm
Institute of Medicine, 2001
Contemporary Healthcare

Stacey, R.D. 1996

Agreement

High

Low

Certainty about Outcomes

High

Low

simplicity

zone of complexity

chaos
Chaos in Healthcare!

Flow diagram for medication delivery to an intensive care unit
Patient Safety is…

- Healthcare without unintended harm, free from errors and near misses
- A surrogate term for healthcare quality
- An organizing principle to motivate healthcare quality improvements
- An extremely compelling “tag line” that has effectively engaged consumers, healthcare organizations, purchasers, and decision makers
- A critical public health issue for infectious diseases clinicians and CDC!
Goals of Healthcare

- Appropriate treatment
- Short length of stay / efficient resource utilization
- Low mortality in hospital and after
- Best possible functional status
- Patient satisfaction
- Healthcare provider satisfaction
Healthcare Safety!
In 5 years:

- Reduce targeted catheter-associated adverse events by 50%
- Reduce targeted surgical adverse events by 50%
- Reduce targeted antimicrobial-resistant bacterial infections by 50%
In 5 years:

- Reduce mortality and hospitalizations due to respiratory infections among long term care patients by 50%
- Eliminate microbiology laboratory errors leading to adverse patient outcomes
- Eliminate occupational needle injuries among healthcare personnel
- Achieve 100% compliance with ACIP guidelines for immunization of healthcare personnel
Strategies for Improving Healthcare Safety

Goal: Prevent Catheter Infections

• Benchmarking / Continuous Quality Improvement
Benchmarking for Quality Improvement

<table>
<thead>
<tr>
<th>Site</th>
<th>Hospital A Infection Rate*</th>
<th>NNIS Benchmarks (percentile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTI</td>
<td>7.2</td>
<td>10% 25% 50% 75% 90%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3 3.0 5.1 7.1 9.6</td>
</tr>
<tr>
<td>BSI</td>
<td>8.0</td>
<td>1.0 2.4 4.6 6.3 7.9</td>
</tr>
<tr>
<td>VAP</td>
<td>3.8</td>
<td>3.4 6.5 10.1 13.4 17.5</td>
</tr>
</tbody>
</table>

* Rate = # infections per 1000 device-days

UTI = urinary catheter-associated infection
BSI = central catheter-associated bloodstream infection
VAP = ventilator-associated pneumonia
Quality Promotion / Infection Prevention

Cycle for Success

Is there an important problem?
- Compare local rates to NNIS benchmarks

Why? What?
- Multi-disciplinary committees

Do the changes work?
- Monitor progress toward improvement

How to affect change?
- Education Feedback Decision support
A Decade of Progress:
Hospital-onset Infection Rates in Intensive Care Units Decline (NNIS Hospitals)

<table>
<thead>
<tr>
<th>Type of ICU</th>
<th>BSI*</th>
<th>VAP*</th>
<th>UTI*</th>
</tr>
</thead>
<tbody>
<tr>
<td>coronary</td>
<td>43%</td>
<td>42%</td>
<td>40%</td>
</tr>
<tr>
<td>medical</td>
<td>44%</td>
<td>56%</td>
<td>46%</td>
</tr>
<tr>
<td>surgical</td>
<td>31%</td>
<td>38%</td>
<td>30%</td>
</tr>
<tr>
<td>pediatric</td>
<td>32%</td>
<td>26%</td>
<td>59%</td>
</tr>
</tbody>
</table>

BSI = central line-associated bloodstream infection rate
VAP = ventilator-associated pneumonia rate
UTI = catheter-associated urinary tract infection rate

CDC NNIS System, 1990-1999
Strategies for Improving Healthcare Safety

Goal: Prevent Catheter Infections

• Benchmarking / Continuous Quality Improvement
• Root Cause Review / Analysis
Root Causes Review* of Fatal Catheter-associated Bacteremia: Delay in Treatment

• Work processes / timeline
 - fever noted / MD alerted / patient evaluated
 - tests ordered / tests performed / results available
 - results reviewed / treatments ordered / administered

• Communication / supervision channels
 - nurse / houseofficers / attending / consultants

• Structural issues / competing priorities
 - staffing / census
 - hours on call / consecutive shifts worked
Strategies for Improving Healthcare Safety

Goal: Prevent Catheter Infections

• Benchmarking / Continuous Quality Improvement
• Root Cause Review / Analysis
• Six Sigma Analysis
What is Six Sigma?

