National Immunization Survey-Teen

A User's Guide for the 2014 Public-Use Data File

Centers for Disease Control and Prevention

National Center for Immunization and Respiratory Diseases

and

National Center for Health Statistics

Presented by:

NORC at the University of Chicago

October 2015

Acknowledgments

The development and production of the NIS-Teen public-use data files is a team effort that has included contributions from many individuals (listed in alphabetical order) in the three organizations:

National Center for Immunization and Respiratory Diseases, CDC – Laurie D. Elam-Evans, Sarah Reagan-Steiner, and James A. Singleton.

National Center for Health Statistics, CDC – Marcie Cynamon and Meena Khare.

NORC – Ken Copeland, Nicholas Davis, Can Geng, Vicki Pineau, Benjamin Skalland, Kirk Wolter, Michael Zeddies, and Wei Zeng.

Table of Contents

Coı	nvention for Bolding Text	vii
1.	Introduction	1
2.	Sample Design	7
	2.1. The NIS-Teen RDD Telephone Survey	
	2.2. The NIS-Teen Provider Record Check Study	
	2.3. Summary of Data Collection	
	2.4. Informed Consent, Security, and Confidentiality of Information	14
3.	Content of NIS-Teen Questionnaires	16
	3.1. Content of the Household Questionnaire	16
	3.2. Content of the Immunization History Questionnaire (IHQ)	18
4.	Data Preparation and Processing Procedures	20
	4.1. Data Preparation	20
	4.1.1. Editing in the CATI System	
	4.1.2. Post-CATI Edits	
	4.1.3. Editing of Provider Data	
	4.2. Limitations of Data Editing Procedures	
	4.3. Variable-Naming Conventions	
	4.4. Missing Value Codes	
	4.5. Imputation for Item Non-Response	
	4.6. Vaccine-Specific Recoding of Verbatim Responses	
	4.7. Sub-Sets of the NIS-Teen Data.	
	4.8. Confidentiality and Disclosure Avoidance	26
5.	Quality Control and Quality Assurance Procedures	27
6.	Sampling Weights	28
	6.1. Base Sampling Weight	
	6.2. Adjustments for Non-Resolution of Telephone Numbers and Screener Non-Response	
	6.3. Adjustment for Subsampling of One Teen per Household	
	6.4. Adjustment for Interview Non-Response	
	6.5. Adjustment for Multiple Telephone Lines and Deriving Annual Weights	
	6.6. Post-Stratification	
	6.7. Adjustment for Provider Non-Response	34
7.	Contents of the Public-Use Data File	
	7.1. Section 1: ID, Weight, and Flag Variables	
	7.2. Section 2: Household-Reported Vaccination and Health Information	
	7.2.1. Household Reported Maningitis Vaccine Variables	
	7.2.2. Household-Reported Meningitis Vaccine Variables	

		7.2.4. Household-Reported Health Variables	46
	7.3.	Section 3: Demographic, Socio-Economic, and Other Household/Teen Information	47
	7.4.	Section 4: Geographic Variables	48
	7.5.	Section 5: Number of Providers Identified and Consent Variables	49
	7.6.	Section 6: Number of Responding Providers Variables	49
	7.7.	Section 7: Characteristics of Providers Variables.	49
	7.8.	Section 8: Provider-Reported Up-To-Date Vaccination Variables	51
	7.9.	Section 9: Provider-Reported Age-At-Vaccination Variables	55
	7.10	. Section 10: Health Insurance Module Variables	56
8.	Ana	lytic and Reporting Guidelines	59
	8.1.	Use of NIS Sampling Weights	59
	8.2.	Estimation and Analysis	60
		8.2.1. Estimating Vaccination Coverage Rates	
		8.2.2. Estimating Standard Errors of Vaccination Coverage Rates	
	8.3.		
		8.3.1. Estimation of Multi-Year Means	
		8.3.2. Estimation of Multi-Year Contrasts	65
9.	Sum	mary Tables	69
10.	Lim	itations	70
11.	Cita	tions for NIS-Teen Data	71
12.	Refe	erences	77

Appendices

Appendix A: Glossary of Abbreviations and Terms	80
Appendix B: Summary Statistics for Sampling Weights by Estimation Area	82
Appendix C: Programs for Estimation: Examples of the Use of SUDAAN, SAS, and R to Estimation Coverage Rates and Their Standard Errors, and Example of the Production of a	
Cross-Tabulation and Chart	86
Appendix D: Alphabetical Listing of Variables in the NIS-Teen Public-Use Data Files	120
Appendix E: Summary Tables	159
Appendix F: Vaccine Type Codes	169
Appendix G: Trends in the NIS-Teen Response Rates and Vaccination Coverage Rates, 2006- 2014	170
Appendix H: Key NIS-Teen Response Rates by Area	. 176


List of Tables and Figures

Table 1:	Selected Operational Results of Q1/2014-Q4/2014 NIS-Teen Data Collection (Excluding Puerto Rico)
Table 2:	Content of the Household Interview, National Immunization Survey - Teen, 201417
Table 3:	List of Household-Reported Vaccination Variables to Be Removed from the 2014 Teen PUF
Table 4:	Vaccine Categories and Vaccine Types, National Immunization Survey - Teen, 201454
Figure 1:	Question Flow for the Eight Health Insurance Questions Used to Create the Health Insurance Variables Included in the PUF
Table 5:	Summary of Weights and Stratum Variables, NIS-Teen PUF, 2014
Table 6:	Cross-Walk Between ESTIAPT08-ESTIAPT14 and Common Denominator Estimation Area (CDIAP), National Immunization Survey - Teen, 2014
Table B.1:	Distribution of Dual-Frame Sampling Weights for Teens with Completed Household Interviews, National Immunization Survey - Teen, 2014
Table B.2:	Distribution of Dual-Frame Sampling Weights for Teens with Adequate Provider Data, National Immunization Survey - Teen, 2014
Table D.1	Alphabetical Listing of Variables in the NIS-Teen Public-Use Data Files, 2008-2014120
Table E.1:	Estimated Population Totals and Sample Sizes of Teens 13-17 Years of Age by State and Estimation Area, National Immunization Survey - Teen, 2014
Table E.2:	Estimated Population Totals and Sample Sizes by Age of Teen by Maternal Education, National Immunization Survey - Teen, 2014
Table E.3:	Estimated Population Totals and Sample Sizes by Age of Teen by Poverty Status, National Immunization Survey - Teen, 2014
Table E.4:	Estimated Population Totals and Sample Sizes by Race/Ethnicity by Poverty Status, National Immunization Survey - Teen, 2014
Table E.5:	Estimated Population Totals and Sample Sizes by Age of Teen by Race/Ethnicity, National Immunization Survey - Teen, 2014
Table E.6:	Estimated Population Totals and Sample Sizes by Age and Gender of Teen, National Immunization Survey - Teen, 2014
Table E.7:	Estimated Vaccination Coverage, With Selected Vaccines Among Adolescents Aged 13-17 Years, by State and Selected Area National Immunization Survey-Teen, United States, 2014
Table F.1:	2014 NIS-Teen Vaccine Type Codes

Table G.1:	Key Indicators from Landline Sample Household and Provider Data Collection by Survey Year, National Immunization Survey - Teen, 2006-2014
Figure G.1:	Trends in Landline Sample Key Indicators from Household and Provider Data Collection by Survey Year, National Immunization Survey - Teen, 2006-2014
Table G.2:	Key Indicators from Cell-Phone Sample Household and Provider Data Collection by Survey Year, National Immunization Survey - Teen, 2011-2014
Figure G.2:	Trends in Cell-Phone Sample Key Indicators from Household and Provider Data Collection by Survey Year, National Immunization Survey - Teen, 2011-2014
Table G.3:	Vaccine-Specific Coverage Levels Among Teens Age 13-17 Years in the United States by Survey Year, National Immunization Survey - Teen, 2006-2014
Figure G.3:	Trends in Vaccine-Specific Coverage Levels among Teens Aged 13-17 Years in the United States by Survey Year, National Immunization Survey – Teen, 2006-2014
Table H.1:	Key Indicators for the Landline Sample by Estimation Area, National Immunization Survey- Teen, 2014
Table H.2:	Key Indicators for the Cell-Phone Sample by Estimation Area, National Immunization Survey-Teen, 2014

Convention for Bolding Text

The Data User's Guide uses **bold** font to highlight substantive changes in the methodology or study design from last year's Guide.

1. Introduction

In 1992, the Childhood Immunization Initiative (CII) (CDC 1994) was established to 1) improve the delivery of vaccines to children; 2) reduce the cost of vaccines for parents; 3) enhance awareness, partnerships, and community participation; 4) improve vaccinations and their use; and 5) monitor vaccination coverage and occurrences of disease. Subsequently, the Healthy People 2020 objectives established the target for adolescents aged 13–15 years of 80% coverage with 1 Tdap, 1 MenACWY, and 3 HPV doses in females and males, and 90% coverage for 2 varicella vaccine doses. To fulfill the CII mandate of monitoring vaccination coverage and marking progress toward achieving those objectives, the National Immunization Survey (NIS) with an adolescent component called the NIS-Teen was implemented by the National Center for Immunization and Respiratory Diseases (NCIRD) and the National Center for Health Statistics (NCHS) of the Centers for Disease Control and Prevention (CDC) in 2006 (http://www.cdc.gov/nchs/nis.htm).

The target population for the NIS-Teen is adolescents aged 13–17 years living in non-institutionalized households in the United States at the time of the interview. The official coverage estimates reported from the NIS-Teen are rates of being up-to-date with respect to the recommended numbers of doses of all recommended and selected catch-up vaccines (Strikas 2015). These vaccines and their recommended numbers of doses are:

- Tetanus-diphtheria-acellular-pertussis vaccine (Tdap) 1 dose;
- Meningococcal vaccine (MenACWY) 2 doses;
- Human papillomavirus vaccine (HPV) 3 doses;
- Measles/mumps/rubella vaccine (MMR) 2 doses;
- Hepatitis B vaccine (Hep B) 3 doses;
- Varicella zoster virus (chicken pox) vaccine 2 doses;
- Hepatitis A vaccine (Hep A) 2 doses; and

• Seasonal influenza vaccine – 1 dose annually.

The NIS-Teen survey is conducted as an add-on to the National Immunization Survey (NIS), which seeks to estimate vaccination coverage rates among 19–35 month-old children. The NIS uses a random digit dialing (RDD) telephone survey to identify households containing children aged 19–35 months and interviews the adult who is most knowledgeable about the child's vaccinations. If such a household is identified and the NIS interview is completed, the household is then screened for the presence of 13–17 year-old adolescents. Households that do not contain a 19–35 month old child are not administered the NIS interview but are immediately screened for the presence of a 13–17 year-old adolescent. If a household containing one or more adolescents aged 13–17 years is identified, a 13–17 year-old adolescent is randomly chosen, and the adult who is most knowledgeable about the teen's vaccinations is interviewed. With consent of the teen's parent or guardian, the NIS-Teen also contacts (by mail) the teen's vaccination provider(s) to request information on vaccinations from the teen's medical records. NIS-Teen sampling, data collection, and weighting operations are conducted by NORC at the University of Chicago.

Samples of telephone numbers are drawn independently, for each calendar quarter, within selected geographical areas. For the 2014 NIS-Teen, there are 58 geographic strata for which vaccine coverage levels can be estimated, including 7 local areas (including the District of Columbia); the remaining 51 are either an entire state, a territory (Puerto Rico), or a "rest of state" area. This design makes it possible to produce annual estimates of vaccination coverage levels within each of the 58 estimation areas with a specified degree of precision (a coefficient of variation of approximately 6.5%). Further, by using the same data collection methodology and survey instruments in all estimation areas, the NIS-Teen produces comparable vaccination coverage levels among estimation areas and over time.

When the NIS-Teen was first conducted in Quarter 4 of 2006 and Quarter 4 of 2007, the survey was designed to produce estimates at the national level only. Starting in 2008, the NIS-Teen was expanded to produce estimates in 56 areas, including the 50 states and 6 local areas that receive federal Section 317 immunization grants (Bexar County, TX; City of Chicago, IL; District of Columbia; City of Houston, TX; New York City; Philadelphia County, PA). These areas are called *estimation areas*. In 2014, the NIS-Teen included two additional estimation areas, El Paso County, TX and Puerto Rico, for a total of 58 estimation areas. As noted throughout this report, some procedures differed for Puerto Rico when compared to the rest of the United States, including the creation of separate survey weight variables for analysis that is to include Puerto Rico.

In 2014, the NIS utilized a dual-frame sampling design with independent samples drawn from landline and cell-phone sampling frames. The cell-phone component was added to the survey in 2011 in order to address the rapid rise of cell-phone-only households. Published estimates from the July-December 2014 National Health Interview Survey (NHIS) indicate that the number of households with only wireless telephones continues to increase. Approximately 54.1% of all children under 18 years of age—nearly 40 million children—live in households with only wireless telephones (Blumberg and Luke 2015). Several of the sampling, data collection, and estimation procedures differ for the cell-phone sample as compared to the landline sample, as noted throughout this report.

For the 2014 NIS-Teen landline and cell-phone samples, household interviews began on January 9, 2014 and ended on February 8, 2015. Provider data collection extended from February 2014 through April 2015 for both sample sources. A total sample, including the Puerto Rico sample, of approximately 8.1 million telephone numbers (5.0 million landline and 3.1 million cell-phone) yielded household interviews for 38,703 teens (20,030 landline and 18,673 cell-phone), 21,057 of whom (11,353 landline and 9,704 cell-phone) had provider data adequate to determine whether the teen was up-to-date with respect to the recommended vaccination schedule. The 2014 NIS-Teen public-use data file contains data for the 38,703 teens with completed household interviews, and

more extensive data for the 21,057 teens with adequate provider data (including 92 unvaccinated teens).

NIS-Teen vaccination coverage estimates are based on provider-reported vaccination histories from adolescents with adequate provider data (APD). In 2014, the household questionnaire was shortened to reduce the length of the household interview, decrease respondent burden, and potentially improve survey response rates. See Section 3.1 for a discussion of the questionnaire change. Questions that were previously used to define APD were no longer available, thus necessitating a modification to the APD definition used by the NIS-Teen. This APD definition is now consistent with the definition used by the National Immunization Survey (NIS).

Prior to 2014, to be classified as having APD, an adolescent had to meet at least one of three criteria. The third criterion differed slightly depending on whether or not the parent/guardian had access to a "shot card" (i.e., documentation of the adolescent's vaccination history) during the household interview. The three criteria were:

- 1) be up-to-date by provider report with ≥1 Td/Tdap, ≥3 hepatitis B, ≥2 MMR and ≥1 varicella vaccines (or parental or provider report of history of varicella disease); or
- 2) be completely unvaccinated by parental report; or
- 3) a) if a shot card was used: have no more doses of measles-containing, varicella, hepatitis A, hepatitis B and Td/Tdap vaccines by household report than by provider report; or b) if a shot card was not used: if a parent/guardian indicated that the adolescent had received "all" of his or her vaccinations in any of the measles-containing, varicella, hepatitis A or hepatitis B categories, have at least two unique vaccination dates across all vaccinations reported by the adolescent's providers.

With implementation of the shortened questionnaire, which eliminated household vaccination questions regarding childhood vaccines, the comparison of household and provider data was no longer possible, and thus required revision of the APD definition for the 2014 NIS-Teen survey. Beginning in 2014, any adolescent for whom one or more of the named providers report vaccination history data or who by parental and provider report are completely unvaccinated are classified as having adequate provider data. These adolescents contribute to vaccination coverage estimates.

An assessment indicates that this change in the APD definition will decrease vaccination coverage point estimates. The impact of the definition change varies by vaccine, sociodemographic characteristics and state/local area. Additionally, 2014 NIS-Teen estimates will not be directly comparable to estimates previously published. Interpreting annual changes in vaccination coverage estimates can be difficult in years where methods are adjusted, as differences can potentially impact program funding and evaluations of effectiveness of interventions aimed to improve vaccination coverage. An assessment of the impact of this methodologic change on vaccination coverage estimates and guidance on interpretation of trends in vaccination coverage before and after this methodological change can be found in Reagan-Steiner (2015).

The weights included in this public-use data file allow data analysts the capability of conducting several different types of analysis, depending on interests and aims. One can choose to analyze all teens with completed household interviews or only the subset of teens for whom the provider-reported data are adequate. CDC publishes estimates of vaccination coverage based on provider-reported vaccination histories using the subset of teens for whom the provider-reported data are adequate. Parental reported vaccination status is subject to recall error (Dorell 2011, Ojha 2013). Also, one can choose to include or exclude teens who reside in the Puerto Rico in the analysis. Previous NIS-Teen public-use files have provided analysts with these capabilities.

The 2014 public-use data file includes only dual-frame weights. The CDC has determined that the dual-

frame estimates are the best estimates for 2014 in terms of minimizing any bias due to the incompleteness

of the landline sampling frame. Section 6 of this user's guide provides information about the creation of

the weight variables included in the 2014 NIS-Teen public-use data file, and Section 8 provides guidance

for their use.

Published tables of vaccination coverage estimates for 2014 will be available on the National Center for

Immunization and Respiratory Diseases website, http://www.cdc.gov/vaccines/imz-

managers/coverage/nis/teen/index.html.

The accompanying codebook (NCHS 2015) documents the contents of the 2014 NIS-Teen public-use

data file, and Section 7 of this user's guide describes these contents in detail. For reference, Appendix D

(Alphabetical Listing of Variables in the NIS-Teen Public-Use Data Files) provides a full list of variables

in the 2014 and previous public-use data files.

Additional information on the NIS-Teen is available at: http://www.cdc.gov/vaccines/imz-

managers/nis/about.html

For additional information on the NIS-Teen public-use data file, please contact the NCHS Information

Dissemination Staff:

Information Dissemination Staff, NCHS

3311 Toledo Road

Hyattsville, MD 20782

Phone: 1 (800) 232-4636

E-mail: cdcinfo@cdc.gov

Internet: http://www.cdc.gov/nchs/

2. Sample Design

The NIS-Teen uses two phases of data collection to obtain vaccination information for a large national probability sample of teens: (1) a RDD telephone survey designed to identify households with adolescents 13 to 17 years of age, followed by (2) the Provider Record Check, a mailed survey to teens' vaccination providers. This section summarizes these two phases of data collection. Other descriptions of the sample design are given by Ezzati-Rice et al. (1995), Zell et al. (2000), Smith et al. (2001a, 2005), and Jain et al. (2009).

2.1. The NIS-Teen RDD Telephone Survey

The NIS-Teen RDD telephone survey phase uses independent, quarterly samples of telephone numbers. Sampling frames were provided by Marketing Systems Group (MSG). Landline telephone and cell-phone numbers were sampled within estimation areas in each quarter of 2014. Table E.1 (in Appendix E) lists the 58 estimation areas for the 2014 NIS-Teen by state and shows the estimated number of teens living in each state and estimation area in 2014.

Because the NIS-Teen is an add-on survey to the NIS, the NIS-Teen uses the same sampling frames and sampling methodology as the NIS. The NIS uses the list-assisted method of RDD (Lepkowski 1988) to sample landline telephone numbers. This method selects a random sample of telephone numbers from "banks" of 100 consecutive telephone numbers (e.g., 773-256-0000 to 773-256-0099) that contain at least one directory-listed residential telephone number. The sampling frame of telephone numbers is updated each quarter to reflect new telephone exchanges and area codes. Because directory listings are not available for cell phones, the NIS cell-phone sample did not use the list-assisted method of RDD, but rather used RDD without list-assistance. That is, the cell-phone sample was selected from all banks of cell-phone numbers, not just those containing at least one directory-listed residential telephone number.

Directory listings were also unavailable for Puerto Rico landline sample, so the landline and cell-phone samples for Puerto Rico were selected without list-assistance.

The target sample size of completed telephone interviews in each estimation area is designed to achieve an approximately equal coefficient of variation of 6.5% for an estimator of vaccination coverage derived from provider-reported vaccination histories, given a true coverage parameter of 50%. Landline telephone sample sizes and cell-phone sample sizes were chosen such that they can be combined to meet the target coefficient of variation of 6.5%.

In 2014, overall including Puerto Rico, 54.4% of teens (56.7% of landline sample teens and 52.0% of cell-phone sample teens) with a completed household interview were determined to have adequate provider data. The percentage of teens with adequate provider data varies among estimation areas (from 35.1% in Puerto Rico to 62.6% in North Dakota). The phrase "adequate provider data" means that sufficient vaccination history information was obtained from the provider(s) to determine whether the teen is up-to-date with respect to the recommended vaccination schedule. The definition of teens with adequate provider data includes unvaccinated teens. These are teens for whom either (1) the respondent reported during the household interview that the teen had received no vaccinations and has no providers, or (2) the respondent reported during the household interview that the adolescent had received no vaccinations but has one or more providers, and those providers all reported administering no vaccinations. The number of unvaccinated teens in the sample is small (92 in 2014). As described in the previous section, the definition of adequate provider data changed in 2014 to include all teens with provider-reported vaccination data plus unvaccinated teens.

The design and implementation of the NIS-Teen landline sample involve four procedures. First, statistical models predict the number of sample telephone numbers needed in each estimation area to meet the target precision requirements, and, from among the entire NIS sample of telephone numbers, this number of telephone numbers are "flagged" to be part of the NIS-Teen sample. Second, the sample for an estimation area is divided into random sub-samples called replicates. By releasing replicates as needed, it is possible to spread the interviews for each sampling area evenly across the entire calendar quarter. Third, an automated procedure eliminates a portion of the non-working and non-residential telephone numbers, plus

numbers on the NIS do-not-call list, from the sample before the interviewers dial them. Fourth, the sample telephone numbers are matched against a national database of residential landline telephone numbers in order to obtain usable mailing addresses for as many sample households as possible. To promote participation in the NIS and NIS-Teen, an advance letter is sent to identifiable mailing addresses approximately two weeks prior to the household interview.

The design and implementation of the cell-phone sample differs from that of the landline sample in two ways:

- Prior to 2014, there was no process to remove non-working and non-residential cell-phone
 numbers before dialing them. Beginning in 2014, an automated process was implemented to
 remove cell-phone numbers flagged as having no recent activity and that were therefore
 very likely to be non-working cell phones.
- Cell-phone numbers were not matched to an external database to obtain mailing addresses.
 Cell-phone sample cases were not sent advance letters.

2.2. The NIS-Teen Provider Record Check Study

At the end of the household interview, consent to contact the teen's vaccination provider(s) is requested from the parent/guardian. When oral consent is obtained, each provider is mailed an immunization history questionnaire (IHQ). This mail survey portion of the NIS-Teen is the Provider Record Check Study. The Provider Record Check Study is conducted in the same manner for both landline and cell-phone sample cases.

The instructions ask vaccination providers to mail or fax the immunization history questionnaire back upon completion. Two weeks after the initial mailing, a telephone call is made to providers who have still not responded, to remind and encourage them to complete the form and either mail or fax the information back. In some instances, provider-reported vaccination histories are completed over the telephone. The

data from the questionnaires are edited, entered, cleaned, and merged with the household information from the RDD survey to produce a teen-level record.

2.3. Summary of Data Collection

Table 1 presents selected operational results of NIS-Teen data collection for calendar year 2014 for the NIS-Teen sample. To facilitate comparisons with prior NIS-Teen surveys, the numbers in Table 1 and discussed in this section are presented separately for the landline and cell-phone samples, and exclude the Puerto Rico sample. Adolescents aged 13–17 years during 2014 data collection were born between January 1996 and January 2002.

The total landline RDD sample (in replicates that were released for use) consisted of 4,892,189 telephone numbers. Of those, 2,864,063 were eliminated before release to the telephone centers by the automated procedure as non-working numbers, non-residential numbers, or numbers on the NIS do-not-call list. The remaining 2,028,126 numbers were sent to the telephone centers to be dialed and 435,641 households were identified as shown in Rows C and F. Among the identified households, 379,759 (87.2%) were successfully screened. Of these, 23,565 (6.2%) contained an age-eligible teen. Among these households, 19,747 (83.8%) completed the household interview.

The cell-phone sample (in replicates that were released for use) consisted of 3,069,031 telephone numbers. Of these, 766,530 were eliminated before release to the telephone centers by the automated procedure as inactive cell phones or numbers on the NIS do-not-call list and the remaining 2,302,501 were sent to the telephone centers to be dialed. A total of 502,017 active personal cell-phone numbers (APCNs) were identified as shown in Row F. Among the identified APCNs, 365,720 (72.9%) were successfully screened. Of these, 25,258 (6.9%) were deemed eligible for the NIS-Teen interview. Respondents were eligible if the cell phone belonged to an adult living in a household with at least one age-eligible teen. Among the identified eligible households, 18,368 (72.7%) completed the household interview.

A standard approach for measuring response rates in telephone surveys has been defined by the Council of American Survey Research Organizations (CASRO 1982). The CASRO response rate is equivalent to "RR3" of AAPOR Standard Definitions (AAPOR 2015). In 2014, the CASRO response rate (Row J) for the landline sample was 60.3%. The NIS-Teen CASRO response rate equals the product of the resolution rate (82.6%, Row E), the screening completion rate (87.2%, Row G), and the interview completion rate among eligible households (83.8%, Row I). The resolution rate is the percentage of the total telephone numbers selected that are classifiable as non-working, non-residential, or residential. The screening completion rate is the percentage of known households that are successfully screened for the presence of age-eligible teens. The interview completion rate is the percentage of households with one or more age-eligible teens that complete the household interview.

The CASRO response rate (Row J) for the cell-phone sample in 2014 was 31.2%. As with the landline sample, it equals the product of the resolution rate (58.9%, Row E), the screening completion rate (72.9%, Row G), and the interview completion rate among eligible households (72.7%, Row I).

Row K of Table 1 shows that household interviews were completed for 19,705 age-eligible teens in the landline sample and 18,342 teens in the cell-phone sample (or 38,047 age-eligible teens in total). These figures are smaller than those in Row I because some completed interviews were removed when edits to the teen's date of birth rendered the teen ineligible. Rows L through O give results for the Provider Record Check phase. Specifically, Row L gives the rate of obtaining oral consent from household respondents to contact their teen's vaccination providers – 64.4% for landline sample cases and 61.2% for cell-phone sample cases in 2014.

