Prevalence of Salmonella and Campylobacter spp. following the discontinued use of antimicrobial growth promoters in broilers and swine in Denmark

Mary C. Evans and Henrik C. Wegener Danish Zoonosis Centre, Danish Veterinary Institute, Copenhagen V, Denmark

AGP usage in Denmark

- 1970's: AGPs widely used in food production
- 1970's: EU directive restricting use
- May 1995: Avoparcin banned in Denmark
- Jan 1998: Virginiamycin banned in Denmark

AGP usage in Denmark

- February 1998, Danish cattle and broiler industries voted to stop all use of AGP's
- Pig industry withdrew use of all AGP's in pigs >35 kg
- Remaining use of AGP's in pigs phased out during 1999

Producer Concerns

- Decreased productivity
- Increased morbidity and mortality
- Increased therapeutic consumption of antimicrobials
- Increase in *Salmonella* infected herds and contaminated meat
 - → Pathogen Load

Pathogen Load Studies

Broilers	Evangelisti et al.	S.Typhimurium	Oxytetracycline	<
	(1975)			
	Holmberg et al.	S.Infantis	Avoparcin	<
	(1984)		Monesin	<
	Bolder et al.	S.Enteritidis	Flavophospholipol	<
	(1999)		Salinomycin	<
Swine	Girard et al.	S.Typhimurium	Oxytetracycline +	<
	(1976)		Neomycin	
	Williams et al.	S. Typhimurium	Chlortetracycline	<
	(1978)	(resistant/sensitive)		(sensitive)
	Ebner/Matthew	S.Typhimurium	Apramycin/	<
	(2000)		oxytetracycline	

* Effect of the use of antimicrobials in food-producing animals on pathogen load: Systematic review of the published literature. October 2000. US Food and Drug Administration, Center for Veterinary Medicine.

Objective

- To examine the effect of discontinued use of antimicrobial growth promoters on pathogen load in Danish food production animals
 - Salmonella in broilers and swine
 - Campylobacter in broilers

Surveillance and control programs in Denmark

- Feed compounds
 - Salmonella in feeding stuff
- Primary production
 - Salmonella and Campylobacter in broilers
 - Salmonella in layers
 - Salmonella in slaughter pigs
 - BSE in cattle
- Slaughterhouses
 - Salmonella in pork and beef
 - Salmonella in broilers
- Retail level
 - Salmonella, Campylobacter, Yersinia enterocolitica, and E. coli O157 in food

Total No. of control samples > 3 million/year

Sample collection

Broiler flocks

- Salmonella:
 - AM- sock samples 3 weeks before slaughter
 - PM- neck skin samples at slaughter
- Campylobacter:
 - Cloacal swab samples of 10 birds per flock at slaughter

Swineherds

- Salmonella:
 - Serological test of meat juice samples
 - Monthly slaughterhouse samples

Analysis

Excluded: 1998 (broilers); 1998 and 1999 (swine)A t-test for comparisons of means

Salmonella in Broilers

Campylobacter in Broilers

Salmonella in Swine and Pork

Limitations

- Short time periods=small sample size
- Focuses primarily on Salmonella spp.
- Looks at combined effect of all antibiotics
- Does not account for other factors that might explain decreasing trend

Conclusion

- Increase in pathogen load?
 Decreased levels *Salmonella* in broilers and swine
 No change in levels *Campylobacter* in broilers
- Can decreases be explained by withdrawal of AGPs?
 Likely due to control programs, but role of growth promoters cannot be discounted
- Is additional research needed?

???

More Information

www.vetinst.dk

Thank you

Salmonella surveillance 1999

	No. of samples	Authority	Laboratory
Feed stuffs	7,000	PD	Private/DVL
Herds			
- Poultry			
central rearing	160,000	VFA	DVL
parent stock	480,000	VFA	DVL
hatcheries	10,000	VFA	DVL
layers	250,000	VFA	DVL
broilers	250,000	VFA	DVL
- Pigs			
breeders	36,000	Private	DVL
slaughter	800,000	VFA	DVL

Salmonella surveillance 1999

	No. of samples	Authority	Laboratory
Slaughter			
- Broilers	200,000	VFA	Private/DVL
- Pork	30,000	VFA	Private/DVL
- Beef	3,000	VFA	Private/DVL
Manufacturing	20,000	VFA	MFCU/DVL
and retail			
Humans	120,000	Min. Health	SSI/CML
Total	2,375,000		