…3.4 defects per million process opportunities

…A business process that allows companies to drastically improve their bottom line by designing and monitoring everyday business activities in ways that minimize waste and resources while increasing customer satisfaction

M Harry & R Schroeder: Six Sigma; 2000

…the most important initiative GE has ever undertaken.

Jack Welch, General Electric
What is Six Sigma Breakthrough Strategy?

- Measurement: data collection and reporting
- Analysis: statistical evaluation of process data
- Improvement: re-design, change processes
- Control: continuous process monitoring
Six Sigma Strategy

- Focus: persistent (endemic) problems, not just sporadic (epidemic) problems
 - Hidden problems; “ton of feathers”
 - Evade attention
 - Erode quality
 - “Ton of feathers”
- Most quality problems are persistent!
Benchmarking for Quality Improvement

<table>
<thead>
<tr>
<th>Site</th>
<th>Hospital A Infection Rate*</th>
<th>NNIS Benchmarks (percentile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTI</td>
<td>7.2</td>
<td>10% 25% 50% 75% 90%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3 3.0 5.1 7.1 9.6</td>
</tr>
<tr>
<td>BSI</td>
<td>8.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4 4.6 6.3 7.9</td>
</tr>
<tr>
<td>VAP</td>
<td>3.8</td>
<td>3.4 6.5 10.1 13.4 17.5</td>
</tr>
</tbody>
</table>

* Rate = # infections per 1000 device-days

- **UTI** = urinary catheter-associated infection
- **BSI** = central catheter-associated bloodstream infection
- **VAP** = ventilator-associated pneumonia
Six Sigma: Breakthrough Catheter Infection Prevention

- Measure
- Analyze
- Monitor
- Improve
Strategies for Improving Healthcare Safety

Goal: Prevent Catheter Infections

• Benchmarking / Continuous Quality Improvement
• Root Cause Review / Analysis
• Six Sigma Analysis
• Toyota Production System
TPS Goals

- Quantity control: adapt to daily and monthly fluctuations in demand in terms of quantities and variety
- Quality assurance: assures that each process will supply only good units to the subsequent processes
- Respect-for-humanity: cultivated while utilizing human resources to attain cost and quality objectives.
Muda

- Waste of time
- Waste of overuse
- Waste from transporting
- Waste of over processing
- Waste of inventory

- Excess motion of operators and workers
- Waste from scrap and rework. Human under utilization
- Improper use of computers
- Working to the wrong metrics
Chaos in Healthcare!

Flow diagram for medication delivery to an intensive care unit
TPS: Promoting Patient Safety

The Goals:
- Error-free care
- 1:1 contact
- No waste
- Immediate response
- Safety

Request

Clinician

Response

Patient
Pittsburgh Regional Health Initiative

• **A community coalition:**
 – 31 hospitals / 4 insurance plans / all major healthcare purchasers
 – State Attorney General

• **United by a common mission:**
 – Providing patients what they need when they need it without waste or error

• **Perfection – “Zero” Goals:**
 – Zero medication errors
 – Zero hospital-acquired infections
 – Perfect clinical outcomes: Invasive cardiac procedures, hip and knee replacement surgery, depression, c-sections, diabetes
Strategies for Improving Healthcare Safety

Goal: Prevent Catheter Infections

• Benchmarking / Continuous Quality Improvement
• Root Cause Review / Analysis
• Six Sigma Analysis
• Toyota Production System
Tempora mutantur, nos et mutamur in illis

Times change, and we change with them too

Owen's Epigrammata, 1615