The number of immunization history questionnaires mailed to vaccination providers exceeds the number of completed interviews for teens with consent because some teens have more than one vaccination provider. Of the questionnaires mailed to providers of teens from the landline sample, 18,989

(94.9%, Row N) were returned. Among the landline-sample teens with completed household interviews, 11,243 (57.1%, Row O) had adequate vaccination histories based on provider reporting (11,210) or were determined to be unvaccinated (33). The other 42.9% of teens lacked adequate provider data for a variety of reasons, such as the parent did not give consent to contact the teen's provider(s), the provider(s) did not have records for the teen, or the provider(s) did not report the vaccination history.

Of the questionnaires mailed to providers of teens from the cell-phone sample, 16,716 (94.8%, Row N) were returned. Among the cell-phone-sample teens with completed household interviews, 9,584 (52.3%, Row O) had adequate vaccination histories based on provider reporting (9,526) or had no vaccinations based on household reporting (58).

In 2014, data from the Health Insurance Module (HIM) were collected. Among the 19,705 teens in the landline sample with completed household interviews, 13,310 (67.5%, Row P) completed the HIM. Among the 18,342 teens in the cell-phone sample with completed household interviews, 11,564 (63.0%, Row P) completed the HIM.

For each estimation area and each state, Table E.1 (see Appendix E) shows the number of teens with completed household interviews and the number of teens with adequate provider data.

Table 1: Selected Operational Results of Q1/2014-Q4/2014 NIS-Teen Data Collection (Excluding Puerto Rico)

_		Landline Sample	Landline Sample	Cell-Phone Sample	Cell-Phone Sample	
Row	Key Indicator	Number	Percent	Number	Percent	Formula
	Household Phase					
A	Total Selected Telephone Numbers in Released Replicates	4,892,189		3,069,031		
В	Phone Numbers Resolved before Computer-Assisted Telephone Interviewing	2,864,063	58.5%	766,530	25.0%	B/A
С	Total Phone Numbers Released to Telephone Centers	2,028,126		2,302,501		A-B
D	Advance Letters Mailed	819,058	40.4%			D/C
Е	Resolved Phone Numbers* – <i>Resolution Rate</i>	4,039,413	82.6%	1,808,334	58.9%	E/A
F	Households Identified – <i>WRN/APCN Rate</i> [†]	435,641	10.8%	502,017	27.8%	F/E
G	Households Successfully Screened§ – Screener Completion Rate	379,759	87.2%	365,720	72.9%	G/F
Н	Eligible Households – <i>Eligibility Rate</i> ¶	23,565	6.2%	25,258	6.9%	H/G
I	Households with Completed Household Interviews – Interview Completion Rate	19,747	83.8%	18,368	72.7%	I/H
J	CASRO Response Rate**		60.3%		31.2%	E*G*I
K	Age-Eligible Teens with Completed Household Interviews ^{††}	19,705		18,342		
	Provider Phase					
L	Teens with Consent to Contact Vaccination Providers	12,684	64.4%	11,228	61.2%	L/K
M	Immunization History Questionnaires Mailed to Providers	20,005		17,642		
N	Immunization History Questionnaires Returned from Providers	18,989	94.9%	16,716	94.8%	N/M

Row	Key Indicator	Landline Sample Number	Landline Sample Percent	Cell-Phone Sample Number	Cell-Phone Sample Percent	Formula
O	Teens with Adequate Provider Data	11,243 (includes 33 unvaccinated teens)	57.1%	9,584 (includes 58 unvaccinated teens)	52.3%	O/K
	Modules					
P	Age-Eligible Teens with Completed Household Interview and Completed Health Insurance Module	13,310	67.5%	11,564	63.0%	P/K

^{*} Includes phone numbers resolved before CATI (Row B).

2.4. Informed Consent, Security, and Confidentiality of Information

The advance letter, introduction to the telephone survey, and oral consent assure the respondent of the confidentiality of his/her responses and the voluntary nature of the survey. Informed consent is obtained from the person in the household most knowledgeable about the eligible teen's vaccination history (generally the parent or guardian of the teen). Informed consent to contact the teen's vaccination provider(s) is obtained at the end of the interview.

Information in the NIS-Teen is collected and processed under high security. To ensure privacy of the respondents and confidentiality of sensitive information, NCHS has established standards for release of data from all NCHS surveys. All CDC staff and contractor staff involved with the NIS-Teen sign the NCHS confidentiality agreement and follow instructions to prevent disclosure.

All information in the NIS-Teen is collected under strict confidentiality and can be used only for research [Section 308(d) of the Public Health Service Act, 42 U.S. Code 242m(d), the Privacy Act of 1974 (5 U.S.

[†] For the landline sample, this is the working residential number (WRN) rate; for the cell-phone sample, it is the active personal cell-phone number (APCN) rate.

[§] For the landline sample, this is the age-eligibility screener; for the cell-phone sample, it is a combination of the screener for non-minor-only cell-phone status and the age-eligibility screener.

[¶] For the landline sample, this is the age-eligibility rate; for the cell-phone sample, it reflects a combination of the non-minor-only cell-phone rate and the age-eligibility rate.

^{**} CASRO, Council of American Survey Research Organizations.

^{††} Rows K-P reflect the removal of teens with an ineligible best date of birth.

Code 552a), and the Confidential Information Protection and Statistical Efficiency Act (5 U.S. Code)].
Prior to public release, the contents of the public-use data file go through extensive review by the NCHS
Disclosure Review Board to protect participant privacy as well as data confidentiality.

3. Content of NIS-Teen Questionnaires

This section describes the questionnaires used in the 2014 NIS-Teen telephone interview of households and in the NIS-Teen Provider Record Check Study.

3.1. Content of the Household Questionnaire

The computer-assisted telephone interview (CATI) questionnaire used in the RDD phase of NIS-Teen data collection consists of two parts: a screener to identify households with adolescents aged 13–17 years and an interview portion. The questionnaire is modeled on the Immunization Supplement to the National Health Interview Survey (NHIS) (NCHS 1999). The NIS-Teen CATI questionnaire has been translated into Spanish, and Language Line Services (formerly part of AT&T) is used for real-time translation into many other languages (Wall et al. 1995). Table 2 summarizes the content of each section of the NIS-Teen household interview. The CATI questionnaire is available at

http://www.cdc.gov/nchs/nis/data files teen.htm

The household is first screened for the presence of children aged 19–35 months. If the household contains such a child, the NIS interview is conducted before the household is screened for the NIS-Teen survey; if the household does not contain such a child, the household immediately proceeds to the NIS-Teen screener.

In the NIS-Teen screener, the purpose of the survey is explained to the respondent, and the ages of all the children in the household are obtained. If the household contains one or more adolescents aged 13–17 years, a 13–17 year-old adolescent is randomly chosen to be the subject of the interview, this teen's date of birth is collected, and the respondent is asked whether he/she is the most knowledgeable person for this teen's vaccination history. If the respondent indicates that another person in the household is more knowledgeable, the interviewer asks to speak to him/her at that time. If that person is unavailable to be interviewed, the name of the most knowledgeable person is recorded, and a "callback" is scheduled for a

later date. For cell-phone sample, prior to screening for age-eligibility the household is screened to ensure that the cell phone was used by an adult (i.e., to ensure it is not a minor-only cell phone).

Table 2: Content of the Household Interview, National Immunization Survey - Teen, 2014

Questionnaire Section	Content of Section
Section S	Screening questions to determine NIS eligibility
NIS-Teen Screener	Screening questions to roster children and to determine NIS-Teen eligibility
Section B	Ever vaccinated and flu, Td/Tdap, meningococcal, and HPV vaccination questions
Section C	Teen and household health questions, demographic and socioeconomic questions
Section D	Provider information and request for consent to contact the teen's vaccination provider(s)
Section E	Health Insurance Module (HIM)

The NIS-Teen questionnaire formerly included Section A following the NIS-Teen Screener. After asking whether the respondent has a shot card of the teen's vaccination history, he/she was formerly asked whether the shot card was easily accessible. If so, the interview proceeded with Section A (which asked respondents with shot cards about the shots on the card), followed by Section C; if not, it proceeded with Section B followed by Section C. Beginning in Q1/2014, Section A was entirely eliminated from the household questionnaire and now all respondents are administered Section B. Section B was also shortened. The remaining Section B questions ask a limited set of questions regarding flu, Td/Tdap, meningococcal, and HPV vaccinations; questions about measles, varicella, hepatitis A, and hepatitis B vaccines were removed.

Section C collects information about the health of the selected teen, including recent doctor visits and history of chicken pox disease, asthma, and other health conditions. Section C obtains information that includes the relationship of respondent to the teen, race of the teen, household income, educational attainment of the mother, and other information on the socioeconomic characteristics of the household and the teen. This section is asked of all respondents upon completion of Section B.

In the Provider Section (Section D) of the NIS-Teen household interview, identifying information (such as name, address, and telephone number) for the teen's vaccination provider(s) is requested, as well as the full names of the teen and the respondent, so that NIS-Teen personnel can contact the provider(s) and identify the teen whose vaccination information the NIS-Teen is requesting. After this information is obtained, consent to contact the teen's vaccination provider(s) is requested. When oral consent and sufficient identifying information are obtained, the immunization history questionnaire is mailed to the teen's vaccination provider(s).

A Health Insurance Module (HIM) (Section E) is administered upon completion of the Provider Section to collect data regarding the types of medical insurance coverage the teen has had since age 11 years. If a respondent provided consent to contact medical providers and completed the Provider Section, he/she flowed directly into the HIM. If, however, consent or any other critical provider question was refused, the call was terminated; only upon callback on which consent was granted or a second refusal given within the Provider Section was the respondent asked the HIM. See Section 7.10 of this user's guide for information on the HIM variables included on the NIS-Teen public-use data file.

3.2. Content of the Immunization History Questionnaire (IHQ)

The IHQ mailed to the vaccination providers is designed to be simple and brief, to minimize provider burden and encourage survey participation. The structure and content of this form were initially derived from the National Immunization Provider Record Check Study (NHIS/NIPRCS), which collected and reconciled vaccination data from the providers of respondents to the Immunization Supplement to the National Health Interview Survey. The IHQ consists of two double-sided pages. Page 1 includes space for the label that gives the teen's name, date of birth, and gender. The remainder of page 1 contains questions about the facility and vaccination provider. Page 2 gives instructions for filling out the shot grid, which appears on page 3. Page 4 thanks the vaccination provider for providing the information, and lists websites and telephone numbers that can be used to obtain more information about the NIS-Teen and the

National Center for Immunization and Respiratory Diseases. The IHQ is available at		
http://www.cdc.gov/nchs/nis/data_files_teen.htm.		

4. Data Preparation and Processing Procedures

The household and provider data collection in the NIS-Teen incorporate extensive data preparation and processing procedures. During the household interview, the CATI system supports reconciliation of critical errors as interviewers enter the data. After completion of interviewing for a quarter, post-CATI editing and data cleaning produce a final interview data file. The editing of the provider data begins with a manual review of returned immunization history questionnaires, data entry of the questionnaires, and cleaning of the provider data file. After the provider data are merged with the household interview data and responses from multiple providers for a teen are consolidated into a single vaccination history, the editing continues. A quality assurance check is performed based on the name, gender, and date of birth of the teen to ensure that the provider completed the questionnaire for the correct teen and to confirm age-eligibility (age 13–17 years at time of interview). Editing of the provider-reported vaccination dates then attempts to resolve specific types of discrepancies in the provider data. The end product is an analytic file containing household and provider data for use in estimating vaccination coverage.

4.1. Data Preparation

The editing and cleaning of NIS-Teen data involve several steps. First, the CATI system enables interviewers to reconcile potential errors while the respondent is on the telephone. Further cleaning and editing take place in a post-CATI clean-up stage, involving an extensive review of data values, cross tabulations, and the recoding of verbatim responses for race and ethnicity. The next step involves the creation of numerous composite variables. Provider data are cleaned in a separate step. After these steps have been completed, imputations are performed for item non-response on selected variables, and weights are calculated. The procedures and rules of the National Health Interview Survey serve as the standard in all stages of data editing and cleaning (http://www.cdc.gov/nchs/nhis.htm).

4.1.1. Editing in the CATI System

The CATI software checks consistency across data elements and does not allow interviewers to enter invalid values. Catching potential errors early increases the efficiency of post-survey data cleaning and processing.

To prevent an overly complicated CATI system, out-of-range and inconsistent responses produce a warning screen, allowing the interviewer to correct errors in real time. This allows the interviewer to reconcile errors while the respondent is on the telephone. CATI warning screens focus on items critical to the survey, such as those that determine a teen's eligibility (e.g., date of birth).

A CATI system cannot simultaneously incorporate every possible type of error check and maximize system performance. To reconcile this trade-off, post-CATI edits are used to resolve problems that do not require access to the respondent, as well as unanticipated logic problems that appear in the data.

4.1.2. Post-CATI Edits

The post-CATI editing process produces final, cleaned data files for each quarter. The steps in this process, implemented after all data collection activities for a quarter are completed, are described below.

Initial Post-CATI Edits and File Creation

After completion of interviewing each quarter, the raw data are extracted from the CATI data system and used to create two files: the sample file and the interview data file. The sample file contains one record for each sampled telephone number and summary information for telephone numbers and households. The interview data file contains one record for each eligible sampled teen and all data the household reported for the teen.

Following creation of these two files, a preliminary analysis of each file identifies out-of-range values and extraneous codes. The first check verifies the eligibility status of teens, based on date of birth and date of

interview. Once the required corrections are verified, invalid values are replaced with either an appropriate data value or a missing value code.

Frequency Review

After the pre-programmed edits are run, frequency distributions of all variables in each file are produced and reviewed. Each variable's range of values is examined for any invalid values or unusual distributions. If blank values exist for a variable, they are checked to see whether they are allowable and whether they occur in excessive numbers. Any problems are investigated and corrected as appropriate.

File Crosschecks

Crosscheck programs ensure that cases exist across files in a consistent manner. Specifically, checks ensure that each case in the interview data file is also present in the sample file and that each case in the sample file was released to the telephone centers. Checks also ensure that no duplicate households exist in the sample file and no duplicate teens exist in the interview data file.

When all checks have been performed, the final quarterly interview data file is created. Programmers and statisticians then create composite variables constructed from basic variables for each teen. Sampling weights (described in Section 6 of this Guide) are added to each record.

4.1.3. Editing of Provider Data

Six to eight weeks after the close of household data collection for a quarter, the majority of the immunization history questionnaires have been collected from providers. The data from the hard-copy questionnaires are entered and independently re-entered to provide 100% verification. The provider data file is cleaned, in a similar fashion to the household data file, for out-of-range values and consistency. A computer program back-codes all "other shot" verbatim responses into the proper vaccine category (e.g., Recombivax counts as Hep B). These translations come from a file that contains all such verbatim responses ever encountered in the NIS-Teen. Also, the provider data file is checked for duplicate records,

and exact duplicates are removed. If the provider data contain a date of birth, gender, or name for the teen that differs from the household interview for that teen, the questionnaire is re-examined to determine whether it may have been filled out for the incorrect teen. Provider data that appear to have been filled out for the wrong teen are removed from the provider database. When a teen has data from multiple providers, decision rules are applied to produce the most complete picture of the teen's vaccination history.

Once these data have been cleaned, they are combined with the household data file. Information from up to eight providers can be added to a teen's record. If more than one provider reported vaccination data for the teen, the data from the multiple provider reports are combined into a single history for the teen, called the "synthesized provider-reported vaccination history." The determination of whether the teen is up-to-date for recommended vaccines and vaccine series is based on the teen's synthesized provider-reported vaccination history.

Many variables in the household data file are checked against or verified with the provider data file. For example, a teen's date of birth as recorded by the provider is checked against the date of birth as given by the household, to verify that the provider was reporting for that specific teen and to form a "best" date of birth for the teen

4.2. Limitations of Data Editing Procedures

Although data editing procedures were used for the NIS-Teen, the data user should be aware that some inconsistent data might remain in the public-use data file. The variables that indicate whether a teen is upto-date on each vaccine or series (on which the estimates of vaccination coverage are based) are derived from provider-reported data, and the NIS-Teen does not re-contact households or providers to attempt to reconcile potential discrepancies in provider-reported vaccination dates or to resolve date-of-birth reporting errors. However, the provider-reported data are manually reviewed and edited to correct specific reporting errors. Some adolescents considered to have adequate provider data may have incomplete

vaccination histories. These incomplete histories arise from three primary sources: 1) the household does not identify all vaccination providers, 2) some but not all providers respond with vaccination data, and 3) all identified providers respond with vaccination data but fail to list all the vaccinations in the teen's medical record. Even with these limitations, the NIS-Teen overall is a rich source of data for assessment of up-to-date status and age-appropriate vaccination. Also, NIS-Teen is the only source to provide comparable provider-reported vaccination data across states and local areas in the United States.

4.3. Variable-Naming Conventions

The names of variables follow a systematic pattern as much as possible. The codebook for the public-use data file groups the variables into ten broad categories according to the source of the data (household or provider) and the content of the variable (NCHS 2015). See Section 7 of this report for detailed information on the contents of the public-use data file.

4.4. Missing Value Codes

Missing value codes for each variable can be found in the codebook (NCHS 2015). For household variables, the missing value codes usually are 77 for DON'T KNOW and 99 for REFUSED. Some household variables may also contain blanks, if the question was not asked. The variables developed from the immunization history questionnaire generally do not have specific missing value codes.

4.5. Imputation for Item Non-Response

The NIS-Teen uses imputation primarily to replace missing values in the socioeconomic and demographic variables used in weighting. Missing values of these variables are imputed for all teens with a completed household interview – i.e., all teens appearing on the public-use data file. A sequential hot-deck method is used to assign imputed values (Ford 1983). Class variables are used to separate respondents into cells. Donors and recipients must agree on the categories of the class variables, which include the estimation area. Within the categories of the class variables, respondents are sorted by variables related to the variable to be imputed. The last case with an observed value is used as the donor for up to four recipients.

The variable labels in the codebook (NCHS 2015) identify variables that contain imputed values. These variables include the gender, Hispanic origin, and race of the teen, and the education level, age group, marital status, and mobility status of the mother.

4.6. Vaccine-Specific Recoding of Verbatim Responses

On the IHQ, providers can list vaccinations in the "other" section of the IHQ shot grid. After data collection, these vaccinations are reclassified into the listed categories, if possible, using a vaccination recoding table. This table is reviewed by National Center for Immunization and Respiratory Diseases personnel to ensure the vaccinations are recoded into the appropriate category or categories (for combination vaccinations).

4.7. Sub-Sets of the NIS-Teen Data

The NIS-Teen public-use data file contains data for all adolescents aged 13–17 years who have a completed household interview. An interview is considered complete if the respondent completed Section C of the questionnaire. As explained in Section 6 of this guide, each teen with a completed household interview is assigned a weight (RDDWT_D for the United States, excluding Puerto Rico; RDDWT_D_TERR for the United States, including Puerto Rico) for use in estimation.

The NIS-Teen uses the synthesized provider-reported vaccination histories to form the estimates of vaccination coverage because the provider data are considered more accurate than household-reported data. Thus, the most important sub-set of the data consists of teens with adequate provider data. For these teens, one or more providers returned the immunization history questionnaire that included vaccination data. Unvaccinated teens are also considered to have adequate provider data. As discussed in Section 7 below, the PDAT2 variable identifies the teens with adequate provider data (PDAT2=1), based on the new criteria described in the Introduction to this report (and replaces the previous variable PDAT). These teens have a separate weight (PROVWT_D for the United States,

excluding Puerto Rico; PROVWT_D_TERR for the United States, including Puerto Rico), which should be used to form estimates of vaccination coverage (see Section 6).

4.8. Confidentiality and Disclosure Avoidance

To prevent identification of participants in the NIS-Teen and the resulting disclosure of information, certain items from the questionnaires are not included in the public-use data file. In addition, some of the released variables either are top- or bottom-coded, or have their categories collapsed. Variable labels indicate which variables have collapsed or recoded.

5. Quality Control and Quality Assurance Procedures

A major contributor to NIS-Teen data quality is its sample management system, which in 2014 managed over 450 sample frame by estimation area by quarter samples and used a number of performance measures to track their progress toward completion. Important aspects of the quality assurance program for the RDD component of the NIS-Teen included on-line interviewer monitoring; on-line provider lookups in a database system integrated with the CATI system, including names, addresses, and telephone numbers of vaccination providers; and automated range-edits and consistency checks. These and other quality assurance procedures contributed to a reduction in total data collection cost by minimizing interviewer labor and overall burden to respondents. Khare et al. (2000), Khare et al. (2001), and the *National Immunization Survey: Guide to Quality Control Procedures* (CDC 2002) address quality assurance procedures.

The Provider Record Check component used quality control measures at four junctions: prior to mailing packets to providers; during the telephone prompting effort; during the editing of returned questionnaires; and during and after their data entry. The final quality assurance activities were implemented during post-processing of the returned questionnaires or vaccination records. All returned questionnaires were examined to identify and correct any obvious errors prior to data entry and then key-entered with 100% verification. The keying error rate is estimated, by way of a second verification process, to be less than 1%.

6. Sampling Weights

The two phases (RDD-phase and provider-phase) of data collection result in a separate sampling weight for each teen that has data at that phase. The RDD-phase sampling weights permit analyses of data from teens with completed household interviews. Each teen with adequate provider data (the sub-set of teens with completed household interviews on which official estimates of vaccination coverage are based) has at least one provider-phase sampling weight. In 2014, the dual-frame RDD-phase sampling weight variable for producing estimates for teens with completed household interviews in the United States excluding Puerto Rico is called RDDWT_D; and the dual-frame RDD-phase weight variable for producing estimates for the United States including Puerto Rico is called RDDWT_D_TERR. The dual-frame provider-phase sampling weight variable for producing estimates for teens with adequate provider data in the United States excluding Puerto Rico is called PROVWT_D; and the dual-frame provider-phase weight variable for producing estimates for the United States including Puerto Rico is called PROVWT_D; and the dual-frame provider-phase weight variable for producing estimates for the United States including Puerto Rico is called PROVWT_D. TERR. See Section 8 of this user's guide for more information about the weights included in the data file and the proper way to use them.

A sampling weight may be interpreted as the approximate number of teens in the target population that a teen in the sample represents. Thus, for example, the sum of the sampling weights of teens that are up-to-date (on a particular vaccine or series of vaccines) yields an estimate of the total number of teens in the target population who are up-to-date. Dividing this sum by the total of the sampling weights for all teens gives an estimate of the corresponding vaccination coverage rate.

This section describes how these weights are developed and adjusted so as to achieve an accurate representation of the target population. The base weights reflect each telephone number's probability of being selected into the sample; the adjustments take into account non-resolution of residential/non-residential/non-working status of a telephone number, non-response to the screener, subsampling of one eligible teen in the household, non-response to the household interview, number of telephone lines in the

household, combination of landline and cell-phone sample sources, raking for differential coverage rates, non-response by providers, and a final raking adjustment. Note that when deriving dual-frame weights, initial adjustments are performed separately for the landline and cell-phones samples, and then both samples are combined and further adjustments are performed on the combined samples.

6.1. Base Sampling Weight

In each quarterly NIS-Teen sample, each teen with a completed household interview receives a base sampling weight. For all four quarters of the landline sample and cell-phone sample, the base sampling weight is equal to the total number of telephone numbers in the sampling frame for the estimation area divided by the total of telephone numbers that were randomly sampled from that sampling frame and released for interview during that quarter.

6.2. Adjustments for Non-Resolution of Telephone Numbers and Screener Non-Response

Non-response occurs in population-based surveys when respondents cannot be reached during the survey period, are not available at the time of the interview, or refuse to participate. Thus, the sum of the base sampling weights of teens with completed household interviews will underestimate the size of the target population in the estimation area, because not all sampled households respond to all stages of data collection up to the household interview. As a result, the base sampling weights must be adjusted so they can accurately reflect the number of teens in the target population that each sampled teen with a completed household interview represents.

Some sampled households with age-eligible teens fail to complete the household interview because of unit non-response: for some telephone numbers, it is never determined whether or not the number is a working residential number despite multiple call attempts; for some households it is never determined whether or not the household contains age-eligible teens; and some households with age-eligible teens do not complete the household interview. To compensate for these types of unit non-response, the sampling

weights of teens with a completed household interview are adjusted to account for the estimated number of age-eligible teens in households whose telephone numbers are never resolved; the estimated number of age-eligible teens in households that fail to complete the screening interview; and the estimated number of age-eligible teens in households that fail to complete the household interview because of unit nonresponse. For the landline sample, each of these adjustments is carried out within each estimation area by forming weighting cells based on the residential directory-listed status of the sample telephone number, percent of the population that is white in the telephone exchange, and MSA status of the telephone exchange (i.e., weighting cells were formed from directory-listed versus non-directory-listed telephone number; by telephone exchanges with 75% or higher white population versus telephone exchanges with less than 75% white population; and MSA/non-MSA status). For the cell-phone sample, each of these adjustments is carried out within estimation area by forming weighting cells based on MSA/non-MSA status of the wire center associated with the cell-phone number. Each of the non-response adjustments for Puerto Rico was done at the estimation area level. That is, no weighting cells were formed for Puerto Rico. Each cell in each stage of adjustment is assured of having sufficient resolved/responding cases (usually 20) at that stage of adjustment. The cells with a deficient number of responding cases are collapsed with neighboring cells. The order of the variables in cell collapsing for the landline sample is MSA status, percent of population that is white, and directory listed status of the telephone number, and for the cell-phone sample, both MSA categories are collapsed if either of the cells have a deficient number of responding cases. Once the adjustment cells are formed, the weights of the unresolved/nonresponding records from the previous adjustment step are distributed to the weights of the resolved/responding records within each cell.

6.3. Adjustment for Subsampling of One Teen per Household

In households with more than one teen, only one teen is selected randomly per household for the NIS-Teen interview. The non-response adjusted age screener weight is adjusted to account for the teens that are not selected. Each household's age screener weight is adjusted by multiplying it by the total number of eligible teens reported in the household (up to a maximum of 3). This adjustment is performed in an identical manner for both the landline and cell-phone samples.