Salmonella sampling program for poultry, 2000

	Age/time	Samples
Central rearing	Day old	10 crates + 20 chicks ¹
(broiler and table-egg)	1 st week	40 chicks
	2 nd week	2 pairs sock samples
	4 th week	60 faecal samples ¹
	8 th week	2 pairs sock samples
	2 weeks before movement	60 faecal samples + 60 blood samples ¹
Breeders (hatching- egg production)	Every 2nd week	50 chickens or meconium from 250 chickens ¹
	Every week	2 pairs sock samples
Hatchery	After each hatching	Wet dust

¹Requirements of the EU Zoonosis Directive (92/117/EEC)

Salmonella sampling program for poultry, 2000

	Age/time	Samples
Rearing flocks	Day old	10 crates + 20 chicks ¹
(table-egg)	3 rd week	10 sock samples or 300 faecal samples
	12 th week	10 sock samples or 300 faecal + 60 blood
Table egg production	Every 9 th week for egg packing center Every 6 mos. for sale at barnyard	2 pairs sock samples or faecal + egg samples 2 pairs sock samples or faecal + egg samples
Broilers	3 weeks prior to slaughter At slaughter	5 pairs sock-samples 5 pooled samples of 10 neck skin samples per flock

Salmonella control in broilers and table-egg producers

- Flocks testing positive for *Salmonella* under routine exam placed on suspicion of infection and re-tested
- If second set of samples positive, infected breeder and rearing flocks slaughtered and eggs to heat treatment
- More frequent (4 week) testing of non-infected layer flocks
- Cleaning/disinfection of houses prior to introduction of new flocks

Salmonella control of Danish slaughter pig herds

- Continuous testing of all herds producing >100 finishers per year
- Serological exam of 8-60 samples of meat juice per herd quarterly
- Diagnostic method: mix-ELISA technique, based on LPSantigen factors (O:1,4,5,6,7,12)
- Based on the proportion of sero-reactors each herd is assigned to one of three status levels
 - Level 1: No or few sero-reacters, no intervention required
 - Level 2: Higher proportion of sero-reacters, owner seek advice
 - Level 3: High proportion sero-reacter, owner seek advice and slaughter under special hygenic precautions

Campylobacter control in poultry

- Initiated in 1998 (broilers, hens, ducks) and 1999 (turkeys)
- Ten birds from each flock examined by cloacal swabs at slaughter
- 1998-99: special study *Campylobacter* prevalence in broilers from different production categories

Surveillance of foodborne zoonoses in Denmark

Surveillance of antimicrobial resistance Denmark

Pathogen Load Studies-Broilers*

Evangelisti et al. (1975)	S.Typhimurium	Oxytetracycline	<
× ,			
Gustafson et al.	S.Typhimurium	Avoparcin	No effect
(1981)		Virginiamycin w/ monesin	No effect
Abou Youssef	S.Typhimurium	Virginiamycin	No effect
et al. (1982)			
Holmberg et al.	S.Infantis	Avoparcin	<
(1984)		Monesin	<
		Avoparcin + Monesin	>
Hinton et al.	Salmonella	Monesin sodium	No effect
(1986)		Furazolidone	No effect
		Penicillin	>
Barrow et al.	S.Typhimurium	Avoparcin	>
(1989)	Other Salmonella		
Bolder et al.	S.Enteritidis	Flavophospholipol	<
(1999)	C.jejuni	Salinomycin	No effect

* Effect of the use of antimicrobials in food-producing animals on pathogen load: Systematic review of the published literature. October 2000. US Food and Drug Administration, Center for Veterinary Medicine.

Pathogen Load Studies- Swine*

Bridges et al. (1952)	Total bacteria, enterobacteriacae	Penicillin Streptomycin	> No effect
Evangelisti et al. (1975)	S.Typhimurium	Oxytetracycline	No effect
DeGeeter et al. (1976)	S.Typhimurium	Lincomycin	No effect
Girard et al. (1976)	S.Typhimurium	Oxytetracycline+Neomycin	<
Williams et al. (1978)	S.Typhimuirum (resistant/sensitive)	Chlortetracycline	<pre>> resistant < sensitive</pre>
Jacks et al. (1988)	S.Typhimurium	Efrotomycin	No effect
Ebner/Matthew (2000)	S.Typhimurium	Ceftiofur sodium/oxytetracycline Apramycin/oxytetracycline Carbadox/oxytetracycline	No effect < No effect

* Effect of the use of antimicrobials in food-producing animals on pathogen load: Systematic review of the published literature. October 2000. US Food and Drug Administration, Center for Veterinary Medicine.