6.4. Adjustment for Interview Non-Response

Some households that are determined to be eligible fail to complete the household interview for the selected teen. To compensate for this third type of unit non-response, the sampling weights of teens with a completed household interview are adjusted to account for teens who live in households that failed to complete the household interview. Similar to the first two types of unit non-response, for the landline sample, the adjustment is carried out within estimation areas by forming weighting cells based on the residential directory-listed status of the sample telephone number, percent of the population that is white in the telephone exchange, and MSA status of the telephone exchange. For the cell-phone sample, the adjustment is carried out within estimation area by forming weighting cells based on MSA status. For Puerto Rico, the interview non-response adjustment was done at the estimation area level, i.e., no weighting cells were formed for the Puerto Rico interview non-response adjustment. Each weighting cell for the interview non-response adjustment must have sufficient responding cases (usually 15); cells with a deficient number of responding cases are collapsed with neighboring cells. The priority of the variables in cell collapsing for the landline sample is MSA status, percent of population that is white, and directory listed status of the telephone number, and for the cell-phone sample, both MSA categories are collapsed if either of the cells have a deficient number of responding cases. Once the adjustment cells are formed, the weights of the non-responding records from the previous adjustment step are distributed to the weights of the responding records within each cell.

6.5. Adjustment for Multiple Telephone Lines and Deriving Annual Weights

Once the non-response-adjusted interview weights for teens are computed, these weights are adjusted for additional telephone lines in the household. Because households with multiple telephone lines have a greater chance of being sampled, for the landline sample each teen's household interview weight is

adjusted by dividing it by the total number of residential telephone landlines reported in the household (up to a maximum of 3), and for the cell-phone sample each teen's household interview weight is adjusted by dividing it by the total number of cell phones used by parents or guardians (up to a maximum of 3).

Up to the previous step, the sampling weights are adjusted separately for each quarter and sample type (landline, cell-phone), and the weights in each quarter pertain to the target population. However, annual vaccination coverage estimates are obtained from data for four consecutive quarters, so the weights in each quarterly file are adjusted when the data from the four quarters of the landline and cell-phone samples are combined. The adjustment factor is proportional to the number of households with completed household interviews in each quarter within sample type (landline, cell-phone) and estimation area.

6.6. Post-Stratification

Survey weights for the landline and cell-phone samples must be combined to provide weights for the full target population of teens aged 13 to 17 years. Teens in landline-only households (from the landline sample) and cell-phone-only households (from the cell-phone sample) within each estimation area are weighted to represent teens in landline-only and cell-phone-only households respectively. Moreover, since the landline and cell-phone sampling frames overlap in coverage of teens in landline and cell-phone dual-use households, dual-users from both samples are combined based on the effective number of teens with a completed household interview within each sample type (landline, cell-phone), and are weighted to represent teens in dual-use households within each estimation area. Finally, teens in phoneless households, which are excluded from the dual-frame sample, are accounted for in the raking step described below.

The control totals used for the NIS-Teen are derived from a combination of 2013 census population estimates and public-use single year 2011 and three-year 2011-2013 American Community Survey (ACS) data for the United States and Puerto Rico. The proportion of teens by detailed telephone status (landline-only, landline and cell-phone dual-user, cell-phone-only, phoneless) within each estimation area

in the United States were derived using a similar small area modeling approach as described in Blumberg et al. 2012. These modeled telephone status estimates are applied to the control total for the estimation area to estimate the control totals by detailed telephone status within the estimation area. To reduce sampling variability and improve the precision of estimation, extreme weights are trimmed within an estimation area. RDD sampling weight values exceeding the median weight plus three times the interquartile range of the weights within an estimation area are truncated to that threshold. This weight trimming prevents teens with unusually large weights from having an unusually large impact on vaccination coverage estimates.

The final step in adjusting the RDD sampling weights is a raking adjustment (Deming 1943) of the trimmed, telephone status adjusted weights. The raking procedure uses estimation area-level control totals for maternal education categories, teen's race/ethnicity, age group of the teen, gender of the teen, and telephone status. Raking makes it possible to incorporate additional variables into the weighting and to use more detailed categories for those variables. Briefly, raking takes each variable in turn and applies a proportional adjustment to the current weights of the teens who belong to the same category of the variable. After a number of iterations over all the variables, the raked weights have totals that match all the desired control totals. At this point, as before, the weights that exceed the median weight plus three times the interquartile range of the weights within an estimation area are truncated to that threshold. The raking step is applied again after the truncation of the weights and the weights are rechecked for extreme weights and truncated as before. The process is iterated up to five times.

The sampling weights after all the foregoing adjustments constitute the "RDD sampling weights" (RDDWT_D for the United States excluding Puerto Rico; RDDWT_D_TERR for the United States including Puerto Rico).

6.7. Adjustment for Provider Non-Response

Among the 38,703 teens with a completed household interview from the landline and cell-phone samples (including Puerto Rico), 21,057 (54.4%) had adequate provider data. The definition of teens with adequate provider data includes unvaccinated teens. These are teens for whom the respondent reported during the household interview that the teen had received no vaccinations and has no providers, or for whom one or more providers were reported but those providers reported administering no vaccinations. Among the 21,057 teens with adequate provider data, 92 were unvaccinated teens. Failure to obtain adequate provider data for the remaining 45.6% was attributable to:

- parent or guardian not giving consent to contact the teen's vaccination provider(s) (37.0%);
- consent to contact vaccination providers obtained but no providers returned the immunization history questionnaire (3.6%); and
- one or more providers returned the immunization history questionnaire, but no providers reported any vaccination data (4.9%).

The 17,646 teens for whom a household interview was completed but adequate provider data were not obtained are classified as "partial non-responders" because they have only a partial response to the NIS-Teen as a whole.

Empirical results for the NIS suggest that children with adequate provider data have characteristics believed to be associated with a greater likelihood of being up-to-date, compared with children who had missing provider data. Specifically, children with adequate provider data are more likely to live in households that have higher total family income, have a white mother, and live outside a central city of a Metropolitan Statistical Area. Also, a child with missing provider data is less likely to live in the state where the mother lived when the child was born. These factors indicate a potential lack of continuity of health care, and are associated with lower vaccination rates (Coronado et al. 2000). An adjustment is made to the RDD sampling weights of the NIS to account for these differences; otherwise, estimated

vaccination coverage rates may be biased. A similar adjustment is also made to the RDD sampling weights of the NIS-Teen.

To reduce potential bias in estimators of vaccination coverage attributable to partial non-response, a weighting-class adjustment is used in each estimation area (Brick and Kalton 1996). This adjustment involves three steps. In the first step, sampled teens are classified according to the quintile of their estimated probabilities of having adequate provider data. In the statistical literature these probabilities are called response propensities (Rosenbaum and Rubin 1983, 1984; Rosenbaum 1987). Teens that have similar response propensities will also be similar with respect to variables that are strongly associated with the probability of having adequate provider data. In this important respect, teens in each class are comparable. Because of this comparability, any sub-sample of teens in a class may represent all teens in the class. Therefore, the weighting-class adjustment uses the teens with adequate provider data to represent all teens in the class.

In the second step of this weighting-class adjustment, within each class an adjustment factor redistributes the RDD sample weights of the teens with missing provider data to the weights of the teens that have adequate provider data. These adjusted sampling weights of teens with adequate provider data are initial non-response-adjusted provider-phase weights. The model for teens with adequate provider data includes significant main effects, and also, significant two-way interactions between sample type (landline, cell-phone) and all other variables.

Within an estimation area, the sums of non-response adjusted weights of teens with adequate provider data for the various levels of important socio-demographic variables (such as race/ethnicity) may not be equal to corresponding population totals. To reduce bias attributable to these differences, raking was used in the third step to adjust the non-response adjusted weights to match estimation area control totals. Control totals for these variables were estimated using the weighted totals from the sample of teens with completed household interviews. Smith et al. (2001b, 2005) describe the development of this approach in

more detail. These raked weights of teens with adequate provider data are called "final provider-phase weights" (PROVWT_D for the United States excluding Puerto Rico and PROVWT_D_TERR for the United States including Puerto Rico). Because of the comparability of teens within each weighting class, any estimate that uses data only from the teens with adequate provider data, along with their provider-phase sampling weights, will have less bias attributable to differences between teens with adequate provider data and teens with missing provider data.

Appendix B summarizes the distribution of the sampling weights in each estimation area.

After sampling weights were calculated for all children in the 50 states, District of Columbia, and Puerto Rico, they were stored in the variables RDDWT_D_TERR and PROVWT_D_TERR. These weight variables permit one to conduct analysis for all estimation areas, including Puerto Rico. The weight variables RDDWT_D and PROVWT_D are equal to RDDWT_D_TERR and PROVWT_D_TERR for all teens except for teens in Puerto Rico, for whom the values of RDDWT_D and PROVWT_D are blank or missing. RDDWT_D and PROVWT_D permit one to conduct analysis of all estimation areas, excluding Puerto Rico.

7. Contents of the Public-Use Data File

The NIS-Teen public-use data file contains a record for each eligible teen for whom Section C of the household interview was completed, along with household-reported vaccination information and demographic information about the teen and the teen's mother. For teens with immunization history questionnaires containing vaccination data returned by one or more providers, the file also contains provider characteristic variables, as well as variables based on the teen's synthesized provider-reported vaccination history: the age of the teen at each vaccination, the number of each type of vaccination received, and indicators of whether the teen is up-to-date with respect to various recommended vaccines and vaccine series.

The public-use data file consists of ten sections, the contents of which are described below in detail. For additional information, users are encouraged to consult the codebook (NCHS 2015). The codebook is divided into the ten sections described below and contains variable names, labels, and response frequencies (for categorical variables). The codebook also indicates the questionnaire item or items that serve as the ultimate source for each variable and, for selected variables, gives additional information about the variable in the "Notes" field.

Before describing the sections of the public-use data file below, we first summarize the differences between the 2013 and 2014 NIS-Teen public-use data files:

- A new 2014 estimation area variable (ESTIAPT14) has been added and the 2013 estimation area variable (ESTIAPT13) has been dropped. (See Table 6.) Note that Puerto Rico teens are identified by ESTIAPT14=106.
- The 2014 PUF includes data for teens in Puerto Rico, which was not an estimation area in 2013, and does not include data for teens in the U.S. Virgin Islands and Guam, which were estimation areas in 2013. On the 2013 PUF, RDDWTVIGU_D and PROVWTVIGU_D were the weights used to produce dual-frame estimates in the United States including the U.S.

Virgin Islands and Guam. On the 2014 PUF, RDDWT_D_TERR and PROVWT_D_TERR are the weights producing dual-frame estimates in the United States including Puerto Rico. See Section 8 of this user's guide for more information about the appropriate weights to use for various analyses.

- As described above in the Introduction, the definition of adequate provider data for teens
 has changed due to the shortened questionnaire. The variable that indicates teens with
 adequate provider data was previously named PDAT on each PUF, but is now named
 PDAT2.
- Because of the household questionnaire modifications in 2014, 111 household-reported vaccination variables were dropped from the PUF. These variables are listed in Table 3.

7.1. Section 1: ID, Weight, and Flag Variables

SEQNUMT is the unique teen identifier. (Because only one teen is selected per household, SEQNUMT is also a unique household identifier.) PDAT2 indicates which teens are considered to have adequate provider data, based on the new criteria described in the introduction to this report (and replaces the previous variable PDAT). As described in Section 6 of this report, RDDWT_D/RDDWT_D_TERR and PROVWT_D /PROVWT_D_TERR are the final household- and provider-phase weights, respectively. PROVWT_D_TERR/PROVWT_D should be used when analyzing the provider-reported data, i.e., the variables in Sections 7, 8, and 9 of the public-use data file.

Table 3: List of Household-Reported Vaccination Variables to Be Removed from the 2014 Teen PUF

PUF Variable Name	e Label		
HEPA_AGE_SC1	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS A SHOT #1 (SHOTCARD)		
HEPA_AGE_SC2	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS A SHOT #2 (SHOTCARD)		
HEPA_AGE_SC3	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS A SHOT #3 (SHOTCARD)		
HEPA_AGE_SC4	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS A SHOT #4 (SHOTCARD)		
HEPA_AGE_SC5	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS A SHOT #5 (SHOTCARD)		
HEPA_AGE_SC6 AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS #6 (SHOTCARD)			
HEPA_AGE_SC7 AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS #7 (SHOTCARD)			
HEPA_AGE_SC8	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS A SHOT #8 (SHOTCARD)		
HEPA_ANY_REC	HH-REPORT: HAS TEEN EVER RECEIVED ANY HEPATITIS A SHOTS? (RECALL)		
HEPA_ANY_SC	HH-REPORT: HAS TEEN EVER RECEIVED ANY HEPATITIS A SHOTS? (SHOTCARD)		
HEPA_NUM_REC	NUMBER OF HH-REPORTED HEPATITIS A SHOTS RECEIVED (RECALL)		
HEPA_NUM_SC	NUMBER OF HH-REPORTED HEPATITIS A SHOTS RECEIVED (SHOTCARD)		
HEPA_NUM_TOT	NUMBER OF HH-REPORTED HEPATITIS A SHOTS RECEIVED (TOTAL)		
HEPA_RECOM	HAD OR HAS DOCTOR OR OTHER HEALTH CARE PROFESSIONAL EVER RECOMMENDED HEPATITIS A SHOTS?		
HEPB_AGE_SC1	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT #1 (SHOTCARD)		
HEPB_AGE_SC2	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT #2 (SHOTCARD)		
HEPB_AGE_SC3	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT #3 (SHOTCARD)		
HEPB_AGE_SC4	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT #4 (SHOTCARD)		

PUF Variable Name	Label			
HEPB_AGE_SC5	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT #5 (SHOTCARD)			
HEPB_AGE_SC6	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT (SHOTCARD)			
HEPB_AGE_SC7	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT #7 (SHOTCARD)			
HEPB_AGE_SC8	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT #8 (SHOTCARD)			
HEPB_ANY_REC	HH-REPORT: HAS TEEN EVER RECEIVED ANY HEPATITIS B SHOTS? (RECALL)			
HEPB_ANY_SC	HH-REPORT: HAS TEEN EVER RECEIVED ANY HEPATITIS B SHOTS? (SHOTCARD)			
HEPB_NUM_REC	NUMBER OF HH-REPORTED HEPATITIS B SHOTS RECEIVED (RECALL)			
HEPB_NUM_SC	NUMBER OF HH-REPORTED HEPATITIS B SHOTS RECEIVED (SHOTCARD)			
HEPB_NUM_TOT	NUMBER OF HH-REPORTED HEPATITIS B SHOTS RECEIVED (TOTAL)			
HEPB_SCH	DID TEEN RECEIVE HEPATITIS B SHOTS BECAUSE OF SCHOOL REQUIREMENT?			
HPVI_AGE_SC1	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #1 (SHOTCARD)			
HPVI_AGE_SC2	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #2 (SHOTCARD)			
HPVI_AGE_SC3	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #3 (SHOTCARD)			
HPVI_AGE_SC4	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #4 (SHOTCARD)			
HPVI_AGE_SC5	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #5 (SHOTCARD)			
HPVI_AGE_SC6	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #6 (SHOTCARD)			
HPVI_AGE_SC7	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #7 (SHOTCARD)			
HPVI_AGE_SC8	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #8 (SHOTCARD)			
HPVI_ANY_SC	HH-REPORT: HAS TEEN EVER RECEIVED ANY HUMAN PAPILLOMAVIRUS SHOTS? (SHOTCARD)			

PUF Variable Name	Label			
HPVI_NUM_SC	NUMBER OF HH-REPORTED HUMAN PAPILLOMAVIRUS SHOTS RECEIVED (SHOTCARD)			
HPVI_NUM_TOT	NUMBER OF HH-REPORTED HUMAN PAPILLOMAVIRUS SHOTS RECEIVED (TOTAL)			
MCV_AGE_SC1	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #1 (SHOTCARD)			
MCV_AGE_SC2	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #2 (SHOTCARD)			
MCV_AGE_SC3	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #3 (SHOTCARD)			
MCV_AGE_SC4	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #4 (SHOTCARD)			
MCV_AGE_SC5	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #5 (SHOTCARD)			
MCV_AGE_SC6	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #6 (SHOTCARD)			
MCV_AGE_SC7	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #7 (SHOTCARD)			
MCV_AGE_SC8	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #8 (SHOTCARD)			
MCV_ANY_REC	HH-REPORT: HAS TEEN EVER RECEIVED ANY MMR/MEASLES SHOTS? (RECALL)			
MCV_ANY_SC	HH-REPORT: HAS TEEN EVER RECEIVED ANY MMR/MEASLES SHOTS? (SHOTCARD)			
MCV_NUM_REC	NUMBER OF HH-REPORTED MMR/MEASLES SHOTS RECEIVED (RECALL)			
MCV_NUM_SC	NUMBER OF HH-REPORTED MMR/MEASLES SHOTS RECEIVED (SHOTCARD)			
MCV_NUM_TOT	NUMBER OF HH-REPORTED MMR/MEASLES SHOTS RECEIVED (TOTAL)			
MEN_AGE_SC1	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #1 (SHOTCARD)			
MEN_AGE_SC2	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #2 (SHOTCARD)			
MEN_AGE_SC3	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #3 (SHOTCARD)			
MEN_AGE_SC4	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #4 (SHOTCARD)			

PUF Variable Name	Label		
MEN_AGE_SC5	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #5 (SHOTCARD)		
MEN_AGE_SC6	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #6 (SHOTCARD)		
MEN_AGE_SC7	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #7 (SHOTCARD)		
MEN_AGE_SC8	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #8 (SHOTCARD)		
MEN_ANY_SC	HH-REPORT: HAS TEEN EVER RECEIVED ANY MENINGITIS SHOTS? (SHOTCARD)		
MEN_NUM_SC	NUMBER OF HH-REPORTED MENINGITIS SHOTS RECEIVED (SHOTCARD)		
MEN_NUM_TOT	NUMBER OF HH-REPORTED MENINGITIS SHOTS RECEIVED (TOTAL)		
MEN_RECOM	HAD OR HAS DOCTOR OR OTHER HEALTH CARE PROFESSIONAL EVER RECOMMENDED THAT TEEN RECEIVE MENINGITIS SHOTS?		
SHOTCARD	SHOT CARD FLAG		
SHOTCARD_ALL	HH-REPORT: DOES SHOT RECORD INCLUDE ALL VACCINATIONS?		
TET_AGE_SC1	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #1 (SHOTCARD)		
TET_AGE_SC2	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #2 (SHOTCARD)		
TET_AGE_SC3	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #3 (SHOTCARD)		
TET_AGE_SC4	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #4 (SHOTCARD)		
TET_AGE_SC5	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #5 (SHOTCARD)		
TET_AGE_SC6	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #6 (SHOTCARD)		
TET_AGE_SC7	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #7 (SHOTCARD)		
TET_AGE_SC8	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #8 (SHOTCARD)		
TET_ANY_SC	HH-REPORT: HAS TEEN EVER RECEIVED ANY TETANUS BOOSTER SHOTS? (SHOTCARD)		
TET LAST AGE	AGE IN YEARS AT LAST TETANUS BOOSTER SHOT (RECALL)		

PUF Variable Name Label			
TET_LAST_TYPE	TYPE OF LAST TETANUS BOOSTER SHOT (RECALL)		
TET_NUM_SC	NUMBER OF HH-REPORTED TETANUS BOOSTER SHOTS RECEIVED (SHOTCARD)		
TET_PLACE_1	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: DOCTOR'S OFFICE		
TET_PLACE_10	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: HOSPITAL-BASED CLINIC		
TET_PLACE_11	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: WHILE HOSPITALIZED		
TET_PLACE_12	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: ELEMENTARY/MIDDLE/HIGH SCHOOL		
TET_PLACE_2	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: EMERGENCY ROOM		
TET_PLACE_3	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: HEALTH DEPARTMENT		
TET_PLACE_4	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: CLINIC OR HEALTH CENTER		
TET_PLACE_5	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: HOSPITAL		
TET_PLACE_6	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: OTHER MEDICALLY-RELATED PLACE		
TET_PLACE_7	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: PHARMACY OR DRUG STORE		
TET_PLACE_8	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: WORKPLACE		
TET_PLACE_9	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: OTHER NON-MEDICALLY-RELATED PLACE		
TET_RECOM	HAD OR HAS DOCTOR OR OTHER HEALTH CARE PROFESSIONAL EVER RECOMMENDED THAT TEEN RECEIVE TETANUS BOOSTER SHOTS?		
TET_TYPE1	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #1		
TET_TYPE2	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #2		
TET_TYPE3	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #3		
TET_TYPE4	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #4		
TET_TYPE5	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #5		
TET_TYPE6	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #6		
TET_TYPE7	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #7		

PUF Variable Name	Label
TET_TYPE8	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #8
VRC_AGE_SC1	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #1 (SHOTCARD)
VRC_AGE_SC2	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #2 (SHOTCARD)
VRC_AGE_SC3	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #3 (SHOTCARD)
VRC_AGE_SC4	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #4 (SHOTCARD)
VRC_AGE_SC5	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #5 (SHOTCARD)
VRC_AGE_SC6	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #6 (SHOTCARD)
VRC_AGE_SC7	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #7 (SHOTCARD)
VRC_AGE_SC8	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #8 (SHOTCARD)
VRC_ANY_REC	HH-REPORT: HAS TEEN EVER RECEIVED ANY VARICELLA SHOTS? (RECALL)
VRC_ANY_SC	HH-REPORT: HAS TEEN EVER RECEIVED ANY VARICELLA SHOTS? (SHOTCARD)
VRC_NUM_REC	NUMBER OF HH-REPORTED VARICELLA SHOTS RECEIVED (RECALL)
VRC_NUM_SC	NUMBER OF HH-REPORTED VARICELLA SHOTS RECEIVED (SHOTCARD)
VRC_NUM_TOT	NUMBER OF HH-REPORTED VARICELLA SHOTS RECEIVED (TOTAL)

7.2. Section 2: Household-Reported Vaccination and Health Information

All respondents are administered Section B of the household questionnaire, where they are asked whether they recall the teen getting flu, Td/Tdap, meningococcal, and HPV vaccinations, and for the number of meningococcal and HPV vaccinations. They are then administered Section C of the household interview, wherein information about health of the selected teen and the teen's family, as well as demographic information about the teen and the teen's mother, is collected.

Section 2 of the public-use data file contains all of the information collected in Section B plus the health information collected in Section C of the household questionnaire. **IMM_ANY** indicates whether the respondent reported that the teen has had a vaccination of any type. For each type of vaccine asked about in Section B, a set of variables stores the information collected about that vaccine type; additional variables store the responses to the health questions in Section C.

The household-reported vaccination and health variables are described in more detail below.

7.2.1. Household-Reported Tetanus Vaccine Variables

Respondents that said the teen has received a vaccination of any type (IMM_ANY=1) are asked whether they recall the teen getting any Tetanus booster vaccinations (TET_ANY_REC). All respondents reporting that the teen has not received any Tetanus booster vaccinations (from recall), are then asked the reason the teen didn't receive Tetanus booster vaccinations. Variables TET_REAS_1-TET_REAS_5, TET_REAS_7, and TET_REAS_10-TET_REAS_24 store the answers to this choose-all-that-apply question and reflect the coding of open-ended responses into the reason categories existing on the questionnaire as well as into newly-created reason categories.

7.2.2. Household-Reported Meningitis Vaccine Variables

Respondents that said the teen has received a vaccination of any type (IMM_ANY=1) are asked whether they recall the teen getting any meningitis vaccinations (MEN_ANY_REC), and if so, they are asked for the number of meningitis vaccinations they recall (MEN_NUM_REC).

All respondents reporting that the teen has not received any meningitis vaccinations (from recall), are then asked the reason the teen didn't receive meningitis vaccinations. Variables MEN_REAS_1MEN_REAS_7 and MEN_REAS_10-MEN_REAS_23 store the answers to this choose-all-that-apply question and reflect the coding of open-ended responses into the reason categories existing on the questionnaire as well as into newly-created reason categories.

7.2.3. Household-Reported Human Papillomavirus (HPV) Vaccine Variables Respondents that said the teen has received a vaccination of any type (IMM_ANY=1) are asked whether they recall the teen getting any HPV vaccinations (HPVI_ANY_REC), and if so, they are asked for the number of HPV vaccinations they recall (HPVI_NUM_REC).

All respondents reporting for teens that reported fewer than three HPV vaccinations in total (from recall), are then asked how likely it is that the teen will receive HPV vaccinations in the next twelve months (variable not included on the public-use file). Those responding "Not too likely", "Not likely at all", or "Not Sure/Don't Know" are asked the reason the teen won't receive HPV vaccinations in the next twelve months. Variables HPVI_REAS_1-HPVI_REAS_3, HPVI_REAS_5-HPVI_REAS_6, and HPVI_REAS_9-HPVI_REAS_29 store the answers to this choose-all-that-apply question and reflect the coding of open-ended responses into the reason categories existing on the questionnaire as well as into newly-created reason categories.

All respondents reporting that the teen has received a vaccination of any type (IMM_ANY=1), regardless of whether they reported the teen has received an HPV vaccination, are then asked whether a doctor or other health care professional has ever recommended that the teen receive HPV vaccinations (HPVI_RECOM). HPVI_INTENTR indicates the likelihood that the teen will receive an HPV vaccination in the next 12 months, among those reported to have received 0 doses of HPV vaccine.

7.2.4. Household-Reported Health Variables

All respondents are asked whether the selected teen has ever had the chicken pox (CPOX_HAD) and, if so, they are asked the age of the teen in years at the time when the teen had the chicken pox (CPOX_AGE). Those unable to give an exact age are asked to report an age range (CPOX_AGER).

All respondents are then asked the age of the teen at the time of his or her last check-up (**CKUP_AGE**). If the teen's age at the last check-up was 13 years or more, the respondent is asked whether the teen had an 11-12 year old well-child exam (**CKUP_11_12**); if the respondent is unable or unwilling to answer

this question he or she is asked whether or not the teen's last check-up was more than, exactly, or less than [age of teen - 12] years ago (CKUP LAST).

All respondents are asked the number of times the teen has seen a health care professional in the last 12 months (VISITS); whether the teen has been told by a health professional that he or she has asthma (ASTHMA); whether the teen has ever been told by a health professional that he or she has a lung condition other than asthma, a heart condition, diabetes, a kidney condition, sickle cell anemia or other anemia, or a weakened immune system caused by a chronic illness or by medicines taken for a chronic illness (RISK_EVER); whether the teen currently has any of these conditions (RISK_NOW); and whether any other members of the teen's household currently have any of these conditions (RISK_HH).

Finally, the respondent is asked the number of times in the past 12 months the teen has missed school due to illness or injury (NOSCHOOLR).

7.3. Section 3: Demographic, Socio-Economic, and Other Household/Teen Information

Section 3 of the NIS-Teen public-use data file consists of information collected during the household screening interview and the demographic information collected in Section C of the household main interview. To protect confidentiality, many of these variables have been collapsed, top-coded, or bottom-coded from the original, fully-detailed versions; the variable labels (see the public-use date file codebook) indicate which variables have been collapsed or recoded.

AGE is the age of the selected teen in years based on the teen's best date of birth and the screener completion date, and **SEX** gives the gender of the selected teen, with missing values imputed. The language in which the interview was conducted is stored in variable **LANGUAGE**, and **C5R** gives the relationship of the respondent to the selected teen.

C1R and CHILDNM give the number of people and children, respectively, in the household.

The teen's Hispanic origin indicator, race with three categories, and race/ethnicity with four categories are presented in variables **I_HISP_K**, **RACE_K**, and **RACEETHK**, respectively; for each of these variables, missing values have been imputed. **EDUC_TR** gives the teen's grade in school at the time of the interview.

The age, education level, and marital status of the mother of the selected teen are stored in variables **AGEGRP M I, EDUC1**, and **MARITAL2** (married vs. not married), with missing values imputed.

The categorized total combined income for the teen's family is given by **INCQ298A**; **INCPOV1** gives the family's poverty status (at or above poverty, income > \$75,000; at or above poverty, income <= \$75,000; below poverty; unknown), and **INCPORAR** gives the ratio of the family's income to the poverty level. Household tenure is given by **RENT OWN**.

The number of landline telephone numbers in the household, the number of working cell phones household members have available for personal use, and the number of these cell phones that are usually used by parents or guardians are given by NUM_PHONE, NUM_CELLS_HH, and NUM_CELLS_PARENTS, respectively.

Variable **CEN_REG** gives the census region of the respondent's current residence, and **MOBIL_I** indicates whether the mother's current state of residence is the same as her state of residence at the time of the teen's birth.

7.4. Section 4: Geographic Variables

Variables **ESTIAPT14** and **STATE** give the 2014 estimation area and state of residence, respectively, for each teen. **EST_GRANT** indicates which of the 50 states and 6 local areas that receive federal Section 317 immunization grants (Bexar County, TX; City of Chicago, IL; District of Columbia; City of Houston, TX; New York City; Philadelphia County, PA) the teen resides in.

7.5. Section 5: Number of Providers Identified and Consent Variables

Variable **D7** indicates whether the respondent gave consent to contact the teen's providers. If D7=1, then consent was granted; if D7=2 then consent was explicitly denied; and if D7 is missing, consent was not granted because the respondent broke off the interview before being explicitly asked for consent.

Variable **D6R** gives the number of providers identified by the respondent. Note that sometimes respondents report erroneous provider counts and sometimes report the same provider more than one time, and D6R does not reflect the cleaning or de-duplication of the initially-reported provider count. Variable **NUM_PROVR** gives the number of providers identified for teens with consent to contact the providers and reflects the cleaning and de-duplication of the initially-reported provider count. For teens without consent, NUM_PROVR is set to 0.

7.6. Section 6: Number of Responding Providers Variables

Variable **N_PRVR** indicates the number of providers returning IHQs with vaccination information for the teen. That is, N_PRVR is the number of IHQs that were returned for the teen that contain information on the IHQ shot grid.

7.7. Section 7: Characteristics of Providers Variables

This section summarizes the information collected in IHQ questions 5c, 6, and 7 across the teen's providers who returned IHQs containing vaccination (i.e., shot grid) data.

FACILITY indicates the facility type of the teen's vaccination providers based on responses to IHQ question 5c. If all of the teen's providers that returned IHQs containing shot grid data (see Section 6 variable N_PRVR) reported their facility type to be:

• a public health department-operated clinic, community health center, rural health clinic, migrant health center, Indian Health Service-operated center, tribal health facility, or urban Indian health care facility, then FACILITY=1 (all public facilities);

- a hospital-based clinic, then FACILITY=2 (all hospital facilities);
- a private practice, then FACILITY=3 (all private facilities);
- a military health care facility, WIC clinic, school-based health center, pharmacy, or other type of facility, then FACILITY=4 (all military/WIC/school/pharmacy or other facilities).

If the responses of providers that returned IHQs containing shot grid data fell into more than one of the above bulleted categories, FACILITY=5 (mixed); otherwise, if at least one of the teen's providers returned an IHQ containing shot grid data, FACILITY=6 (unknown). If none of the teen's providers returned an IHQ containing shot grid data, FACILITY is set to missing.

The Vaccines For Children (VFC) program is a federally-funded program that provides vaccines at no cost to children who might not otherwise be vaccinated because of inability to pay. CDC buys vaccines at a discount and distributes them to grantees—i.e., state health departments and certain local and territorial public health agencies—which in turn distribute them at no charge to those private physicians' offices and public health clinics registered as VFC providers. VFC ORDER, based on responses to IHQ question 6, indicates whether the teen's vaccination providers order vaccines from a state or local health department to administer to children. If all of the teen's providers that returned IHQs containing shot grid data (see Section 6 variable N PRVR) reported that they order vaccines from a state or local health department to administer to children, then VFC ORDER=1 (all providers); if at least one of the teen's providers that returned an IHQ containing shot grid data reported that the practice orders vaccines from a state or local health department to administer to children and the teen's other providers that returned IHQs containing shot grid data reported either that they did not order such vaccines or that they did not know whether or not they did, then VFC ORDER=2 (some but possibly or definitely not all providers); if all of the teen's providers that returned IHQs containing shot grid data reported that they do not order vaccines from a state or local health department to administer to children, then VFC ORDER=3 (no providers); if none of the conditions for VFC ORDER=1, 2, or 3 was met but at least one of the teen's providers returned an

IHQ containing shot grid data, VFC_ORDER=4 (unknown). If none of the teen's providers returned an IHQ containing shot grid data, VFC_ORDER is set to missing. Note that having a provider that orders VFC vaccine does not imply that the child is VFC-entitled; providers enrolled in the VFC program could also vaccinate privately-insured children.

REGISTRY is based on responses to IHQ question 7 and indicates whether the teen's vaccination providers reported the teen's vaccinations to a community or state registry (also known as Immunization Information Systems, or IIS). If all of the teen's providers that returned IHQs containing shot grid data (see Section 6 variable N_PRVR) indicated that they reported to a registry, then REGISTRY=1 (all providers); if at least one of the teen's providers that returned an IHQ containing shot grid data indicated that the practice reported to a registry and the teen's other providers that returned IHQs containing shot grid data indicated that they did not report to a registry, that they did not know whether or not they reported to a registry, or that the question is not applicable, then REGISTRY=2 (some but possibly or definitely not all providers); if all of the teen's providers that returned IHQs containing shot grid data indicated that they did not report to a registry or that the question is not applicable, then REGISTRY=3 (no providers); if none of the conditions for REGISTRY=1, 2, or 3 was met but at least one of the teen's providers returned an IHQ containing shot grid data, REGISTRY=4 (unknown). If none of the teen's providers returned an IHQ containing shot grid data, REGISTRY is set to missing.

7.8. Section 8: Provider-Reported Up-To-Date Vaccination Variables

This section contains vaccination count and up-to-date variables based on the teen's synthesized provider-reported vaccination history. To facilitate data processing and to accommodate the large and continually growing number of vaccination types covered by the NIS-Teen, the provider-reported vaccination data are organized around the concept of vaccine categories and vaccine types within vaccine category. The vaccine categories correspond to the sections of the IHQ shot grid, and the vaccine types correspond to the type boxes on the IHQ shot grid. For each vaccine category, an "unknown" vaccine type is created for vaccinations that are reported without a type box being checked. Also, a few vaccine types, such as

Measles/Mumps, arise through the backcoding of shots initially reported in the "other" section of the IHQ shot grid. Table 4 shows the vaccine categories and types for the 2014 NIS-Teen. Note that a single vaccination can fall into more than one vaccine category; for example, an MMR-Varicella vaccination is part of both the Measles-containing and Varicella-containing vaccine categories.

For each vaccine category, Section 8 of the public-use data file contains a variable named **P_NUMYYY** — where "YYY" is the vaccine category abbreviation given in Table 4 — that stores the number of vaccinations in that vaccine category in the teen's synthesized provider-reported vaccination history. For each vaccine category and type combination, Section 8 also contains a variable named **P_NUMYYY_TT** — where "YYY" is the vaccine category abbreviation and "TT" is the vaccine type code given in Table 4 — that stores the number of vaccinations in that vaccine category of that vaccine type in the teen's synthesized provider-reported vaccination history.

For each P_NUMYYY and P_NUMYYY_TT variable described above, there are corresponding variables of the form **P_N13YYY** and **P_N13YYY_TT** that count only vaccinations that the teen received prior to age 13 years.

This section of the public-use data file also contains up-to-date indicators for a variety of recommended vaccines and vaccine series. These variables' names begin with "P_UTD"; the variable labels indicate what is needed to be considered up-to-date for each variable, and the "Notes" field in the codebook shows the vaccine type codes (see Table 4) being included when determining whether the teen is up-to-date. For each "P_UTD" variable there is a corresponding variable whose name begins with "P_U13" that indicates whether the teen was up-to-date for the particular vaccine or vaccine series by age 13 years.

Note that it is possible that the administration of the NIS-Teen interview itself prompts some respondents to vaccinate their teens following the interview; to ensure that the vaccination rate estimates aren't artificially boosted because of this, the "P NUM", "P N13", "P UTD", and "P U13" variables in this

section of the public-use data file count only vaccinations received before the date the household interview was completed.

This section also contains some additional UTD variables specific to human papillomavirus (HPV) vaccines. P_UTDHPV11, P_UTDHPV12, and P_UTDHPV13 are conditional up-to-date indicators showing whether a teen has received exactly 1, exactly 2, or 3 or more HPV vaccinations, given that the teen has received at least one. Teens that have received no HPV vaccinations will have missing values for these variables. P_UTDHPV3C is the conditional HPV vaccination series completion indicator. It indicates, among teens that have received at least one HPV vaccination, whether the teen completed the recommended series of three doses. This variable is limited to teens with at least one HPV vaccination where the interview completion date follows the date of the first HPV vaccination by at least 24 weeks, as 24 weeks is the minimum amount of time required to complete the HPV vaccine series.

Finally, this section of the public-use data file contains variable **VRC_HIST**, which indicates whether the household respondent or any of the providers reported that the teen has had a history of chicken pox disease.

Table 4: Vaccine Categories and Vaccine Types, National Immunization Survey - Teen, 2014

Vaccine Category Abbreviation	Vaccine Category Description	Vaccine Type Code	Vaccine Type Description
TDP	Td/Tdap-containing, given after age 6 years	11	Td
TDP	Td/Tdap-containing, given after age 6 years	14	Tdap
TDP	Td/Tdap-containing, given after age 6 years	15	Td/Tdap-containing, unknown type
HEPB	Hepatitis B-containing	61	0.5 ml Recombivax
HEPB	Hepatitis B-containing	62	1.0 ml Recombivax
HEPB	Hepatitis B-containing	63	Engerix
HEPB	Hepatitis B-containing	64	Hepatitis B-only, unknown type
HEPB	Hepatitis B-containing	43	HepB-Hib
HEPB	Hepatitis B-containing	НВ	Hepatitis B-containing, unknown type
FLU	Seasonal influenza-containing	FZ	Fluzone
FLU	Seasonal influenza-containing	FV	Fluvirin
FLU	Seasonal influenza-containing	FN	Injected influenza, other/unknown type
FLU	Seasonal influenza-containing	FM	Flumist
FLU	Seasonal influenza-containing	FL	Influenza-containing, unknown type
MCV	Measles-containing	30	MMR-only
MCV	Measles-containing	31	Measles-only
MCV	Measles-containing	32	Measles-Mumps (through backcoding)
MCV	Measles-containing	33	Measles-Rubella (through backcoding)
MCV	Measles-containing	VM	MMR-Varicella
MCV	Measles-containing	MM	Measles-containing, unknown type
VRC	Varicella-containing	VO	Varicella-only
VRC	Varicella-containing	VM	MMR-Varicella
VRC	Varicella-containing	VA	Varicella-containing, unknown type
HEPA	Hepatitis A-containing	НО	HepA-only (Havrix or Vaqta)
HEPA	Hepatitis A-containing	НА	HepA-containing, unknown type
PPS	Pneumococcal Polysaccharide	-	-
MEN	Meningococcal-containing	80	MCV4 (Menactra or Menveo)
MEN	Meningococcal-containing	81	MPSV4 (Menomune)
MEN	Meningococcal-containing	82	Meningococcal-containing, unknown type
HPV	Human Papillomavirus	CV	Cervarix
HPV	Human Papillomavirus	GD	Gardasil
HPV	Human Papillomavirus	HP	HPV, unknown type

7.9. Section 9: Provider-Reported Age-At-Vaccination Variables

This section contains variables storing the teen's age in years, months, and days at each vaccination in the synthesized provider-reported vaccination history, along with the vaccine types of those vaccinations.

For each vaccine category, variables YYY_AGE1 - YYY_AGE9 store the age in years of the teen when the vaccination was administered for up to nine vaccinations in the teen's synthesized provider-reported vaccination history, where "YYY" is the vaccine category abbreviation given in Table 4. Variables YYY_MAGE1 - YYY_MAGE9 store the age in months of the teen when each vaccination was administered. Variables YYY_DAGE1 - YYY_DAGE9 store the age in days of the teen when each vaccination was administered. For vaccine categories that contain multiple vaccine types, variables XYYYTY1 - XYYYTY9 give the corresponding vaccine type code (see Table 4).

For synthesized provider-reported seasonal influenza vaccinations, in addition to FLU_AGE1 FLU_AGE9 which give the age of the teen in years at the time of the vaccinations, variables
FLU_MONTH1 - FLU_MONTH9 and FLU_YEAR1 - FLU_YEAR9 give the month and year for each vaccination, allowing users to assign a teen's seasonal influenza vaccinations to a particular flu season.

Unlike the vaccination count and up-to-date variables in Section 8 of the public-use data file, the variables in Section 9 include vaccinations given both before and after the household interview was completed. If desired, users can limit the Section 9 variables to only those before the household interview date by examining the corresponding Section 8 "P_NUM" variable and limiting the analysis of the Section 9 variables to only the first *n* variables, where *n* is equal to the number of vaccinations in the vaccine category before the household interview date as indicated by the corresponding "P NUM" variable.

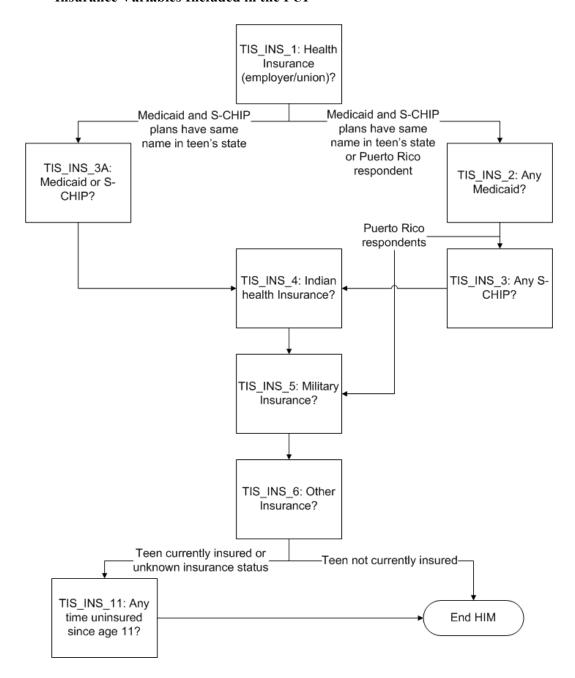
Users of the NIS-Teen public-use data file should be aware that the age-at-vaccination variables included in Section 9 may contain a small number of vaccination ages that are implausible according to the recommended immunization schedules (http://www.cdc.gov/vaccines/schedules/hcp/child-adolescent.html). Such ages may arise if a medical provider inadvertently records an erroneous

vaccination date or if a vaccination date is incorrectly transcribed onto an IHQ. The quality control procedures of the NIS-Teen address implausible ages to every extent possible. Suspicious dates are manually reviewed and corrected if there is evidence either from the household interview or from another provider that the date is incorrect. In rare cases, however, when there is no further information with which to correct the reported vaccination date, the vaccination is treated as having actually occurred and the implausible age at vaccination persists on the data file. The data user should consider these issues in deciding how to analyze the NIS-Teen data.

7.10. Section 10: Health Insurance Module Variables

The Health Insurance Module (HIM) (Section E) gathers information on the health insurance coverage of the selected teen. Seven variables containing HIM data are included in the NIS-Teen public-use data file:

- TIS_INS_1: "Is the teen covered by health insurance provided through employer or union?";
- TIS_INS_2: "Is the teen covered by any MEDICAID plan?";
- TIS_INS_3: "Is the teen covered by S-CHIP?";
- TIS INS 3A: "Is the teen covered by any MEDICAID plan or S-CHIP?";
- TIS_INS_4_5: "Is the teen covered by Indian Health Service, Military Health Care, TRICARE, CHAMPUS, or CHAMP-VA?";
- TIS_INS_6: "Is the teen covered by any other health insurance or health care plan?"; and
- TIS_INS_11: "Since age 11, was there any time when the teen was not covered by health insurance?"


Note that TIS_INS_4_5 combines the responses at questions TIS_INS_4 and TIS_INS_5. Each variable has "Yes", "No", "Don't Know", and "Refused" as response options. Also, users will encounter blanks or missing values in each variable. There are several reasons for the missingness. First, in order to reach the HIM section, the respondent must first finish Section D. Since the NIS-Teen public-use data file contains records for all respondents completing the demographics section, and because some of these

demographics section respondents did not complete Section D, some records are for respondents who did not reach the HIM. Second, there is a possibility that the respondent began the HIM but broke off the interview before finishing. Finally, there are skip patterns in the module. That is, depending on the respondent's answers to previous questions, certain questions may be skipped. Figure 1 illustrates the flow of the eight questions used to create the seven HIM variables included in the NIS-Teen public-use data file.

The first question (TIS_INS_1) was asked of all respondents who reached the HIM. If the name of the Medicaid and S-CHIP programs were the same in the teen's state, the respondent skipped to TIS_INS_3A; if the names of the Medicaid and S-CHIP programs were different in the teen's state, the respondent was instead asked questions TIS_INS_2 and TIS_INS_3. Questions TIS_INS_4, TIS_INS_5, and TIS_INS_6 were asked of all HIM respondents, with the exception of Puerto Rico respondents, who were not asked about Indian Health Insurance at TIS_INS_4. Based on the respondent's answers to previous HIM questions (some of which are not included in the public-use file), if it was determined that the teen currently had health insurance or if the teen's insurance status was unknown, the respondent was asked if the teen was ever uninsured at question TIS_INS_11.

Prior to the 2012 TLAF, the variable VFC_I indicated VFC-eligibility. The variable VFC_I was dropped from the PUF beginning 2012 due to changes to Page 1 of the NIS-Teen IHQ. Entitlement to the Vaccines for Children (VFC) program is determined by a number of factors. A teen is entitled if 1) the teen is covered by Medicaid, 2) the teen is uninsured, 3) the teen is of American Indian or Alaska Native race, or 4) the teen is underinsured and has received vaccinations from a Federally Qualified Health Center (FQHC). The first three criteria were unaffected by the change to Page 1 of the IHQ. For the fourth criterion, the approach for ascertaining if a provider was a FQHC was changed on the IHQ in 2012. While CDC evaluates the accuracy of the provider-reported FQHC status, the VFC_I variable remains dropped from the PUF. Medicaid and uninsured components of VFC entitlement can be analyzed using other health insurance module variables.

Figure 1: Question Flow for the Eight Health Insurance Questions Used to Create the Health Insurance Variables Included in the PUF

8. Analytic and Reporting Guidelines

Data from the NIS-Teen public-use data file can be used to produce national, state, and estimationarea estimates of vaccination coverage rates using the PROVWT_D weight to obtain dual-frame estimates (PROVWT_D_TERR if Puerto Rico is to be included).

Information in the data file can also be used to calculate standard errors of the estimated vaccination coverage rates that reflect the complex sample design of the NIS-Teen. The file includes estimation area and state identifiers (ESTIAPT14 and STATE) as well as a stratum identifier, STRATUM. The sample is stratified by a combination of the sample frame (landline, cell-phone) and the 58 estimation areas.

Demographic and socioeconomic variables in the file can be used to obtain national vaccination coverage rates for sub-groups of the population. Data users should, however, be aware that estimates for such sub-groups at the state or estimation area level will generally have large standard errors because of small sample sizes. The NCHS standard for precision of sub-group estimates is that the ratio of the standard error to the estimate should be less than or equal to 0.3, and each analytic cell should contain at least 30 respondents.

8.1. Use of NIS Sampling Weights

The 2014 NIS-Teen public-use data file contains two teen-level sets of weights. The RDDWT_D variable gives the household-phase weight for all teens in the United States excluding Puerto Rico (RDDWT_D_TERR if Puerto Rico is to be included). These weights should be used to form estimates from teens with completed household interviews. The weights reflect the stratified sample design and also have been adjusted for unit non-response, for the selection of one teen per household, for the number of telephone lines in the household, for combining the landline and cell-phone samples, for post-stratification to population control totals, and for the exclusion of non-telephone teens. The weight variables PROVWT D/PROVWT D TERR apply to teens with adequate provider data. These

weights should be used to form estimates of vaccination coverage using variables from Sections 7, 8, and 9 of the public-use data file (see Section 7 of this user's guide). Table 5 presents a summary of the appropriate weights and stratum variables to use for various types of analyses.

Table 5: Summary of Weights and Stratum Variables, NIS-Teen PUF, 2014

Weight Variable	Population*	Sample Frame	Strata	Stratum Variable
RDDWT_D	United States including Puerto Rico	Dual Frame (Landline/Cell)	Sample Frame by Estimation Area	STRATUM
RDDWT_D_TERR	United States excluding Puerto Rico	Dual Frame (Landline/Cell)	Sample Frame by Estimation Area	STRATUM
PROVWT_D	United States including Puerto Rico, teens with adequate provider data	Dual Frame (Landline/Cell)	Sample Frame by Estimation Area	STRATUM
PROVWT_D_TERR	United States excluding Puerto Rico, teens with adequate provider data	Dual Frame (Landline/Cell)	Sample Frame by Estimation Area	STRATUM

^{*} Each weight will contain a missing value for all records that are not included in the population covered by the weight.

The NIS-Teen public-use data file does not contain any provider-level weights. The NIS-Teen does not sample providers directly; rather, they are included in the survey through the teens they vaccinate. A user of the file should not attempt provider-level analyses (e.g., estimate the percentage of providers in the U.S. that are private providers), because the NIS-Teen sample was not designed for that purpose.

8.2. Estimation and Analysis

8.2.1. Estimating Vaccination Coverage Rates

Vaccination coverage rates are ratio estimators, as described in the statistical literature on methods for complex sample surveys. Because of the adjustment to the sampling weights for provider-phase non-response, statistical analyses require only data from teens with adequate provider data (**PDAT2 = 1**), along with their final provider sampling weights (**PROVWT_D/PROVWT_D_TERR**). To summarize the statistical methodology by which vaccination coverage rates and their standard errors are obtained

from these data, let Y_{hi} be an indicator, for the *i*th teen with adequate provider data in the *h*th stratum of the NIS-Teen sampling design, equal to 1 if the teen is up-to-date according to the provider data and 0 otherwise. Also, let W_{hi} denote the value of **PROVWT_D/PROVWT_D_TERR** for this teen. Then,

letting
$$\hat{Y}_h = \sum_{i=1}^{n_h} W_{hi} Y_{hi}$$
 and $\hat{T}_h = \sum_{i=1}^{n_h} W_{hi}$,

the national estimator of the vaccination coverage rate may be expressed as

$$\hat{\theta} = \frac{\sum_{h=1}^{L} \hat{Y}_h}{\sum_{h=1}^{L} \hat{T}_h}$$

where L denotes the number of strata, and n_h denotes the number of sampled teens with adequate provider data in the hth stratum.

Letting *L* instead denote the number of strata in a state, the above formula can also be used to calculate vaccination coverage rates for states (regardless of whether the state contains only one or more than one stratum).

8.2.2. Estimating Standard Errors of Vaccination Coverage Rates

The Taylor series method can be used to estimate the sampling variance of vaccination coverage rates for

the U.S., the states, and estimation areas. Letting
$$Z_{hi} = \frac{W_{hi}(Y_{hi} - \hat{\theta})}{\sum_{h=1}^{L} \hat{T}_{h}} \quad \text{and} \quad \overline{Z}_{h} = \frac{\sum_{i=1}^{n_{h}} Z_{hi}}{n_{h}}$$

yields an estimator of the variance of the estimated vaccination coverage rate, $\hat{m{ heta}}$, equal to

$$v(\hat{\theta}) = \sum_{h=1}^{L} \frac{n_h}{n_h - 1} \sum_{i=1}^{n_h} (Z_{hi} - \overline{Z}_h)^2$$

The standard error is the square root of the variance. The estimation of standard errors for estimates of vaccination coverage rates in the NIS-Teen can be implemented in specialized statistical software such as SUDAAN (Research Triangle Institute 2008), SAS (SAS Institute Inc. 2009), R (Lumley 2010), and Stata (Stata Corporation 2009). Appendix C gives several examples of the use of SAS, R, and SUDAAN to estimate vaccination coverage rates and their standard errors for estimation areas and states. For all procedures, the option of with-replacement sampling of primary sampling units within stratum is used, because the sampling fractions for households within an estimation area are all quite small. For all estimates, the variable STRATUM is used as the stratum variable and the household/teen identifier (SEQNUMT) is used as the primary sampling unit identifier. The data file should be sorted first on STRATUM and then on SEQNUMT within STRATUM before running the programs for SUDAAN and SAS.

8.3. Combining Multiple Years of NIS-Teen Data

8.3.1. Estimation of Multi-Year Means

With release of the 2014 NIS-Teen public-use data file, seven years of NIS-Teen data are now available. The precision of estimates of vaccination coverage for sub-domains (e.g., by race/ethnicity of teen) within estimation areas or states can be improved by combining multiple years of NIS-Teen data. Data users should, however, be aware that estimates from combined years of NIS-Teen data represent an average over multiple years. Although combining multiple years of NIS-Teen data will yield a larger sample size for estimation areas and states, the composition of the population in a geographic area may change over time, making interpretation of the results difficult. Furthermore, if vaccination administration schedules or vaccination coverage changes over time, the estimate of vaccination coverage for the combined time period applies to a hypothetical population that existed at the middle of the time period, making interpretation of the results even more difficult. Given the use of independent RDD samples in the NIS-Teen, it is also possible that a teen could appear in more than one public-use data file. Finally, given the change to the definition of adequate provider data in 2014 and its effect on NIS-Teen vaccination

coverage rate estimates as described in the introduction, users should exercise caution when interpreting results from a combination of years prior to 2014 with years 2014 and later.

To estimate a multi-year mean for a given NIS-Teen variable, the weights in each participating file (RDD-phase weights RDDWT in 2008-2011 and RDDWT_D in 2012-2014; and provider-phase weights PROVWT in 2008-2011 and PROVWT_D in 2012-2014) should be divided by the number of years being combined. For example, if data for 2011, 2012, and 2013 for teens with adequate provider data are to be combined, then the weights in the three files – PROVWT in 2011 and PROVWT_D in 2012-2013 – should be divided by 3 to obtain revised weights, which should be saved as a new variable, say NEWWT. It is necessary to use NEWWT in the analysis to obtain correct weighted estimates for teens aged 13 to 17 years. Furthermore, the teen ID numbers (SEQNUMT) in the files are unique only within a year, not across years. It is important for the user to create revised, unique ID numbers when combining data from multiple years.

The following SAS code can be used:

YRSEQT = 1 * (YEAR || SEQNUMT);

YEAR is the 4-digit year variable for the NIS-Teen data year (e.g., 2013).

To produce valid estimates of sampling variability and valid confidence intervals for multi-year coverage rates and other multi-year means, it is necessary to use specialized software such as SAS or SUDAAN.

There is an important complication for variance estimation when combining multiple years, because some estimation areas are removed and other new areas are added each year (see Section 2 above for more information about rotating estimation areas). The variance strata for 2011-2014 are defined by the variables STRATUM_D (for 2011), and STRATUM (for 2012-2014), with STRATUM_D and STRATUM being a combination of the estimation area variable for that year and the sampling frame (landline or cell-phone). The estimation area variables ESTIAPT11, ESTIAPT12, ESTIAPT13, and

ESTIAPT14 define mutually exclusive and exhaustive geographic areas. However, they are not exactly the same areas. For example, **Dallas County**, **TX**, **was a separate estimation area in 2011 but not in 2012-2014. El Paso County**, **TX**, **was a separate estimation area in 2011 and 2014, but not in 2012 or 2013. Other areas, such as New York City and Rest of New York, are estimation areas in all years.**

To make inferences concerning multi-year means, the user must take two actions. First, he/she must define and save a new stratum variable with a common name for all years included in the analysis.

Second, he/she must define a common set of estimation domains that can be supported by each of the files included in the multi-year analysis. To take these actions, the user should follow the following seven-step procedure (or its equivalent):

- i. Compute and save the new, common variance-stratum variable for each year participating in the analysis. The variable should be defined by the equation
 - STRATUMV = STRATUM D, for teens in the 2011 public-use data file
 - = STRATUM , for teens in the 2012, 2013, and 2014 public-use data file
- ii. Compute and save the new, common weight variable, NEWWT, as instructed above for each year participating in the analysis.
- iii. Compute and save the new, unique teen identification numbers, YRSEQT, as instructed above for each year participating in the analysis.
- iv. Compute and save a variable defining the common estimation domains to be studied for each year participating in the analysis. For example, one could use the CDIAP (Common Denominator Estimation Area) variable set forth in Table 6 or states as geographic domains.
- v. Merge the multiple files into one consolidated file in a format compatible with the specialized software to be used.
- vi. Sort the consolidated file by YEAR, STRATUMV, and YRSEQT.

vii. Run the specialized software on the consolidated file, computing estimates, variance estimates, and confidence intervals. For SUDAAN users, sampling levels or stages may be specified by the statement

NEST YEAR STRATUMV YRSEQT / PSULEV = 3;

the specification of weights by

WEIGHT NEWWT;

and the specification of estimation domains, for example, by the two statements

CLASS YEAR CDIAP STATE; TABLES CDIAP;

or

CLASS YEAR CDIAP STATE; TABLES STATE;

8.3.2. Estimation of Multi-Year Contrasts

Considerations similar to those for multi-year means arise in the estimation of contrasts between NIS-Teen years. For example, a typical contrast of interest would be the difference between the vaccination coverage parameters in 2013 and in 2014. As when combining multiple years of NIS-Teen data to estimate multi-year means, users should exercise caution when combining multiple years of data to estimate multi-year contrasts. The composition of the population in a geographic area may change over time, and it is possible that a teen could appear in more than one public-use data file. Furthermore, given the change in the definition of adequate provider data in 2014 as described in the introduction, users should be aware that 2014 NIS-Teen vaccination coverage estimates using the revised definition and those for prior to 2014, which used the previous adequate provider data definition, are not directly comparable.

To make inferences concerning a multi-year contrast, the user will need to work with the original weights reported on the files and store them in a common variable. One must not divide the original weights by

the number of years included in the contrast. For the example, one may define the new, common weight variable as

```
NEWWT2 = PROVWT , if the teen is in the 2011 PUF
```

= PROVWT_D , if the teen is in the 2012, 2013, or 2014 PUF.

The user should follow the seven-step procedure set forth in the section on multi-year means, using NEWWT2 in lieu of NEWWT. In SUDAAN, the user should also specify the contrast of interest through use of a CONTRAST statement or an appropriate regression model. For example, to compare the measles-containing vaccine up-to-date estimate from 2013 to the 2014 estimate, SUDAAN users can use the following WEIGHT, VAR, and CONTRAST statements:

WEIGHT NEWWT2; VAR P_UTDMCV; CONTRAST YEAR = (-1 1);

Table 6: Cross-Walk Between ESTIAPT08-ESTIAPT14 and Common Denominator Estimation Area (CDIAP), National Immunization Survey - Teen, 2014

CDIAP	Area Name	ESTIAPT08 (2008)	ESTIAPT09 (2009)	ESTIAPT10 (2010)	ESTIAPT11 (2011)	ESTIAPT12 (2012)	ESTIAPT13 (2013)	ESTIAPT14 (2014)
20	Alabama	20	20	20	20	20	20	20
74	Alaska	74	74	74	74	74	74	74
66	Arizona	66	66	66	66	66	66	66
46	Arkansas	46	46	46	46	46	46	46
	California							
68	CA-Los Angeles County	68	69	68	68	68	68	68
68	CA-Rest of State	68	68	68	68	68	68	68
60	Colorado	60	60	60	60	60	60	60
1	Connecticut	1	1	1	1	1	1	1
13	Delaware	13	13	13	13	13	13	13
12	District of Columbia	12	12	12	12	12	12	12
22	Florida	22	22	22	22	22	22	22
25	Georgia	25	25	25	25	25	25	25
72	Hawaii	72	72	72	72	72	72	72
75	Idaho	75	75	75	75	75	75	75
	Illinois							
35	IL-City of Chicago	35	35	35	35	35	35	35
34	IL-Rest of State	34	34	34	34	34	34	34
	Indiana							
36	IN-Lake County	36	96	36	36	36	36	36
36	IN-Marion County	36	37	36	36	36	36	36
36	IN-Rest of State	36	36	36	36	36	36	36
56	Iowa	56	56	56	56	56	56	56
57	Kansas	57	57	57	57	57	57	57
27	Kentucky	27	27	27	27	27	27	27
47	Louisiana	47	47	47	47	47	47	47
4	Maine	4	4	4	4	4	4	4
14	Maryland	14	14	14	14	14	14	14
2	Massachusetts	2	2	2	2	2	2	2
38	Michigan	38	38	38	38	38	38	38
40	Minnesota	40	40	40	40	40	40	40
28	Mississippi	28	28	28	28	28	28	28
58	Missouri	58	58	58	58	58	58	58
61	Montana	61	61	61	61	61	61	61
59	Nebraska	59	59	59	59	59	59	59
73	Nevada	73	73	73	73	73	73	73
5	New Hampshire	5	5	5	5	5	5	5
8	New Jersey	8	8	8	8	8	8	8
49	New Mexico	49	49	49	49	49	49	49

CDIAP	Area Name	ESTIAPT08 (2008)	ESTIAPT09 (2009)	ESTIAPT10 (2010)	ESTIAPT11 (2011)	ESTIAPT12 (2012)	ESTIAPT13 (2013)	ESTIAPT14 (2014)
	New York	· · · · ·	· · · · · · · · · · · · · · · · · · ·					
11	NY-City of New York	11	11	11	11	11	11	11
10	NY-Rest of State	10	10	10	10	10	10	10
29	North Carolina	29	29	29	29	29	29	29
62	North Dakota	62	62	62	62	62	62	62
41	Ohio	41	41	41	41	41	41	41
50	Oklahoma	50	50	50	50	50	50	50
76	Oregon	76	76	76	76	76	76	76
	Pennsylvania							
17	PA-Philadelphia County	17	17	17	17	17	17	17
16	PA-Rest of State	16	16	16	16	16	16	16
6	Rhode Island	6	6	6	6	6	6	6
30	South Carolina	30	30	30	30	30	30	30
63	South Dakota	63	63	63	63	63	63	63
31	Tennessee	31	31	31	31	31	31	31
	Texas							
55	TX-Bexar County	55	55	55	55	55	55	55
54	TX-City of Houston	54	54	54	54	54	54	54
51	TX-Dallas County	51	52	52	52	51	51	51
51	TX-El Paso County	51	53	53	53	51	51	53
51	TX-Rest of State	51	51	51	51	51	51	51
64	Utah	64	64	64	64	64	64	64
7	Vermont	7	7	7	7	7	7	7
18	Virginia	18	18	18	18	18	18	18
77	Washington	77	77	77	77	77	77	77
19	West Virginia	19	19	19	19	19	19	19
44	Wisconsin	44	44	44	44	44	44	44
65	Wyoming	65	65	65	65	65	65	65
-	U.S. Virgin Islands	-	95	95	95	95	95	-
-	Guam	-	-	-	-	-	105	-
-	Puerto Rico	-	-	-	-	_	-	106

9. Summary Tables

Appendix E contains seven tables. Appendix Table E.1 lists the 58 estimation areas for the 2014 NIS-Teen by state. At the national level and for each state and estimation area, it provides the estimated population total of teens 13 to 17 years of age in 2014 and (from 2014 NIS-Teen data collection) the number of teens with completed household interviews and number of teens with adequate provider data.

Appendix Tables E.2 through E.5 summarize pairs of variables: age of teen by maternal education (Appendix Table E.2), age of teen by family poverty status (Appendix Table E.3), race/ethnicity of teen by family poverty status (Appendix Table E.4), age of teen by race/ethnicity of teen (Appendix Table E.5), and age of teen by gender of teen (Appendix Table E.6). Each of these tables gives the unweighted and weighted counts of teens for whom the household interview was completed and the unweighted and weighted counts of teens with adequate provider data.

Appendix Table E.7 presents estimates of vaccination coverage and 95-percent confidence intervals obtained from SAS. The data user should obtain the same estimates from the 2014 NIS-Teen public-use data file.

Appendix F shows the vaccine type codes used in the 2014 NIS-Teen public-use data file.

Appendix G contains three tables and three time-series charts. Table G.1 and Figure G.1 show key components of the NIS-Teen landline sample response rates and the overall CASRO response rates by year of the survey. Table G.2 and Figure G.2 show key components of the NIS-Teen cell-phone sample response rates and the overall CASRO response rates. Table G.3 and Figure G.3 show vaccination coverage rate estimates since 2006.

Appendix H presents key response rate components and the overall CASRO response rate by estimation area in the 2014 NIS-Teen landline and cell-phone samples.

10. Limitations

The findings in this report are subject to at least four limitations. First, because NIS-Teen is a telephone survey, results are weighted to be representative of all children aged 19 to 35 months. Although statistical adjustments were made to account for non-response and households without telephones, some bias might remain. Second, underestimates of vaccination coverage might have resulted from the exclusive use of provider-reported vaccination histories because completeness of these records is unknown. Third, although national estimates of vaccination coverage are precise, estimates for state and local areas should be interpreted with caution because their sample sizes are smaller and their confidence intervals generally are wider than those for national estimates. Finally, analysis of trends across data years that span from 2010 and earlier to 2011-2014 are subject to potential bias that may remain after weighting adjustments because of the switch from landline to dual landline and cell-phone frames in 2011. In addition, analysis of trends across data years that span from 2011 to 2014 are subject to potential bias that may remain after weighting adjustments because of the expansions and reductions of the share of the total sample that came from the cell-phone frame across these years and because of the change in the definition of adequate provider data in 2014.

11. Citations for NIS-Teen Data

In publications please acknowledge the original data source. The citation for the 2014 NIS-Teen publicuse data file is:

U.S. Department of Health and Human Services (DHHS). National Center for Health Statistics. The 2014 National Immunization Survey - Teen, Hyattsville, MD: Centers for Disease Control and Prevention, 2014.

Information about the NIS-Teen is located at http://www.cdc.gov/vaccines/imz-managers/nis/about.html

The NIS-Teen public-use data file is located at http://www.cdc.gov/nchs/nis/data files teen.htm

Please place the acronym "NIS-Teen" in the titles, keywords, or abstracts of journal articles and other publications in order to facilitate retrieval of such materials in bibliographic searches.

The following publications use past and current NIS-Teen data:

Attanasio L, McAlpine D. Accuracy of parental reports of children's HPV vaccine status: implications for estimates of disparities, 2009-2010. Public Health Rep 2014;129(3):237-44.

Bednarczyk RA, Curran EA, Orenstein WA, Omer SB. Health Disparities in Human Papillomavirus Vaccine Coverage: Trends Analysis From the National Immunization Survey–Teen, 2008–2011. Clin Infect Dis. 2014 Jan;58(2):238-41.

Bugenske E, Stokley S, Kennedy A, Dorell C. Middle School Vaccination Requirements and Adolescent Vaccination Coverage. *Pediatrics*. 2012. Volume 129, Issue 6, p. 1056-1063.

Burdette A, Jokinen-Gordon H, Hill T. Social Determinates of HPV Vaccination Delay: Results from the National Immunization Survey of Teens. In: American Public Health Association 142nd Annual Meeting and Exposition. New Orleans, LA; 2014.

Cardemil CV, Cullen KA, Harris L, Greby SM, Santibanez TA. Factors Associated With Provider Reporting of Child and Adolescent Vaccination History to Immunization Information Systems: Results From the National Immunization Survey, 2006-2012. J Public Health Manag Pract 2015.

Centers for Disease Control and Prevention. National vaccination coverage among adolescents aged 13-17 years – United States, 2006. *MMWR*. 2007;56:885-8. Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5634a3.htm

Centers for Disease Control and Prevention. Vaccination coverage among adolescents aged 13-17 years-United States, 2007. *MMWR*. 2008:57(40):1100-1103. Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5740a2.htm

Centers for Disease Control and Prevention. National, state, and local area vaccination coverage among adolescents aged 13-17 years - United States, 2008. *MMWR*. 2009;58(36):997-1001. Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5836a2.htm

Centers for Disease Control and Prevention. National, State, and Local Area Vaccination Coverage among Adolescents Aged 13-17 years – United States, 2009. *MMWR*. 2010; 59 (32):1018-1023. Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5932a3.htm

Centers for Disease Control and Prevention. National, State, and Local Area Vaccination Coverage among Adolescents Aged 13-17 years – United States, 2010. *MMWR*. 2011; 60 (33):1117-1123. Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6033a1.htm

Centers for Disease Control and Prevention. National, State, and Local Area Vaccination Coverage among Adolescents Aged 13-17 years – United States, 2011. *MMWR*. 2012; 61 (34):671-677. Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6134a3.htm

Centers for Disease Control and Prevention. Human Papillomavirus Vaccination Coverage Among Adolescent Girls, 2007–2013, and Postlicensure Vaccine Safety Monitoring, 2006–2014 — United States *MMWR*. 2013; 63 (29):620-624. Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6329a3.htm

Centers for Disease Control and Prevention. National and State Vaccination Coverage among Adolescents Aged 13-17 years – United States, 2012. *MMWR*. 2013; 62 (34):685-693. Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6234a1.htm

Curtis CR, Dorell C, Yankey D, Jeyarajah J, Chesson H, Saraiya M, et al. National human papillomavirus vaccination coverage among adolescents aged 13--17 years --- National Immunization Survey -- Teen, United States, 2011. MMWR Surveill Summ 2014;63:61-70.

Darden PM, Thompson DM, Roberts JR, Hale JJ, Pope C, Naifeh M, Jacobson RM. Reasons for not vaccinating adolescents: National Immunization Survey of Teens, 2008-2010. *Pediatrics*. 2013. Volume 131, issue 4, p. 645-51. Responses to article: Dorell C, Stokley S, Yankey D, Jeyarajah J, Parental Intentions for HPV Vaccination of their Daughters, *Pediatrics* published online June 13, 2013; Rohit P, Ojha RP, The importance of considering changes in the eligible population over time when interpreting human papillomavirus vaccination trends, *Pediatrics* published online March 23, 2013

Dorell C, Jain N, Yankey D. Validity of Parent-Reported Vaccination Status for Adolescents Aged 13-17 Years, National Immunization Survey-Teen, 2008. 2011. *Public Health Reports*. Volume 126, Supplement 2, p. 60-69.

Dorell C, Yankey D, Strasser S. Parent-Reported Reasons for Nonreceipt of Recommended Adolescent Vaccinations, National Immunization Survey--Teen, 2009. *Clinical Pediatrics (Philadelphia)*. 2011 Dec;50(12):1116-24.

Dorell C, Stokley S, Yankey D, Markowitz L. Compliance with Recommended Dosing Intervals for HPV Vaccination among Females, 13-17 Years, National Immunization Survey-Teen, 2008-2009. *Vaccine*. 2012. Volume 30, Issue 3, p. 503-505.

Dorell C, Yankey D, Byrd K, Murphy T. Hepatitis A Vaccination Coverage among Adolescents in the United States. *Pediatrics*. 2012. Volume 129, Issue 2, p. 213-221.

Dorell C, Yankey D, Santibanez T, Markowitz L. Human Papillomavirus Vaccination Series Initiation and Completion, 2008-2009. *Pediatrics*. 2012. Volume 128, Issue 5, p. 830-839.

Dorell C, Yankey D, Strasser. Parent-reported Reasons for Nonreceipt of Recommended Adolescent Vaccinations, National Immunization Survey-Teen, 2009. *Clinical Pediatrics*. 2012. Volume 50, Issue 12, p. 1116-1124.

Dorell C, Yankey D, Kennedy A, Stokley S. Factors that influence parental vaccination decisions for adolescents, 13 to 17 years old: National Immunization Survey-Teen, 2010. *Clin Pediatr (Phila)*. 2013. Volume 52, issue 2, p. 162-70.

Dorell C, Yankey D, Jeyarajah J, Stokley S, Fisher A, Markowitz L, Smith PJ. Delay and refusal of human papillomavirus vaccine for girls, National Immunization Survey-Teen, 2010. *Clin Pediatr (Phila)*. 2014 Mar;53(3):261-9.

Elam-Evans LD, Yankey D, Jeyarajah J, Singleton JA, Curtis RC, MacNeil J, Hariri S. National, regional, state, and selected local area vaccination coverage among adolescents aged 13-17 years - United States, 2013. MMWR. 2014 Jul 25;63(29):625-33. Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6329a4.htm

Gilkey MB, Magnus BE, Reiter PL, McRee AL, Dempsey AF, Brewer NT. The Vaccination Confidence Scale: a brief measure of parents' vaccination beliefs. Vaccine 2014;32(47):6259-65.

Gowda C, Dempsey A. Medicaid Reimbursement and the Uptake of Adolescent Vaccines. *Vaccine*. 2012. Volume 30, Issue 9, p. 1682-1689.

Henry KA, Warner EL, Ding Q, Kepka D. The Role of Geographic Factors in Human Papillomavirus (HPV) Vaccine Uptake Among Adolescent Girls in the United States. Cancer Epidemiol Biomarkers Prev 2015;24(4):758.

Jain N, Hennessey K. Hepatitis B Vaccination Coverage among U.S. Adolescents, National Immunization Survey–Teen, 2006. *Journal of Adolescent Health*. 2009; 44:561-7 (Epub Dec 23 2008).

Jain N, Singleton JA, Montgomery M, Skalland B. Determining accurate vaccination coverage rates for adolescents: an overview of the methodology used in the National Immunization Survey-Teen 2006. *Public Health Reports*. 2009; 124:642-51.

Jain N, Stokley S, Cohn A. Receipt of Tetanus-Containing Vaccinations among Adolescents Aged 13-17 Years in the United States: National Immunization Survey-Teen, 2007. *Clinical Therapeutics*. 2010; 32 (8):1468-1478.

Jemal A, Simard EP, Dorell C, Noone Am, Markowitz LE, Kohler B, Eheman C, Saraiya M, Bandi P, Saslow D, Cronin KA, Watson M, Schiffman M, Henley SJ, Schymura MJ, Anderson RN, Yankey D, Edwards BK. Annual report to the nation on the status of cancer, 1975-2009, featuring the burden and trends in human papillomavirus (HPV)-associated cancers and HPV vaccination coverage levels. *J Natl Cancer Inst.* 2013 Volume 105, issue 3, p. 175-201.

Johnson NB, Hayes LD, Brown K, Hoo EC, Ethier KA. CDC National Health Report: Leading Causes of Morbidity and Mortality and Associated Behavioral Risk and Protective Factors-United States, 2005-2013. MMWR Surveill Summ 2014;63:3-27.

Kawai K, O'Brien MA, Conway JH, Marshall GS, Kuter BJ. Factors associated with receipt of two doses of varicella vaccine among adolescents in the United States. *Pediatr Infect Dis J.* 2013. Volume 32, issue 5, p. 538-42.

Khare M, Montgomery M, Wouhib A, Singleton JA. Assessment of Bias in the National Immunization Survey–Teen: Benchmarking to the National Health Interview Survey, 2009, Presented at the Centers for Disease Control and Prevention Statistical Symposium, Atlanta, GA

Lindley MD, Smith PH, Rodewald LE. Vaccination Coverage among U.S. Adolescents Aged 13-17 Years Eligible for the Vaccines for Children Program, 2009. 2011. *Public Health Reports*. Volume 126, supplement 2, p. 124-126.

Lu PJ, Jain N, Cohn AC. Meningococcal conjugate vaccination among adolescents aged 13-17 years, United States, 2007. *Vaccine*. 2010. 28(11):2350-2355.

Lu PJ, Dorell, C, Yankey D, Santibanez T, Singleton J. A Comparison of Parent and Provider Reported Influenza Vaccination Status of Adolescents. *Vaccine*. 2012. Volume 30, Issue 22, p. 3278-3285.

Lu PJ, Yankey D, Jeyarajah J, O'Halloran A, Elam-Evans L, Greby SM, et al. Hepatitis B vaccination among adolescents 13-17 years, United States, 2006-2012. Vaccine 2015;33(15):1855-64.

Montgomery M, Jain N, Singleton JA, Khare M. Assessment of Bias in the National Immunization Survey-Teen: Benchmarking to the National Health Interview Survey, 2008, Presented at the American Association for Public Opinion Research Annual Conference. Miami, FL

Moss JL, Reiter PL, Brewer NT. Correlates of human papillomavirus vaccine coverage: a state-level analysis. Sex Transm Dis 2015;42(2):71-5.

Myers J. Kentucky's improvement in administering Tdap for adolescents: The National Immunization Survey-Teen 2008-2012. Ky Nurse 2014;62(4):8.

Naifeh MM, Roberts JR, Margolis B, Thompson DM, Rogacki B, Jacobson RM, et al. Adolescent vaccination in Oklahoma: a work in progress. J Okla State Med Assoc 2014;107(9-10):510-6.

Niccolai LM, Mehta NR, Hadler JR. Racial/ethnic and poverty disparities in human papillomavirus vaccination completion. *Am J Prev Med*. 2011. Volume 41, issue 4, p. 428-33.

Ojha RP, Tota JE, Offut-Powell TN, Kloskey JL. Ashokkumar R, Gurney JG. The accuracy of human papillomavirus vaccination status based on adult proxy recall or household immunization records for adolescent females in the United States: results from the National Immunization Survey-Teen. *Ann Epidemiol.* 2013. Volume 23, issue 5, p. 281-5.

Perkins RB, Lin M, Silliman RA, Clark JA, Hanchate A. Why are U.S. girls getting meningococcal but not human papilloma virus vaccines? Comparison of factors associated with human papilloma virus and meningococcal vaccination among adolescent girls 2008 to 2012. Womens Health Issues 2015;25(2):97-104.

Polonijo AN, Carpiano RM. Social inequalities in adolescent human papillomavirus (HPV) vaccination: a test of fundamental cause theory. *Soc Sci Med.* 2013. Volume 82, p. 115-25.

Qualls-Hampton R, Taylor D, Nunnery T, Shuler M, Flynt-Wallington S. Physician influence and gender differences in adolescent HPV vaccine acceptance using the National Immunization Survey, 2010-2012. In: American Public Health Association 142nd Annual Meeting and Exposition New Orleans, LA; 2014.

Qualls-Hampton R, Taylor D, Nunnery T, Shuler M, Flynt-Wallington S. "Whatever ya say doc": A legislative approach to HPV vaccine acceptance among adolescents using the National Immunization Survey - Teen, 2010 - 2012. In: American Public Health Association 142nd Annual Meeting and Exposition New Orleans, LA; 2014.

Qualls-Hampton R, Taylor D, Nunnery T, Shuler M, Flynt-Wallington S. Geographic differences in parental perception & intention to vaccinate adolescent males for HPV, National Immunization Survey - Teen, 2010 - 2012. In: American Public Health Association 142nd Annual Meeting and Exposition New Orleans, LA; 2014.

Qualls-Hampton R, Taylor D, Nunnery T, Shuler M, Flynt-Wallington S. Parental perceptions and HPV vaccine initiation and completion: A gender comparison using the National Immunization Survey - Teen, 2010 - 2012. In: American Public Health Association 142nd Annual Meeting and Exposition New Orleans, LA; 2014.

Rahman M, McGrath CJ, Berenson AB. Geographic variation in human papillomavirus vaccination uptake among 13-17 year old adolescent girls in the United States. *Vaccine*. 2014 May 1;32(21):2394-8.

Rahman M, Laz TH, McGrath C, Berenson AB. Correlates of human papillomavirus vaccine series completion among young adult female initiators. Hum Vaccin Immunother 2014;10(8):2163-7.

Rahman M, Laz TH, McGrath CJ, Berenson AB. Provider recommendation mediates the relationship between parental human papillomavirus (HPV) vaccine awareness and HPV vaccine initiation and completion among 13- to 17-year-old U.S. adolescent children. Clin Pediatr (Phila) 2015;54(4):371-5.

Rahman M, McGrath CJ, Hirth JM, Berenson AB. Age at HPV vaccine initiation and completion among US adolescent girls: trend from 2008 to 2012. Vaccine 2015;33(5):585-7.

Rahman M, Laz TH, Berenson AB. Racial Disparity in Receiving a Physician Recommendation for Human Papillomavirus Vaccine among US Adolescent Girls: Trend from 2008 to 2012. Cancer Epidemiol Biomarkers Prev 2015;24(4):764.

Reagan-Steiner S, Yankey D, Jeyarajah J, Elam-Evens L, Singleton JA, Curtis RC, MacNeil J, Markowitz L, Stokley S. National, regional, state, and selected local area vaccination coverage among adolescents aged 13-17 years - United States, 2014. MMWR. 2015 Jul 31;64(29):784-792. Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6429a3.htm

Reiter PL, Katz ML, Paskett ED. HPV vaccination among adolescent females from Appalachia: implications for cervical cancer disparities. *Cancer Epidemiol Biomarkers Prev.* 2012. Volume 21, issue 12, p. 2220-30.

Reiter PL, Gilkey MB, Brewer NT. HPV Vaccination among adolescent males: results from the National Immunization Survey-Teen. *Vaccine*. 2013. Volume 31, issue 26, p.2816-21.

Reiter PL, Katz ML, Paskett ED. Correlates of HPV vaccination among adolescent females from Appalachia and reasons why their parents do not intend to vaccinate. *Vaccine*. 2013. Volume 31, issue 31, p. 3121-5.

Reiter PL, Gupta K, Brewer NT, Gilkey MB, Katz ML, Paskett ED, Smith JS. Provider-verified HPV vaccine coverage among a national sample of Hispanic adolescent females. *Cancer Epidemiol Biomarkers Prev.* 2014 May;23(5):742-54.

Reiter PL, Brewer NT, Gilkey MB, Katz ML, Paskett ED, Smith JS. Early adoption of the human papillomavirus vaccine among Hispanic adolescent males in the United States. Cancer 2014;120(20):3200-7.

Reiter PL, Brewer NT, Gilkey MB, Katz MP, ED., Smith J. HPV vaccination among Hispanic females in the United States: Results from the National Immunization Survey-Teen. In: American Public Health Association 142nd Annual Meeting and Exposition. New Orleans, LA; 2014.

Shen AK, O'Grady MJ, McDevitt RD, Pickreign JD, Laudenberger LK, Esber A, et al. How might immunization rates change if cost sharing is eliminated? Public Health Rep 2014;129(1):39-46.

Smith PJ, Lindley MC, Shefer A, Rodewald LE. Underinsurance and Adolescent Immunization Delivery in the U.S. *Pediatrics*. 2009;124(S5):S515-21.

Stokley S, Cohn A, Jain N, McCauley MM. Compliance with recommendations and opportunities for vaccination at ages 11 to 12 years: evaluation of the 2009 national immunization survey-teen. *Archives of Pediatrics & Adolescent Medicine*. 2011 Sep;165(9):813-8

Stokley S, Cohn A, Dorell C, Hariri S, Yankey D, Messonnier N, Wortley P. Adolescent Vaccination Coverage Levels in the United States: 2006-2009. *Pediatrics*. 2012. Volume 128, Issue 6, p. 1078-1086.

Stokley S, Jeyarajah J, Yankey D, Cano M, Gee J, Roark J, Curtis RC, Markowitz L. Human papillomavirus vaccination coverage among adolescents, 2007-2013, and postlicensure vaccine safety monitoring, 2006-2014 - United States. *MMWR*. 2014 Jul 25;63(29):620-4. Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6329a3.htm

Ylitalo KR1, Lee H, Mehta NK. Health care provider recommendation, human papillomavirus vaccination, and race/ethnicity in the US National Immunization Survey. *Am J Public Health*. 2013 Jan;103(1):164-9.

12. References

American Association for Public Opinion Research (2015). Standard Definitions: Final Dispositions of Case Codes and Outcome Rates for Surveys.

Bartlett, D.L., Ezzati-Rice, T.M., Stokley, S. and Zhao, Z (2001). Comparison of NIS and NHIS/NIPRCS Vaccination Coverage Estimates. *American Journal of Preventive Medicine*, Vol. 20, Issue 2, pp. 25-27

Blumberg, S.J. and Luke, J.V. (2015). Wireless substitution: Early release of estimates from the National Health Interview Survey, July-December 2014. National Center for Health Statistics. http://www.cdc.gov/nchs/data/nhis/earlyrelease/wireless201506.pdf

Blumberg, S.J., Luke, J.V., Ganesh, N., Davern, M.E., Boudreaux, M.H. and Soderberg, K. (2012). Wireless substitution: State-level estimates from the National Health Interview Survey, January 2011–June 2011. National Center for Health Statistics. http://www.cdc.gov/nchs/data/nhsr/nhsr039.pdf

Brick, J.M. and Kalton, G. (1996). Handling missing data in survey research. *Statistical Methods in Medical Research*, 5:215–238.

Centers for Disease Control and Prevention (1994). Reported vaccine-preventable diseases - United States, 1993, and the Childhood Immunization Initiative. *MMWR*, 43:57-60.

Centers for Disease Control and Prevention (2002). *National Immunization Survey: Guide to Quality Control Procedures*. http://www.cdc.gov/nchs/data/nis/qcman.pdf

Centers for Disease Control and Prevention (2012). Adding Households with Cell Phone Service to the National Immunization Survey (NIS), 2011. http://www.cdc.gov/vaccines/imz-managers/coverage/nis/child/dual-frame-sampling.html

Copeland, K.R., Khare, M., Ganesh, N., Zhao, Z., and Wouhib, A. (2009). An Evaluation of Sample Weighting in an RDD Survey with Multiple Population Controls. Presented at the Joint Statistical Meetings, Section on Survey Research Methods, American Statistical Association.

Copeland, K.R., Khare, M., Huang, R., Liu, L, Smith, P.J., and Wolter, K.M. (2011). "Assessment of Bias from Incomplete Frame Coverage and Other Sources in a Random Digit Dial Survey: Applications of a Supplement to the National Health Interview Survey." Presented at the American Association for Public Opinion Research Annual Conference.

Coronado, V.G., Maes, E.F., Rodewald, L.E., Chu, S., Battaglia, M.P., Hoaglin, D.C., Merced, N.L., Yusuf, H., Cordero, J.F., and Orenstein, W.A. (2000). Risk factors for underimmunization among 19-35 month-old children in the United States: National Immunization Survey, July 1996-June 1998. Unpublished manuscript, Centers for Disease Control and Prevention, Atlanta.

Council of American Survey Research Organizations (1982). On the Definition of Response Rates: A Special Report of the CASRO Task Force on Completion Rates. Council of American Survey Research Organizations.

Deming, W.E. (1943). Statistical Adjustment of Data. New York: Wiley.

Dorell C, Jain N, Yankey D. Validity of Parent-Reported Vaccination Status for Adolescents Aged 13-17 Years, National Immunization Survey-Teen, 2008. 2011. *Public Health Reports*. Volume 126, Supplement 2, p. 60-69.

Ezzati-Rice, T.M., Zell, E.R., Battaglia, M.P., Ching, P.L.Y.H., and Wright, R.A. (1995). The design of the National Immunization Survey. *1995 Proceedings of the Section on Survey Research Methods*, Alexandria, VA: American Statistical Association, pp. 668-672.

Ford, B.L. (1983). An overview of hot-deck procedures, in: *Incomplete data in sample surveys*, Madow W. G., Olkin I., Rubin D. B. (Eds.), Academic Press, New York, pp. 185-207.

Jain, N., Singleton, J., Montgomery, M., Skalland, B. (2009). Determining Accurate Vaccination Coverage Rates for Adolescents: The National Immunization Survey-Teen 206. *Public Health Reports*. 124 (5): 642-651.

Khare, M., Battaglia, M.P., Huggins, V.J., Stokley, S., Hoaglin, D.C., Wright, R.A., and Rodén, A.-S. (2000). Accuracy of vaccination dates reported by immunization providers in the National Immunization Survey. *2000 Proceedings of the Section on Survey Research Methods*. Alexandria, VA: American Statistical Association, pp. 665-670.

Khare, M., Battaglia, M.P., Stokley, S., Wright, R.A., and Huggins, V.J. (2001). Quality of immunization histories reported in the National Immunization Survey. *Proceedings of the International Conference on Quality in Official Statistics* (CD-ROM). Stockholm: Statistics Sweden.

Khare M and Wouhib A. Assessment of Potential Bias in Telephone Survey Estimates due to Noncontact and Noncoverage where Respondents Primarily use Wireless Telephones or do not have Landline Telephones. *Proceedings of the Federal Committee on Statistical Methodology Research Conference*. 2009. Available at: http://fcsm.sites.usa.gov/files/2014/05/2009FCSM Khare III-C.pdf

Lepkowski, J.M. (1988). Telephone sampling methods in the United States. *Telephone Survey Methodology*. Edited by Groves, R.M., Biemer, P.P., Lyberg, L.E., Massey, J.T., Nicholls, W.L., and Waksberg, J. New York: John Wiley & Sons, pp. 73-98.

Lumley, T. (2010). Survey Analysis in R. http://r-survey.r-forge.r-project.org/survey/index.html

Molinari, N.A., Singleton, J., Khare, M., Smith, P., Wolter, K., Skalland, B., Montgomery, R., Chowdhury, S., Barron, M., Santos, K., and Copeland, K. (2008). The Distribution of Total Error in a Health Survey: A Progress Update. Presented at the International Total Survey Error Workshop.

National Center for Health Statistics (1999). National Health Interview Survey: Research for the 1995-2004 Redesign. *Vital and Health Statistics*, Series 2, No. 126 (DHHS publication no. (PHS) 99-1326). Hyattsville, MD: National Center for Health Statistics.

National Center for Health Statistics. (2015). *National Immunization Survey - Teen 2014 Public-Use Data File: Documentation, Codebook and Frequencies*. Hyattsville, MD.

Ojha RP, Tota JE, Offut-Powell TN, Kloskey JL. Ashokkumar R, Gurney JG (2013). The accuracy of human papillomavirus vaccination status based on adult proxy recall or household immunization records for adolescent females in the United States: results from the National Immunization Survey-Teen. Ann Epidemiol, 23(5): 281-285.

Reagan-Steiner, R., Elam-Evans, L., Singleton, J., Copeland, K., Liu, L., Skalland, B., and Wolter, K. (2015). National Immunization Survey – Teen: Revised definition of adequate provider data. http://www.cdc.gov/vaccines/imz-managers/coverage/nis/teen/downloads/APD-full-report.pdf

Research Triangle Institute (2008). *SUDAAN Language Manual, Release 9.0*. Research Triangle Park, NC: Research Triangle Institute.

Rosenbaum, P.R. (1987). Model-based direct adjustment. *Journal of the American Statistical Association*, 82:387-394.

Rosenbaum, P.R. and Rubin, D.B. (1983). The central role of the propensity score in observational studies for causal effects. *Biometrika*, 70:41-55.

Rosenbaum, P.R. and Rubin, D.B. (1984). Reducing bias in observational studies using subclassification on the propensity score. *Journal of the American Statistical Association*, 79:516-534.

SAS Institute Inc. (2009). SAS/STAT 9.2 User's Guide, Second Edition. Cary, NC: SAS Institute Inc.

Smith, P.J., Battaglia, M.P., Huggins, V.J., Hoaglin, D.C., Rodén, A.-S., Khare, M., Ezzati-Rice, T.M., and Wright, R.A. (2001a). Overview of the sampling design and statistical methods used in the National Immunization Survey. *American Journal of Preventive Medicine*, 20(4S):17-24.

Smith, P.J., Rao, J.N.K., Battaglia, M.P., Ezzati-Rice, T.M., Daniels, D., and Khare, M. (2001b). Compensating for Provider Non-response Using Response Propensities to Form Adjustment Cells: The National Immunization Survey. *Vital and Health Statistics*, Series 2, No. 133 (DHHS publication no. (PHS) 2001-1333). Hyattsville, MD: National Center for Health Statistics.

Smith, P.J., Hoaglin, D.C., Battaglia, M.P., Khare, M., and Barker, L.E. (2005), *Statistical Methodology of the National Immunization Survey: 1994-2002*. National Center for Health Statistics. Vital Health Stat 2(138).

StataCorp (2009). Stata Statistical Software: Release 9. College Station, TX: StataCorp LP.

Strikas, R. A. (2015). Advisory committee on immunization practices recommended immunization schedules for persons aged 0 through 18 years--United States, 2015. MMWR 64(4): 93-94.

Wall, T.P., Kochanek, K.M., Fitti, J.E., and Zell, E.R. (1995). The use of real time translation services in RDD telephone surveys. Presented at the 1995 Conference of the American Association for Public Opinion Research, Fort Lauderdale, FL.

Zell, E.R., Ezzati-Rice, T.M., Battaglia, M.P., and Wright, R.A. (2000). National Immunization Survey: The methodology of a vaccination surveillance system. *Public Health Reports*, 115(1):65-77.

Appendix A: Glossary of Abbreviations and Terms

1:3:2:1 The series of 1 or more Td/Tdap vaccinations, 3 or more Hep B vaccinations (or 2 or more Hep B 1.0 ml Recombivax vaccinations), 2 or more MMR vaccinations, and 1 or

more VRC vaccinations (or a history of chicken pox disease)

1:3:2:1:2 The series of 1 or more Td/Tdap vaccinations, 3 or more Hep B vaccinations (or 2 or

more Hep B 1.0 ml Recombivax vaccinations), 2 or more MMR vaccinations, 1 or more

MEN vaccinations, and 2 or more VRC vaccinations (or a history of chicken pox disease)

AAPOR American Association for Public Opinion Research

ACS American Community Survey

APCN Active Personal Cell-Phone Number

CASRO Council of American Survey Research Organizations

CATI Computer-assisted telephone interviewing

CDC Centers for Disease Control and Prevention

CII Childhood Immunization Initiative

CPS Current Population Survey

DHHS U.S. Department of Health and Human Services

DOB Date of birth

FLU Seasonal influenza vaccine

Monovalent 2009 H1N1 Influenza Vaccine H₁N₁

Hep A Hepatitis A vaccine

Hep B Hepatitis B vaccine

HIM Health insurance module

HPV Human papillomavirus vaccine

IAP Immunization Action Plan

IHO Immunization history questionnaire

MCV Measles-containing vaccine

MCV4 Quadrivalent meningococcal conjugate vaccine

MPSV4 Quadrivalent meningococcal polysaccharide vaccine MEN Meningococcal vaccine

MMR Measles, mumps, and rubella vaccine

MSA Metropolitan Statistical Area

NCHS National Center for Health Statistics

NCIRD National Center for Immunization and Respiratory Diseases

NIPRCS National Immunization Provider Record Check Study

NIS National Immunization Survey

NIS-Teen National Immunization Survey - Teen

NHIS National Health Interview Survey

NIP National Immunization Program

PPS Pneumococcal polysaccharide vaccine

PRC Provider Record Check Study

PUF Public-use file

PUMS Public-Use Microdata Sample

RDD Random digit dialing

SC Shot card

Td Tetanus and diphtheria vaccine

Tdap Tetanus, diphtheria, and acellular pertussis vaccine

UTD Up-to-date

WRN Working Residential Number

VFC Vaccines for Children program

VRC Varicella vaccine

Appendix B: Summary Statistics for Sampling Weights by Estimation Area

Table B.1: Distribution of Dual-Frame Sampling Weights* for Teens with Completed Household Interviews, National Immunization Survey - Teen, 2014

State/Estimation Area	n	Sum	Minimum	Maximum	Mean	Coefficient of Variation
U.S. National [†]	38,047	20,842,714.22	1.08	11,940.01	547.81	160.58
Alabama	690	319,757.04	45.53	1,384.56	463.42	65.57
Alaska	673	47,037.15	12.78	194.10	69.89	66.81
Arizona	785	453,817.86	27.65	1,879.92	578.11	84.03
Arkansas	659	199,835.16	21.20	957.52	303.24	74.08
California	684	2,573,805.69	10.55	11,940.01	3,762.87	84.74
Colorado	713	343,279.76	6.92	1,390.06	481.46	68.46
Connecticut	732	238,615.78	29.63	990.08	325.98	75.49
Delaware	711	56,942.65	7.13	252.79	80.09	77.52
District of Columbia	555	25,081.02	3.14	166.39	45.19	86.97
Florida	709	1,169,949.99	10.33	5,763.69	1,650.14	89.38
Georgia	657	704,533.16	8.20	3,492.16	1,072.35	78.48
Hawaii	635	80,259.75	6.47	369.55	126.39	66.55
Idaho	585	119,544.96	11.04	597.07	204.35	74.97
Illinois	1,398	863,385.89	5.63	2,397.76	617.59	86.76
IL-City of Chicago	556	160,836.96	5.63	1,001.33	289.28	81.40
IL-Rest of State	842	702,548.92	11.51	2,397.76	834.38	68.00
Indiana	650	453,374.46	16.07	2,137.15	697.50	76.58
Iowa	596	204,262.78	22.41	1,032.33	342.72	73.47
Kansas	613	198,369.62	15.03	1,001.09	323.60	73.01
Kentucky	595	286,295.41	57.16	1,467.56	481.17	74.23
Louisiana	636	308,510.03	61.78	1,475.16	485.08	72.14
Maine	599	78,326.27	21.67	359.86	130.76	64.41
Maryland	826	380,851.42	4.12	1,834.52	461.08	102.54
Massachusetts	655	411,163.02	10.51	1,788.30	627.73	67.20
Michigan	557	669,523.09	15.79	3,630.80	1,202.02	75.68
Minnesota	521	355,998.63	19.09	2,017.39	683.30	68.86
Mississippi	649	207,833.45	21.81	1,028.39	320.24	77.12
Missouri	665	398,319.85	31.41	2,004.42	598.98	72.45
Montana	673	62,436.38	6.49	280.73	92.77	76.66
Nebraska	563	124,549.09	28.59	649.29	221.22	62.59
Nevada	709	185,485.35	29.82	727.63	261.62	61.69
New Hampshire	694	82,999.36	24.05	339.14	119.60	58.47
New Jersey	719	583,634.58	8.89	2,397.26	811.73	70.43
New Mexico	695	140,960.37	9.62	652.28	202.82	74.01
New York	1,199	1,204,315.03	14.14	3,653.03	1,004.43	76.38
NY-City of New York	616	466,475.06	14.14	2,127.60	757.26	70.00
NY-Rest of State	583	737,839.97	17.41	3,653.03	1,265.59	69.86
North Carolina	712	647,948.08	23.64	2,586.95	910.04	72.03
North Dakota	545	41,880.07	17.09	225.80	76.84	67.95
Ohio	754	772,911.69	23.90	3,042.88	1,025.08	78.05
Oklahoma	608	258,140.06	26.32	1,280.89	424.57	74.78
Oregon	646	245,057.92	14.82	1,181.01	379.35	78.94
Pennsylvania	1,458	787,570.62	11.82	3,092.75	540.17	127.69

State/Estimation Area	n	Sum	Minimum	Maximum	Mean	Coefficient of Variation
PA-Philadelphia County	612	90,584.82	11.82	459.65	148.01	79.01
PA-Rest of State	846	696,985.80	14.26	3,092.75	823.86	95.46
Rhode Island	683	61,899.36	9.78	261.62	90.63	66.39
South Carolina	704	304,366.87	28.06	1,340.45	432.34	79.81
South Dakota	622	55,438.80	10.20	252.41	89.13	78.08
Tennessee	637	422,685.48	16.40	2,034.03	663.56	75.17
Texas	3,079	1,950,300.33	1.08	5,253.23	633.42	163.32
TX-Bexar County	740	101,246.31	12.44	468.15	136.82	82.63
TX-City of Houston	679	134,634.83	1.80	755.57	198.28	91.71
TX-El Paso County	651	70,823.95	1.08	325.47	108.79	102.62
TX-Rest of State	1,009	1,643,595.24	19.05	5,253.23	1,628.93	81.20
Utah	646	237,210.47	11.70	1,236.79	367.20	71.97
Vermont	586	36,990.87	7.32	178.78	63.12	72.20
Virginia	698	522,758.50	3.01	3,046.17	748.94	105.31
Washington	648	443,358.06	14.53	2,025.40	684.19	77.20
West Virginia	640	107,982.71	23.78	495.42	168.72	71.95
Wisconsin	606	376,416.76	19.95	1,918.11	621.15	69.87
Wyoming	775	36,743.53	4.62	139.45	47.41	66.47
Puerto Rico	656	248,373.63	8.21	1,330.72	378.62	83.55

^{*}Distribution of RDDWT_D_TERR.

[†] Excludes Puerto Rico.

Table B.2: Distribution of Dual-Frame Sampling Weights* for Teens with Adequate Provider Data, National Immunization Survey - Teen, 2014

State/Estimation Area	n	Sum	Minimum	Maximum	Mean	Coefficient of Variation
U.S. National [†]	20,827	20,842,714.22	0.87	25,344.68	1,000.75	167.61
Alabama	378	319,757.04	67.19	2,681.15	845.92	70.24
Alaska	377	47,037.15	16.76	367.22	124.77	72.02
Arizona	421	453,817.86	68.39	3,655.71	1,077.95	87.26
Arkansas	368	199,835.16	33.05	1,776.19	543.03	76.37
California	356	2,573,805.69	27.26	25,344.68	7,229.79	83.50
Colorado	394	343,279.76	25.50	2,659.92	871.27	70.44
Connecticut	386	238,615.78	62.60	2,017.25	618.18	80.38
Delaware	374	56,942.65	13.15	546.43	152.25	94.05
District of Columbia	285	25,081.02	10.59	335.35	88.00	89.94
Florida	363	1,169,949.99	24.93	11,591.99	3,223.00	100.74
Georgia	373	704,533.16	62.07	6,460.49	1,888.83	85.50
Hawaii	363	80,259.75	11.48	684.61	221.10	67.09
Idaho	341	119,544.96	18.05	1,166.13	350.57	83.23
Illinois	709	863,385.89	13.91	4,711.99	1,217.75	84.41
IL-City of Chicago	274	160,836.96	13.91	2,033.03	587.00	80.93
IL-Rest of State	435	702,548.92	32.11	4,711.99	1,615.05	67.04
Indiana	370	453,374.46	30.45	3,870.10	1,225.34	75.33
Iowa	328	204,262.78	32.77	2,054.86	622.75	80.70
Kansas	352	198,369.62	47.04	1,715.12	563.55	80.46
Kentucky	335	286,295.41	117.98	2,751.71	854.61	78.22
Louisiana	335	308,510.03	119.74	3,000.42	920.93	73.38
Maine	341	78,326.27	38.40	707.20	229.70	61.99
Maryland	409	380,851.42	8.62	3,349.33	931.18	103.00
Massachusetts	358	411,163.02	20.87	3,415.37	1,148.50	68.60
Michigan	330	669,523.09	26.45	6,348.80	2,028.86	75.81
Minnesota	286	355,998.63	31.82	3,979.68	1,244.75	71.32
Mississippi	356	207,833.45	45.23	1,987.16	583.80	79.76
Missouri	361	398,319.85	51.96	3,836.21	1,103.38	82.28
Montana	367	62,436.38	17.15	515.66	170.13	81.84
Nebraska	321	124,549.09	38.65	1,142.81	388.00	68.29
Nevada	351	185,485.35	60.88	1,639.45	528.45	65.47
New Hampshire	402	82,999.36	24.68	637.32	206.47	61.54
New Jersey	328	583,634.58	27.24	5,654.94	1,779.37	78.48
New Mexico	378	140,960.37	14.54	1,293.98	372.91	81.31
New York	594	1,204,315.03	85.67	7,124.81	2,027.47	76.40
NY-City of New York	288	466,475.06	85.67			
NY-Rest of State	306	737,839.97	119.84	4,951.50	1,619.71 2,411.24	75.40 71.31
	372		70.74	7,124.81		
North Carolina	327	647,948.08		5,447.21	1,741.80	77.10
North Dakota		41,880.07	26.17	400.45	128.07	74.12
Ohio	430	772,911.69	40.28	5,979.51	1,797.47	82.36
Oklahoma	356	258,140.06	41.09	2,429.93	725.11	73.28
Oregon	399	245,057.92	17.37	1,882.81	614.18	82.59
Pennsylvania	785	787,570.62	31.65	5,403.25	1,003.27	127.63
PA-Philadelphia County	343	90,584.82	31.65	906.80	264.10	84.04
PA-Rest of State	442	696,985.80	48.25	5,403.25	1,576.89	92.38
Rhode Island	414	61,899.36	13.88	417.92	149.52	68.88
South Carolina	380	304,366.87	33.74	2,612.50	800.97	86.69
South Dakota	358	55,438.80	12.94	439.57	154.86	82.13

State/Estimation Area	n	Sum	Minimum	Maximum	Mean	Coefficient of Variation
Tennessee	339	422,685.48	67.00	4,386.04	1,246.86	77.72
Texas	1,652	1,950,300.33	0.87	11,714.99	1,180.57	174.73
TX-Bexar County	385	101,246.31	30.81	919.29	262.98	85.23
TX-City of Houston	379	134,634.83	2.72	1,299.87	355.24	95.13
TX-El Paso County	397	70,823.95	0.87	619.31	178.40	115.55
TX-Rest of State	491	1,643,595.24	58.66	11,714.99	3,347.44	81.64
Utah	398	237,210.47	17.31	1,883.73	596.01	74.18
Vermont	367	36,990.87	9.75	293.27	100.79	79.46
Virginia	350	522,758.50	7.81	5,461.65	1,493.60	102.93
Washington	374	443,358.06	26.18	3,553.12	1,185.45	78.44
West Virginia	350	107,982.71	58.64	924.70	308.52	72.22
Wisconsin	340	376,416.76	35.18	3,433.61	1,107.11	81.63
Wyoming	446	36,743.53	7.56	255.00	82.38	69.65
Puerto Rico	230	248,373.63	9.54	3,902.47	1,079.89	97.36

^{*} Distribution of PROVWT_D_TERR.

 $^{^\}dagger$ Excludes Puerto Rico.

Appendix C: Programs for Estimation: Examples of the Use of SUDAAN, SAS, and R to Estimate Vaccination Coverage Rates and Their Standard Errors, and Example of the Production of a Cross-Tabulation and Chart

I. SUDAAN (RTI, 2009) Page 86
II. SAS (SAS, 2008) Page 100
III. 'R' (Lumley, 2009) Page 112

I. SUDAAN

```
******************************
title1 'SUD IAP.SAS';
    *************************
THIS PROGRAM WILL PRODUCE ESTIMATION AREA ESTIMATES AND STANDARD
ERRORS
FOR 2+ MMR VACCINATIONS (P UTDMMR) USING SAS CALLABLE SUDAAN.
SUDAAN NOTES:
1. ALL VARIABLES USED MUST BE NUMERIC.
2. VARIABLES IN THE SUBGROUP STATEMENT MUST HAVE VALUES 1,2,..K
WHERE K IS THE NUMBER OF LEVELS FOR EACH VARIABLE.
3. DATA MUST BE SORTED ACCORDING TO THE SAMPLE DESIGN VARIABLES
(STRATUM AND PRIMARY SAMPLING UNIT), SPECIFIED IN THE
NEST STATEMENT.
*******************************
options ps=78 ls=90 obs= max;
libname dd 'c:\nisteenpuf14'; *--- SPECIFY PATH TO SAS DATASET ---*;
libname library 'c:\nisteenpuf14'; *--- IF DATASET WAS CREATED WITH FORMATS STORED -
--*;
*--- PERMANENTLY SPECIFY PATH TO LIBRARY ---*;
*--- OTHERWISE COMMENT THIS STATEMENT OUT ---*;
%let in file=dd.nisteenpuf14; *--- NAME OF SAS DATASET ---*;
%let estiap=estiapt14; * --- ESTIMATION AREA VARIABLE TO USE ---*;
%let wt=provwt d; * --- WEIGHT TO USE (PROVWT D is the dual-frame weight excluding Puerto
Rico. Use PROVWT D TERR to include Puerto Rico) ---*;
%let strat=stratum; * --- STRATUM VARIABLE TO USE FOR VARIANCE ESTIMATION (Use
STRATUM for all estimates.) ---*;
```

```
Proc format:
THE FOLLOWING FORMAT WILL BE USED FOR P UTDMMR.
ORIGINAL VALUES OF P UTDMMR ARE 1,0.
MUST BE CONVERTED TO 1,2 IN SUDAAN.
value p utdmmrf
1='2+ MMR Up-to-Date'
2='Not 2+ MMR Up-to-Date';
THE FOLLOWING FORMAT WILL BE USED FOR THE ESTIMATION AREA.
value estiapf
. = "Missing"
0 = "US Total"
1 = "CT"
2 = "MA"
4 = "ME"
5 = "NH"
6 = "RI"
7 = "VT"
8 = "NJ"
10 = "NY-Rest of State"
11 = "NY-City of New York"
12 = "DC"
13 = "DE"
14 = "MD"
16 = "PA-Rest of State"
17 = "PA-Philadelphia County"
18 = "VA"
19 = "WV"
20 = "AL"
22 = "FL"
25 = "GA"
27 = "KY"
28 = "MS"
29 = "NC"
30 = "SC"
31 = "TN"
34 = "IL-Rest of State"
35 = "IL-City of Chicago"
36 = "IN"
38 = "MI"
40 = "MN"
41 = "OH"
44 = "WI"
46 = "AR"
47 = "LA"
49 = "NM"
```

```
50 = "OK"
51 = "TX-Rest of State"
53 = "TX-El Paso County"
54 = "TX-City of Houston"
55 = "TX-Bexar County"
56 = "IA"
57 = "KS"
58 = "MO"
59 = "NE"
60 = "CO"
61 = "MT"
62 = "ND"
63 = "SD"
64 = "UT"
65 = "WY"
66 = "AZ"
68 = "CA"
72 = "HI"
73 = "NV"
74 = "AK"
75 = "ID"
76 = "OR"
77 = "WA"
106 = "Puerto Rico"
Run;
data sud file;
set &in file. (keep= SEQNUMT P UTDMMR &estiap. &wt. &strat.);
if P UTDMMR=0 then P UTDMMR=2; *--- CONVERT P UTDMMR=0 TO P UTDMMR=2 ---*;
NSEQNUMT=1*SEQNUMT; *---CONVERT TEEN ID SEQNUMT FROM CHARACTER TO
NUMERIC ---*;
run;
*=== SORT BY NEST VARIABLES: ESTIAP (STRATUM) NSEQNUMT (PRIMARY
SAMPLING UNIT) ===*;
proc sort data=sud file;
by &strat. nseqnumt;
run;
proc crosstab data=sud file filetype=sas design=wr;
weight &wt.;
nest &strat. nsegnumt;
subgroup & estiap. P UTDMMR;
levels 106 2;
tables & estiap. * P UTDMMR;
print nsum wsum rowper serow/style=nchs;
rtitle "2+ MMR Estimates by Estimation Area";
rformat & estiap. estiapf.;
rformat P UTDMMR p utdmmrf.;
output rowper serow/filename=sud est filetype=sas;
```

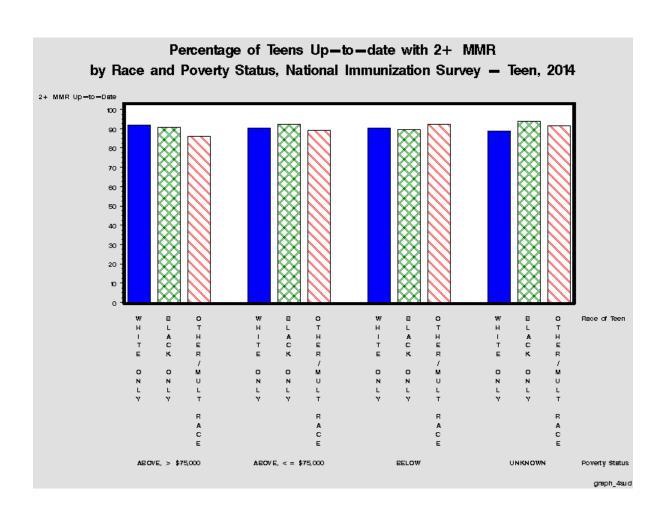
```
run:
proc print data=sud est(where=(P UTDMMR=1 and rowper ne.)) noobs label;
format & estiap. estiapf.;
var & estiap. rowper serow;
rowper='Percent 2+ MMR Up-to-Date'
serow='Standard Error'
title "2+ MMR Estimates by Estimation Area";
run;
*********
title1 'SUDSTATE.SAS';
THIS PROGRAM WILL PRODUCE STATE ESTIMATES AND STANDARD ERRORS
FOR 2+ MMR VACCINATIONS (P UTDMMR) USING SAS CALLABLE SUDAAN.
NOTE: THE STATE VARIABLE IS BASED ON STATE FIPS CODES. THERE ARE
NO STATES WITH FIPS CODES 3,7,14,43,52,57-71,73-77.
SUDAAN NOTES:
1. ALL VARIABLES USED MUST BE NUMERIC.
2. VARIABLES IN THE SUBGROUP STATEMENT MUST HAVE VALUES 1,2...K
WHERE K IS THE NUMBER OF LEVELS FOR EACH VARIABLE.
3. DATA MUST BE SORTED ACCORDING TO THE SAMPLE DESIGN VARIABLES
(STRATUM AND PRIMARY SAMPLING UNIT), SPECIFIED IN THE
NEST STATEMENT.
               ********************
options ps=78 ls=90 obs= max;
libname dd 'c:\nisteenpuf14'; *--- SPECIFY PATH TO SAS DATASET ---*;
library 'c:\nisteenpuf14'; *--- IF DATASET WAS CREATED WITH FORMATS STORED -
--*;
*--- PERMANENTLY SPECIFY PATH TO LIBRARY ---*;
*--- OTHERWISE COMMENT THIS STATEMENT OUT ---*;
%let in file=dd.nisteenpuf14; *--- NAME OF SAS DATASET ---*;
%let estiap=estiapt14; * --- ESTIMATION AREA VARIABLE TO USE ---*;
%let wt=provwt d; * --- WEIGHT TO USE (PROVWT D is the dual-frame weight excluding Puerto
Rico. Use PROVWT D TERR to include Puerto Rico) ---*;
%let strat=stratum; * --- STRATUM VARIABLE TO USE FOR VARIANCE ESTIMATION (Use
STRATUM for all estimates) ---*;
PROC FORMAT;
THE FOLLOWING FORMAT WILL BE USED FOR P UTDMMR.
ORIGINAL VALUES OF P UTDMMR ARE 1,0.
MUST BE CONVERTED TO 1,2 IN SUDAAN.
*/
value putmmrf
1='2+ MMR Up-to-Date'
```

```
2='Not 2+ MMR Up-to-Date'
THE FOLLOWING FORMAT WILL BE USED FOR STATE.
value statef
0 ='U.S. Total'
1 ='Alabama '
2 = 'Alaska '
4 ='Arizona '
5 = 'Arkansas '
6 = 'California'
8 = 'Colorado '
9 ='Connecticut'
10 ='Delaware '
11 ='District of Columbia'
12 ='Florida '
13 ='Georgia '
15 ='Hawaii '
16 ='Idaho '
17 ='Illinois'
18 ='Indiana '
19 ='Iowa '
20 = 'Kansas '
21 ='Kentucky'
22 ='Louisiana '
23 ='Maine '
24 = 'Maryland '
25 ='Massachusetts'
26 ='Michigan'
27 ='Minnesota'
28 ='Mississippi'
29 ='Missouri '
30 ='Montana '
31 ='Nebraska '
32 ='Nevada '
33 ='New Hampshire'
34 ='New Jersey'
35 ='New Mexico'
36 ='New York '
37 ='North Carolina'
38 ='North Dakota'
39 ='Ohio '
40 ='Oklahoma '
41 ='Oregon '
42 ='Pennsylvania'
44 ='Rhode Island'
45 ='South Carolina '
46 ='South Dakota'
```

```
47 ='Tennessee'
48 ='Texas '
49 ='Utah '
50 ='Vermont'
51 ='Virginia'
53 ='Washington'
54 ='West Virginia'
55 ='Wisconsin'
56 ='Wyoming '
72 ='Puerto Rico'
run;
data sud file;
set &in file. (keep= SEQNUMT P UTDMMR &estiap. STATE &wt. &strat.);
if P UTDMMR=0 then P UTDMMR=2; *** CONVERT P UTDMMR=0 TO P UTDMMR=2 ***;
NSEQNUMT=1*SEQNUMT; *** CONVERT TEEN ID SEQNUMT FROM CHARACTER TO
NUMERIC ***:
run:
*=== SORT BY NEST VARIABLES: ESTIAP (STRATUM) NSEQNUMT (PRIMARY
SAMPLING UNIT) ===*;
proc sort data=sud file;
by &strat. nsegnumt;
run;
proc crosstab data=sud file filetype=sas design=wr;
weight &wt.;
nest &strat. nseqnumt;
subgroup state P UTDMMR;
levels 78 2;
tables state * P UTDMMR;
print nsum wsum rowper serow/style=nchs;
rtitle "2+ MMR ESTIMATES BY STATE";
rformat state statef.;
rformat P UTDMMR p utdmmrf.;
output rowper serow / filename=sud est2 filetype=sas;
run;
*** EXCLUDE 3,7,14,43,52,57-71,73-78 THERE ARE NO STATES WITH THESE FIPS CODES
proc print data=sud est2(where=(P UTDMMR=1 and state notin (3,7,14,43,52) and
not(57<=STATE<=71) and not(73<=state<=78))) label noobs;
format state statef.;
var state rowper serow;
label
rowper='Percent 2+ MMR Up-to-Date'
serow='Standard Error'
title "2+ MMR ESTIMATES BY STATE";
```

```
run:
********
title1 'PROG 3.SAS':
THIS PROGRAM WILL PRODUCE A TABLE OF HOUSEHOLD REPORT OF
THE TEEN HAVING ASTHMA BY STATE FOR ALL HOUSEHOLD COMPLETES USING
RDDWT.
THE PROGRAM USES SAS CALLABLE SUDAAN.
SUDAAN NOTES:
1. ALL VARIABLES USED MUST BE NUMERIC.
2. VARIABLES IN THE SUBGROUP STATEMENT MUST HAVE VALUES 1,2...K
WHERE K IS THE NUMBER OF LEVELS FOR EACH VARIABLE.
3. DATA MUST BE SORTED ACCORDING TO THE SAMPLE DESIGN VARIABLES
(STRATUM AND PRIMARY SAMPLING UNIT), SPECIFIED IN THE
NEST STATEMENT.
*******************************
options ps=78 ls=90 obs= max;
options ps=78 ls=90 obs= max;
libname dd 'c:\nisteenpuf14'; *--- SPECIFY PATH TO SAS DATASET ---*;
library 'c:\nisteenpuf14'; *--- IF DATASET WAS CREATED WITH FORMATS STORED -
--*;
*--- PERMANENTLY SPECIFY PATH TO LIBRARY ---*;
*--- OTHERWISE COMMENT THIS STATEMENT OUT ---*;
%let in file=dd.nisteenpuf14; *--- NAME OF SAS DATASET ---*;
%let estiap=estiapt14; * --- ESTIMATION VARIABLE TO USE ---*;
%let wt=rddwt d; * --- WEIGHT TO USE (RDDWT D is the dual-frame weight excluding Puerto
Rico. Use RDDWT D TERR to include Puerto Rico) ---*;
%let strat=stratum; * --- STRATUM VARIABLE TO USE FOR VARIANCE ESTIMATION (Use
STRATUM for all estimation) ---*;
PROC FORMAT;
THE FOLLOWING FORMAT WILL BE USED FOR ASTHMA.
value asthmaf
1='Yes'
2='No'
THE FOLLOWING FORMAT WILL BE USED FOR STATE.
*/
value statef
0 ='U.S. Total
1 ='Alabama
2 ='Alaska '
4 ='Arizona '
```

```
5 ='Arkansas '
6 = 'California'
8 = 'Colorado '
9 ='Connecticut'
10 ='Delaware'
11 ='District of Columbia'
12 ='Florida'
13 ='Georgia '
15 ='Hawaii '
16 ='Idaho '
17 ='Illinois'
18 ='Indiana '
19 ='Iowa '
20 = 'Kansas '
21 ='Kentucky'
22 ='Louisiana '
23 ='Maine '
24 ='Maryland'
25 ='Massachusetts'
26 ='Michigan'
27 ='Minnesota'
28 ='Mississippi '
29 ='Missouri '
30 ='Montana '
31 ='Nebraska '
32 ='Nevada '
33 ='New Hampshire '
34 ='New Jersey '
35 ='New Mexico'
36 ='New York '
37 ='North Carolina '
38 ='North Dakota'
39 ='Ohio '
40 ='Oklahoma '
41 ='Oregon '
42 ='Pennsylvania'
44 ='Rhode Island'
45 = 'South Carolina'
46 ='South Dakota'
47 ='Tennessee '
48 ='Texas '
49 ='Utah '
50 ='Vermont'
51 ='Virginia'
53 ='Washington'
54 ='West Virginia'
55 ='Wisconsin'
56 ='Wyoming '
72 ='Puerto Rico'
```


```
run:
data sud file;
set &in file. (keep= SEQNUMT &estiap. STATE ASTHMA &wt. &strat.);
where ASTHMA in (1,2); *** KEEP ONLY CASES WITH NON-MISSING VALUES FOR
ASTHMA ***:
NSEQNUMT=1*SEQNUMT; *** CONVERT TEEN ID SEQNUMT FROM CHARACTER TO
NUMERIC ***:
run:
*=== SORT BY NEST VARIABLES: ESTIAP (STRATUM) NSEQNUMT (PRIMARY
SAMPLING UNIT) ===*;
proc sort data=sud file;
by &strat. NSEQNUMT;
run;
proc crosstab data=sud file filetype=sas design=wr;
weight &wt.:
nest &strat. NSEQNUMT;
subgroup STATE ASTHMA;
levels 78 2;
tables STATE * ASTHMA;
print nsum wsum rowper serow/style=nchs;
rtitle "ASTHMA ESTIMATES BY STATE";
rtitle "WEIGHT = &WT.";
rformat STATE statef.;
rformat ASTHMA asthmaf.;
output rowper serow / filename=sud est3 filetype=sas;
*** EXCLUDE 3,7,14,43,52,57-71,73-78 THERE ARE NO STATES WITH THESE FIPS CODES
*** •
proc print data=sud est3(where=(ASTHMA=1 and STATE notin (3,7,14,43,52) and
not(57<=STATE<=71) and not(73<=state<=78))) label noobs;
format STATE statef.;
var STATE rowper serow;
label
rowper='Percent ASTHMA = Yes'
serow='Standard Error'
title "HH REPORT OF TEEN HAVING ASTHMA BY STATE";
run:
**************
title1 'PROG 4.SAS';
TABLE OF P UTDMMR BY INCPOV1 BY RACE K. SAVE % UTD
ESTIMATES (NOT S.E.'S) FOR USE IN THE PROGRAM CHART 4.
THIS PROGRAM WILL PRODUCE ESTIMATES USING SAS CALLABLE SUDAAN.
```

```
SUDAAN NOTES:
1. ALL VARIABLES USED MUST BE NUMERIC.
2. VARIABLES IN THE SUBGROUP STATEMENT MUST HAVE VALUES 1,2,..K
WHERE K IS THE NUMBER OF LEVELS FOR EACH VARIABLE.
3. DATA MUST BE SORTED ACCORDING TO THE SAMPLE DESIGN VARIABLES
(STRATUM AND PRIMARY SAMPLING UNIT), SPECIFIED IN THE
NEST STATEMENT.
**************************
options ps=78 ls=90 obs= max;
libname dd 'c:\nisteenpuf14'; *--- SPECIFY PATH TO SAS DATASET ---*;
libname library 'c:\nisteenpuf14'; *--- IF DATASET WAS CREATED WITH FORMATS STORED -
--*;
*--- SPECIFY THE PATH FOR WHERE YOU WANT THE CHART OUTPUT TO GO ---*:
libname out 'c:\nisteenpuf14';
%let in file=dd.nisteenpuf14; *--- NAME OF SAS DATASET ---*;
%let estiap=estiapt14; * --- ESTIMATION VARIABLE TO USE ---*;
%let wt=provwt d; * --- WEIGHT TO USE (PROVWT D is the dual-frame weight excluding Puerto
Rico. Use PROVWT D TERR to include Puerto Rico) ---*;
%let qtr lab=Q1/2014 - Q4/2014; *--- NIS-TEEN 4 QUARTER PERIOD ---*;
%let strat=stratum; * --- STRATUM VARIABLE TO USE FOR VARIANCE ESTIMATION (Use
STRATUM for all estimation) ---*;
PROC FORMAT;
/*
THE FOLLOWING FORMAT WILL BE USED FOR P UTDMMR.
ORIGINAL VALUES OF P UTDMMR ARE 1,0.
MUST BE CONVERTED TO 1,2 IN SUDAAN.
value p utdmmrf
1='2+ MMR Up-to-date'
2='Not 2+ MMR Up-to-date'
/*
THE FOLLOWING FORMAT WILL BE USED FOR RACE K.
VALUE RACE KF
1 = "WHITE ONLY"
2 = "BLACK ONLY"
3 = "OTHER AND MULTIPLE RACE"
THE FOLLOWING FORMAT WILL BE USED FOR INCPOV1.
VALUE INCPVR2F
1 = "ABOVE. > $75.000"
2 = "ABOVE, <= $75,000"
3 = "BELOW"
```

```
4 = "UNKNOWN"
run;
data sud file:
set &in file. (keep= SEQNUMT P UTDMMR &estiap. RACE K INCPOV1 PDAT2 &wt. &strat.);
NSEQNUMT=1*SEQNUMT; *** CONVERT TEEN ID SEQNUMT FROM CHARACTER TO
NUMERIC ***:
if P UTDMMR=0 then P UTDMMR=2; *** CONVERT P UTDMMR=0 TO P UTDMMR=2 ***;
run;
*=== SORT BY NEST VARIABLES: ESTIAP (STRATUM) NSEQNUMT (PRIMARY
SAMPLING UNIT) ===*;
proc sort data=sud file;
by &strat. NSEONUMT:
run;
proc freq data=sud file;
where PDAT2=1:
tables P UTDMMR INCPOV1 RACE K;
title3 "Table 4A. &qtr lab.: Unweighted Frequencies";
run:
proc crosstab data=sud file filetype=sas design=wr;
weight &wt.;
nest &strat. NSEQNUMT;
subgroup INCPOV1 RACE K P UTDMMR;
levels 4 3 2;
tables (INCPOV1 * RACE K * P UTDMMR);
print nsum wsum rowper="2+ MMR Up-to-Date (ROWPER)"
serow="Standard Error (SEROW)" /style=nchs;
rtitle "Table 4B. &qtr lab., Percent 2+ MMR Up-to-Date and Estimated Standard Errors";
rtitle "WEIGHT = &WT.";
rformat P UTDMMR p utdmmrf.;
rformat INCPOV1 incpvr2f.;
rformat RACE K race kf.;
output rowper serow / filename=sud est4 filetype=sas;
run;
data out.sud est4;
set sud_est4 (where=(P_UTDMMR=1 \text{ and } INCPOV1 > 0 \text{ and } RACE K > 0));
keep INCPOV1 RACE K rowper serow;
       rowper='2+ MMR Up-to-Date'
label
              serow='Standard Error';
format rowper 5.2
              serow 5.2;
run;
proc print data=out.sud est4 label;
format RACE K race kf.;
```

```
format INCPOV1 incpvr2f.;
title "& Table 4B. qtr lab.: 2+ MMR ESTIMATES BY INCPOV1 BY RACE K";
run;
********
title1 'SAS GRAPH 4.SAS';
********************
THIS PROGRAM BUILDS OFF OF THE PROGRAM SAS PROG 4. IT PRODUCES A CHART
P UTDMMR BY INCPOV1 BY RACE K. IT CREATES A BAR CHART IN SAS GRAPH FOR
THE 4X3 = 12 CELLS. THE OUTPUT OF THE FOLLOWING EXAMPLE IS ATTACHED AT
END.
**************************
options ps=78 ls=90 obs= max;
libname dd 'c:\nisteenpuf14'; *--- SPECIFY PATH TO SAS DATASET ---*;
%let out='c:\nisteenpuf14'; *--- SPECIFY THE PATH FOR WHERE YOU WANT THE CHART
OUTPUT TO GO ---*;
%let in file=dd.sud est4; *--- NAME OF SAS DATASET OUTPUT FROM PROG_4 ---*;
%let qtr lab=Q1/2014 - Q4/2014; *--- NIS-TEEN 4 QUARTER PERIOD ---*;
PROC FORMAT;
VALUE INCPVR2F
1 = "ABOVE, > $75,000"
2 = "ABOVE, <= $75,000"
3 = "BELOW"
4 = "UNKNOWN"
VALUE RACE KF
1 = "WHITE ONLY"
2 = "BLACK ONLY"
3 = "OTHER/MULT RACE"
run:
data sud est4;
set &in file.:
format rowper 3.
RACE K race kf.
INCPOV1 incpvr2f.
label
RACE K = 'Race of Teen'
INCPOV1 = 'Poverty Status'
filename odsout &out.;
```

```
ods listing close:
/* SET THE GRAPHICS ENVIRONMENT */
goptions reset=global gunit=pct border
ftext=swissb htitle=4 htext=1.5
device=gif
ods html body='graph 4 sud.html' path=odsout;
TITLE1 HEIGHT=3 "Percentage of Teens Up-to-date with 2+ MMR";
TITLE2 HEIGHT=3 "by Race and Poverty Status, National Immunization Survey - Teen, 2014";
footnote j=r 'graph 4sud';
pattern1 value = solid color = blue;
pattern2 value = x3 color = green;
pattern3 value = 13 color = red;
pattern4 value = empty color = lib;
axis width = 3;
run;
proc gchart data=sud est4;
vbar RACE K
/frame
discrete
sumvar=rowper
group=incpov1
gspace = 5
gaxis = axis
raxis = axis
name = 'graph 4 sud'
patternid = midpoint
run;
quit;
ods html close;
ods listing;
ods html close;
ods listing;
```


II. SAS

```
**************
title1 'SAS IAP.SAS';
******************
THIS PROGRAM WILL PRODUCE ESTIMATION AREA ESTIMATES AND STANDARD
ERRORS
FOR 2+ MMR VACCINATIONS (P UTDMMR) USING SAS.
                           **************
options ps=78 ls=90 obs= max;
libname dd 'c:\nisteenpuf14'; *--- SPECIFY PATH TO SAS DATASET ---*;
library 'c:\nisteenpuf14'; *--- IF DATASET WAS CREATED WITH FORMATS STORED -
--*;
*--- PERMANENTLY SPECIFY PATH TO LIBRARY ---*;
*--- OTHERWISE COMMENT THIS STATEMENT OUT ---*;
%let in file=dd.nisteenpuf14; *--- NAME OF SAS DATASET ---*;
%let estiap=estiapt14; * --- ESTIMATION AREA VARIABLE TO USE ---*;
%let wt=provwt d; * --- WEIGHT TO USE (PROVWT D is the dual-frame weight excluding Puerto
Rico. Use PROVWT D TERR to include Puerto Rico) ---*;
%let strat=stratum; * --- STRATUM VARIABLE TO USE FOR VARIANCE ESTIMATION (Use
STRATUM for all estimation) ---*;
proc format:
value p utdmmrf
0='Not 2+ MMR Up-To-Date'
1='2+ MMR Up-To-Date';
value estiapf
. = "Missing"
0 = "US Total"
1 = "CT"
2 = "MA"
4 = "ME"
5 = "NH"
6 = "RI"
7 = "VT"
8 = "NJ"
10 = "NY-Rest of State"
11 = "NY-City of New York"
12 = "DC"
13 = "DE"
14 = "MD"
16 = "PA-Rest of State"
17 = "PA-Philadelphia County"
18 = "VA"
19 = "WV"
20 = "AL"
```

```
22 = "FL"
25 = "GA"
27 = "KY"
28 = "MS"
29 = "NC"
30 = "SC"
31 = "TN"
34 = "IL-Rest of State"
35 = "IL-City of Chicago"
36 = "IN"
38 = "MI"
40 = "MN"
41 = "OH"
44 = "WI"
46 = "AR"
47 = "LA"
49 = "NM"
50 = "OK"
51 = "TX-Rest of State"
53 = "TX-El Paso County"
54 = "TX-City of Houston"
55 = "TX-Bexar County"
56 = "IA"
57 = "KS"
58 = "MO"
59 = "NE"
60 = "CO"
61 = "MT"
62 = "ND"
63 = "SD"
64 = "UT"
65 = "WY"
66 = "AZ"
68 = "CA"
72 = "HI"
73 = "NV"
74 = "AK"
75 = "ID"
76 = "OR"
77 = "WA"
106 = "Puerto Rico"
run;
data sas file;
set &in_file. (keep= SEQNUMT P_UTDMMR &estiap. &wt. &strat.);
proc sort data = sas_file;
by &estiap.;
```

```
run;
title1 '2+ MMR Estimates by Estimation Area';
ods output Statistics=sas est;
proc surveymeans data = sas file nobs sum mean stderr;
stratum &strat.;
cluster SEQNUMT;
weight &wt.;
class P_UTDMMR;
var P UTDMMR;
by &estiap.;
format P UTDMMR p utdmmrf.;
format & estiap. estiapf.;
run:
data sas est;
set sas est;
mean = mean*100; *CONVERT TO PERCENT ESTIMATES;
stderr = stderr*100;
run;
proc print data=sas est(where=(varlevel='2+ MMR Up-To-Date')) noobs
label:
format & estiap. estiapf.;
format mean stderr 5.2;
var &estiap. mean stderr;
label
mean='Percent 2+ MMR Up-to-Date'
stderr='Standard Error';
title "2+ MMR Estimates by Estimation Area";
run;
********
title1 'SASSTATE.SAS';
*******************
THIS PROGRAM WILL PRODUCE STATE ESTIMATES AND STANDARD ERRORS
FOR 2+ MMR VACCINATIONS (P UTDMMR) USING SAS.
NOTE: THE STATE VARIABLE IS BASED ON STATE FIPS CODES. THERE ARE
NO STATES WITH FIPS CODES 3,7,14,43,52,57-71,73-78.
**************************
options ps=78 ls=90 obs= max;
libname dd 'c:\nisteenpuf14'; *--- SPECIFY PATH TO SAS DATASET ---*;
libname library 'c:\nisteenpuf14'; *--- IF DATASET WAS CREATED WITH FORMATS STORED -
*--- PERMANENTLY SPECIFY PATH TO LIBRARY ---*;
*--- OTHERWISE COMMENT THIS STATEMENT OUT ---*;
%let in file=dd.nisteenpuf14; *--- NAME OF SAS DATASET ---*;
```

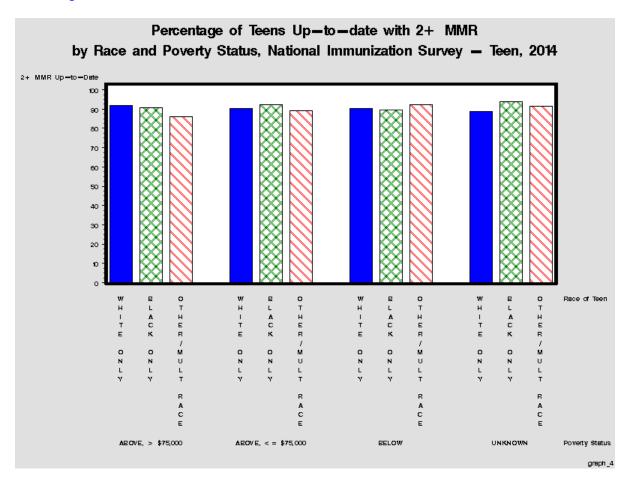
```
%let estiap=estiapt14; * --- ESTIMATION AREA VARIABLE TO USE ---*;
%let wt=provwt d; * --- WEIGHT TO USE (PROVWT D is the dual-frame weight excluding Puerto
Rico. Use PROVWT D TERR to include Puerto Rico) ---*;
%let strat=stratum; * --- STRATUM VARIABLE TO USE FOR VARIANCE ESTIMATION (Use
STRATUM for all estimation) ---*;
proc format;
value p utdmmrf
0='Not 2+ MMR Up-To-Date'
1='2+ MMR Up-To-Date';
value statef
.="Missing"
0 = 'U.S. Total '
1 ='Alabama '
2 ='Alaska '
4 ='Arizona '
5 = 'Arkansas'
6 = 'California'
8 = 'Colorado '
9 ='Connecticut'
10 ='Delaware '
11 ='District of Columbia'
12 ='Florida '
13 ='Georgia '
15 ='Hawaii '
16 ='Idaho '
17 ='Illinois'
18 ='Indiana '
19 ='Iowa '
20 = 'Kansas '
21 ='Kentucky'
22 ='Louisiana '
23 ='Maine '
24 = 'Maryland '
25 ='Massachusetts'
26 ='Michigan'
27 ='Minnesota'
28 ='Mississippi'
29 ='Missouri '
30 ='Montana '
31 ='Nebraska '
32 ='Nevada '
33 ='New Hampshire'
34 ='New Jersey '
35 ='New Mexico'
36 ='New York '
37 ='North Carolina'
38 ='North Dakota'
39 ='Ohio '
```

```
40 ='Oklahoma '
41 ='Oregon '
42 ='Pennsylvania'
44 ='Rhode Island'
45 ='South Carolina'
46 = 'South Dakota'
47 ='Tennessee '
48 ='Texas '
49 ='Utah '
50 ='Vermont '
51 ='Virginia'
53 ='Washington'
54 ='West Virginia'
55 ='Wisconsin'
56 ='Wyoming '
72 ='Puerto Rico'
run;
data sas file;
set &in file. (keep= SEQNUMT P UTDMMR &estiap. STATE &wt. &strat.);
run;
proc sort data = sas file;
by state;
run;
title1 '2+ MMR ESTIMATES BY STATE';
ods output Statistics=sas est2;
proc surveymeans data = sas file nobs sum mean stderr;
stratum &strat.;
cluster SEQNUMT;
weight &wt.;
class P UTDMMR;
var P UTDMMR;
by STATE;
format P UTDMMR p utdmmrf.;
format STATE statef.;
run;
data sas est2;
set sas est2;
mean = mean*100; *CONVERT TO PERCENT ESTIMATES;
stderr = stderr*100;
run;
proc print data=sas est2(where=(varlevel='2+ MMR Up-To-Date')) noobs
label:
format STATE statef.;
format mean stderr 5.2;
```

```
var STATE mean stderr;
label
mean='Percent 2+ MMR Up-to-Date'
stderr='Standard Error';
title "2+ MMR ESTIMATES BY STATE";
run;
********
title1 'SAS PROG 3.SAS';
THIS PROGRAM WILL PRODUCE A TABLE OF HOUSEHOLD REPORT OF
THE TEEN HAVING ASTHMA BY STATE FOR ALL HOUSEHOLD
COMPLETES USING RDDWT. THE PROGRAM USES SAS.
*******************************
options ps=78 ls=90 obs= max;
libname dd 'c:\nisteenpuf14'; *--- SPECIFY PATH TO SAS DATASET ---*;
libname library 'c:\nisteenpuf14'; *--- IF DATASET WAS CREATED WITH FORMATS STORED -
*--- PERMANENTLY SPECIFY PATH TO LIBRARY ---*;
*--- OTHERWISE COMMENT THIS STATEMENT OUT ---*;
%let in file=dd.nisteenpuf14; *--- NAME OF SAS DATASET ---*;
%let estiap=estiapt14; * --- ESTIMATION VARIABLE TO USE ---*;
%let wt=rddwt d; * --- WEIGHT TO USE (RDDWT D is the dual-frame weight excluding Puerto
Rico. Use RDDWT D TERR to include Puerto Rico) ---*;
%let strat=stratum; * --- STRATUM VARIABLE TO USE FOR VARIANCE ESTIMATION (Use
STRATUM for all estimation) ---*;
PROC FORMAT;
value asthmaf
1='Yes'
2='No'
value statef
0 ='U.S. Total '
1 ='Alabama
2 ='Alaska '
4 ='Arizona '
5 = 'Arkansas'
6 = 'California'
8 = 'Colorado '
9 ='Connecticut'
10 ='Delaware '
11 ='District of Columbia'
12 ='Florida '
13 ='Georgia'
15 ='Hawaii '
16 ='Idaho '
```

```
17 ='Illinois'
18 ='Indiana '
19 ='Iowa '
20 = 'Kansas '
21 ='Kentucky'
22 ='Louisiana '
23 ='Maine '
24 = 'Maryland '
25 ='Massachusetts'
26 ='Michigan'
27 ='Minnesota'
28 ='Mississippi '
29 ='Missouri
30 ='Montana '
31 ='Nebraska '
32 ='Nevada '
33 ='New Hampshire '
34 ='New Jersey '
35 ='New Mexico'
36 ='New York '
37 ='North Carolina '
38 ='North Dakota'
39 ='Ohio '
40 ='Oklahoma '
41 ='Oregon '
42 ='Pennsylvania'
44 ='Rhode Island'
45 = 'South Carolina'
46 ='South Dakota'
47 ='Tennessee '
48 ='Texas '
49 ='Utah '
50 ='Vermont '
51 ='Virginia'
53 ='Washington'
54 ='West Virginia'
55 ='Wisconsin'
56 ='Wyoming '
72 ='Puerto Rico'
run;
data sas file;
set &in file. (keep= SEQNUMT &estiap. STATE ASTHMA &wt. &strat.);
where ASTHMA in (1,2); *** KEEP ONLY CASES WITH NON-MISSING VALUES FOR
ASTHMA ***;
run;
proc sort data = sas file;
by state;
```

106


```
run;
title1 'ASTHMA ESTIMATES BY STATE';
ods output Statistics=sas est3;
proc surveymeans data = sas file nobs sum mean stderr;
stratum &strat.;
cluster SEQNUMT;
weight &wt.;
class ASTHMA;
var ASTHMA;
by STATE;
format ASTHMA asthmaf.;
format state statef.;
run:
data sas est3;
set sas est3;
mean = mean*100; *CONVERT TO PERCENT ESTIMATES;
stderr = stderr*100;
run;
proc print data=sas est3(where=(varlevel='Yes')) noobs label;
format STATE statef.;
format mean stderr 5.2;
var STATE mean stderr;
label
mean='Percent ASTHMA = Yes'
stderr='Standard Error';
title "HH REPORT OF TEEN HAVING ASTHMA BY STATE";
run;
********
title1 'SAS PROG 4.SAS';
TABLE OF P UTDMMR BY INCPOV1 BY RACE K. SAVE % UTD
ESTIMATES (NOT S.E.'S) FOR USE IN THE PROGRAM SAS GRAPH 4.
THIS PROGRAM WILL PRODUCE ESTIMATES USING SAS.
options ps=78 ls=90 obs= max;
libname dd 'c:\nisteenpuf14'; *--- SPECIFY PATH TO SAS DATASET ---*;
libname library 'c:\nisteenpuf14'; *--- IF DATASET WAS CREATED WITH FORMATS STORED -
--*:
*--- PERMANENTLY SPECIFY PATH TO LIBRARY ---*;
*--- OTHERWISE COMMENT THIS STATEMENT OUT ---*;
libname out 'c:\nisteenpuf14'; *--- SPECIFY THE PATH FOR WHERE YOU WANT THE CHART
OUTPUT TO GO ---*;
```

```
%let in file=dd.nisteenpuf14; *--- NAME OF SAS DATASET ---*;
%let estiap=estiapt14; * --- ESTIMATION VARIABLE TO USE ---*;
%let wt=provwt d; * --- WEIGHT TO USE (PROVWT D is the dual-frame weight excluding Puerto
Rico. Use PROVWT D TERR to include Puerto Rico) ---*;
%let strat=stratum; * --- STRATUM VARIABLE TO USE FOR VARIANCE ESTIMATION (Use
STRATUM for all estimation) ---*;
%let qtr lab=Q1/2014 - Q4/2014; *--- NIS-TEEN 4 QUARTER PERIOD ---*;
PROC FORMAT;
value p utdmmrf
0='Not 2+ MMR Up-To-Date'
1='2+ MMR Up-To-Date'
VALUE RACE KF
1 = "WHITE ONLY"
2 = "BLACK ONLY"
3 = "OTHER AND MULTIPLE RACE"
VALUE INCPVR2F
1 = \text{"ABOVE}, > \$75,000"
2 = "ABOVE, <= $75,000"
3 = "BELOW"
4 = "UNKNOWN"
run;
data sas file;
set &in file. (keep= SEQNUMT P UTDMMR &estiap. RACE K INCPOV1 &wt. &strat. PDAT2);
proc sort data = sas file;
by incpov1 race k;
run;
proc freq;
where PDAT2=1;
tables P UTDMMR INCPOV1 RACE K;
title1 "Table 4A. &qtr lab.: Unweighted Frequencies";
proc surveymeans data = sas file nobs sum mean stderr;
ods output Domain=sas est4;
stratum &strat.;
cluster SEQNUMT;
weight &wt.;
class P UTDMMR;
var P UTDMMR;
domain INCPOV1*RACE K:
format P UTDMMR p utdmmrf.;
run;
```

```
data sas est4;
set sas est4 (rename=(INCPOV1=INCPOV1 char RACE K=RACE K char));
*CONVERT TO PERCENT ESTIMATES;
mean = mean*100;
stderr = stderr*100;
*CONVERT BACK TO NUMERIC;
INCPOV1=1*INCPOV1 char;
RACE K=1*RACE K char;
run;
proc print data=sas est4(where=(varlevel='2+ MMR Up-To-Date')) noobs
format INCPOV1 incpvr2f.;
format RACE K race kf.:
format mean stderr 5.2;
var INCPOV1 RACE K mean stderr;
label
mean='2+ MMR Up-To-Date'
stderr='Standard Error';
title1 "Table 4B. &gtr lab.: 2+ MMR ESTIMATES BY INCPOV1 BY RACE K";
run;
data out.sas est4;
set sas est4(where=(varlevel='2+ MMR Up-To-Date'));
keep INCPOV1 RACE K mean;
label mean='2+ MMR Up-to-Date';
format mean 5.2;
run:
**************
title1 'SAS GRAPH 4.SAS';
                       THIS PROGRAM BUILDS OFF OF THE PROGRAM SAS PROG 4. IT PRODUCES A CHART
P UTDMMR BY INCPOV1 BY RACE K. IT CREATES A BAR CHART IN SAS GRAPH FOR
THE 4X3 = 12 CELLS. THE OUTPUT OF THE FOLLOWING EXAMPLE IS ATTACHED AT
THE
*****************************
options ps=78 ls=90 obs= max;
libname dd 'c:\nisteenpuf14'; *--- SPECIFY PATH TO SAS DATASET ---*;
%let out='c:\nisteenpuf14'; *--- SPECIFY THE PATH FOR WHERE YOU WANT THE CHART
OUTPUT TO GO ---*;
```

```
%let in file=dd.sas est4; *--- NAME OF SAS DATASET OUTPUT FROM PROG 4 ---*;
%let qtr lab=Q1/2014 - Q4/2014; *--- NIS-TEEN 4 QUARTER PERIOD ---*;
PROC FORMAT:
VALUE INCPVR2F
1 = \text{"ABOVE}, > $75,000"
2 = "ABOVE, <= $75,000"
3 = "BELOW"
4 = "UNKNOWN"
VALUE RACE KF
1 = "WHITE ONLY"
2 = "BLACK ONLY"
3 = "OTHER/MULT RACE"
run;
data sas est4;
set &in file.;
format mean 3.
RACE K race kf.
INCPOV1 incpvr2f.
label
RACE K = 'Race of Teen'
INCPOV1 = 'Poverty Status'
filename odsout &out.;
ods listing close;
/* SET THE GRAPHICS ENVIRONMENT */
goptions reset=global gunit=pct border
ftext=swissb htitle=4 htext=1.5
device=gif
ods html body='graph 4.html' path=odsout;
TITLE1 HEIGHT=3 "Percentage of Teens Up-to-date with 2+ MMR";
TITLE2 HEIGHT=3 "by Race and Poverty Status, National Immunization Survey - Teen, 2014";
footnote j=r 'graph 4';
pattern1 value = solid color = blue;
pattern2 value = x3 color = green;
pattern3 value = 13 color = red;
pattern4 value = empty color = lib;
axis width = 3;
run:
proc gchart data=sas est4;
vbar RACE K
/frame
discrete
```

```
sumvar=mean
group=INCPOV1
gspace = 5
gaxis = axis
raxis = axis
name = 'graph_4'
patternid = midpoint
;
run;
quit;
ods html close;
ods listing;
```

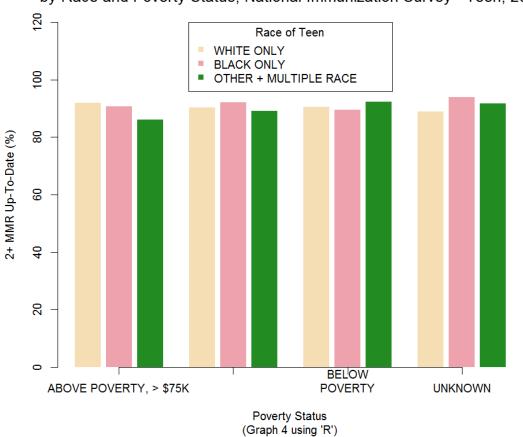

III. 'R'

```
title <- "R IAP.R"
#THIS PROGRAM WILL PRODUCE ESTIMATION AREA ESTIMATES AND STANDARD ERRORS
#FOR 2+ MMR VACCINATIONS (P UTDMMR) USING R.
#R NOTES:
#1. R IS CASE SENSITIVE.
#2. A FILE PATH IS SEPARATED BY SLASH(/)
library(survey) #TO USE svydesign(), svymean(), and svyby()
library(Hmisc) #TO USE prn()
dd <- "c:/nisteenpuf14" #"path-to-dataset"
#--- NAME OF R DATASET ---#
in.file <- paste(dd,"/NISTEENPUF14.RData",sep="")
#---READ R DATASET---#
load(in.file)
#---FORMAT---#
UTDMMRlevels=c(0,1)
UTDMMRlabels=c("NOT 2+ MMR UTD", "2+ MMR UTD")
ESTIAPlevels=c(1, 10, 106, 11, 12, 13, 14, 16, 17, 18, 19, 2, 20, 22, 25, 27, 28, 29, 30, 31, 34, 35, 36, 38, 4, 40, 41, 44, 46,
47, 49, 5, 50, 51, 53, 54, 55, 56, 57, 58, 59, 6, 60, 61, 62, 63, 64, 65, 66, 68, 7, 72, 73, 74, 75, 76, 77, 8)
ESTIAPlabels=c("CT", "NY-Rest of State", "Puerto Rico", "NY-City of New York", "DC", "DE", "MD", "PA-Rest of State", "PA-Philadelphia County", "VA", "WV", "MA", "AL", "FL", "GA", "KY", "MS", "NC", "SC", "TN", "IL-Rest of State", "IL-City of Chicago", "IN", "MI", "ME", "MN", "OH", "WI", "AR", "LA", "NM", "NH", "OK", "TX-Rest of State", "TX-El Paso County", "TX-City of Houston", "TX-Bexar County", "IA", "KS", "MO", "NE", "RI", "CO", "MT", "ND", "SD", "UT", "WY", "AZ", "CA", "VT", "HI", "NV", "AK", "ID", "OR", "WA", "NJ")
#---PROVWT D WILL BE USED AS A WEIGHT (PROVWT D IS THE DUAL-FRAME WEIGHT EXCLUDING
PUERTO RICO USE PROVWT D TERR TO INCLUDE PUERTO RICO---#
#---STRATUM WILL BE USED AS A STRATUM VARIABLE FOR VARIANCE ESTIMATION (USE STRATUM FOR
ALL ESTIMATION ---#
R FILE <- subset(NISTEENPUF14, select=c(SEONUMT, P UTDMMR, ESTIAPT14, PROVWT D, STRATUM))
names(R FILE) <- c("SEQNUMT", "P UTDMMR", "ESTIAP", "WT", "STRATUM")
R FILE <- na.omit(R FILE)
#---ASSIGN LABELS---#
R FILE$P UTDMMR <- factor(R FILE$P UTDMMR, levels=UTDMMRlevels, labels=UTDMMRlabels)
R FILE$ESTIAP <- factor(R FILE$ESTIAP, levels=ESTIAPlevels, labels=ESTIAPlabels)
#---SPECIFY A SAMPLING DESIGN---#
svydsg <- svydesign(id=~SEQNUMT, strata=~STRATUM, weights=~WT, data=R FILE)
#---U.S. TOTAL ESTIMATES AND STANDARD ERRORS---#
r_nation <- svymean(~P_UTDMMR, svydsg)
PERCENT_UTD <- round(r_nation*100,2) #CONVERT INTO PERCENT_ESTIMATES(MEAN)
SE_UTD <- round(SE(r_nation)*100.2) #CONVERT INTO PERCENT ESTIMATES(SE)
r nation est <- cbind(PERCENT UTD, SE UTD)
title <- "PERCENT 2+ MMR ESTIMATES AT A NATIONWIDE LEVEL"
prn(r nation est, title)
#---ESTIMATION AREA ESTIMATES AND STANDARD ERRORS---#
r est <- svyby(~P UTDMMR, ~ESTIAP, svydsg, svymean)
r est[,-c(1)] <- round(r est[,-c(1)]*100,2) #CONVERT INTO PERCENT ESTIMATES
r est <- subset(r est, select=c(1,3,5))
```

```
#SELECT ESTIMATES FOR UP-TO-DATE CASES
names(r est) <- c("ESTIMATION AREA", "PERCENT 2+ MMR UTD", "STANDARD ERROR UTD")
title <- "PERCENT 2+ MMR ESTIMATES BY ESTIMATION AREA"
prn(r est, title)
title <- "R STATE.R"
#THIS PROGRAM WILL PRODUCE STATE ESTIMATES AND STANDARD ERRORS
#FOR 2+ MMR VACCINATIONS (P UTDMMR) USING R.
#NOTE: THE STATE VARIABLE IS BASED ON STATE FIPS CODES. THERE ARE
#NO STATES WITH FIPS CODES 3,7,14,43,52,57-71,73-78.
#R NOTES:
#1. R IS CASE SENSITIVE.
#2. A FILE PATH IS SEPERATED BY SLASH(/)
library(survey) #TO USE svydesign(), svymean(), and svyby()
library(Hmisc) #TO USE prn()
dd <- "c:/nisteenpuf14" #"path-to-data"
#--- NAME OF R DATASET ---#
in.file <- paste(dd,"/NISTEENPUF14.RData",sep="")
#---READ R DATASET---#
load(in.file)
#---FORMAT---#
UTDMMRlevels=c(0,1)
UTDMMRlabels=c("NOT 2+ MMR UTD", "2+ MMR UTD")
STATElevels=c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78)
STATElabels=c(
"ALABAMA",
"ALASKA",
"ARIZONA",
"ARKANSAS".
"CALIFORNIÁ",
"COLORADO",
"CONNECTICUT",
"DELAWARE",
"DISTRICT OF COLUMBIA",
"FLORIDA",
"GEORGIA",
" "
"HAWAII",
"IDAHO",
"ILLINOIS".
"INDIANA",
"IOWA",
"KANSAS"
"KENTUCKY".
"LOUISIANA",
"MAINE",
"MARYLAND",
```

```
"MASSACHUSETTS",
"MICHIGAN",
"MINNESOTA",
"MISSISSIPPI",
"MISSOURI",
"MONTANA".
"NEBRASKA",
"NEVADA",
"NEW HAMPSHIRE",
"NEW JERSEY",
"NEW MEXICO",
"NEW YORK",
"NORTH CAROLINA",
"NORTH DAKOTA",
"OHIO",
"OKLAHOMA",
"OREGON",
"PENNSYLVANIA",
"RHODE ISLAND",
"SOUTH CAROLINA",
"SOUTH DAKOTA",
"TENNESSEE",
"TEXAS",
"UTAH",
"VERMONT",
"VIRGINIA",
"WASHINGTON",
"WEST VIRGINIA",
"WISCONSIN",
"WYOMING",
"",
" "
"PUERTO RICO",
" "
" "
" "
#--- PROVWT D WILL BE USED AS A WEIGHT (PROVWT D IS THE DUAL-FRAME WEIGHT
EXCLUDINGPUERTO RICO; USE PROVWT D TERR TO INCLUDE PUERTO RICO ---#
#---STRATUM WILL BE USED AS A STRATUM VARIABLE FOR VARIANCE ESTIMATION (USE STRATUM FOR
ALL ESTIMATION ---#
R FILE <- subset(NISTEENPUF14, select=c(SEQNUMT, P UTDMMR, ESTIAPT14, STATE, PROVWT D,
STRATUM))
```

```
names(R FILE) <- c("SEQNUMT", "P UTDMMR", "ESTIAP", "STATE", "WT", "STRATUM")
R FILE <- na.omit(R FILE)
#---ASSIGN LABELS---#
R FILE$P UTDMMR <- factor(R FILE$P UTDMMR, levels=UTDMMRlevels, labels=UTDMMRlabels)
R FILE$STATE <- factor(R FILE$STATE, levels=STATElevels,
labels=STATElabels)
#---SPECIFY A SAMPLING DESIGN---#
svydsg <- svydesign(id=~SEQNUMT, strata=~STRATUM, weights=~WT, data=R FILE)
#---STATE ESTIMATES AND STANDARD ERRORS---#
r est2 <- svyby(~P UTDMMR, ~STATE, svydsg, svymean)
r est2[,-c(1)] <- round(r est2[,-c(1)]*100,2) #CONVERT INTO PERCENT ESTIMATES
r est2 <- subset(r est2, select=c(1,3,5)) #SELECT ESTIMATES FOR UP-TO-DATE CASES
names(r est2) <- c("STATE", "PERCENT 2+ MMR UTD", "STANDARD ERROR UTD")
prn(r est2, '2+ MMR ESTIMATES BY STATE')
title <- "R PROG 3.R"
#THIS PROGRAM WILL PRODUCE A TABLE OF TEEN HAVING ASTHMA BY STATE FOR
#ALL HOUSEHOLD COMPLETES USING RDDWT. THE PROGRAM USES R.
#R NOTES:
#1. R IS CASE SENSITIVE.
#2. A FILE PATH IS SEPERATED BY SLASH(/)
library(survey) #TO USE svydesign(), svymean(), and svyby()
library(Hmisc) #TO USE prn()
library(prettyR) #TO USE freq()
dd <- "c:/nisteenpuf14" #"path-to-dataset"
#--- NAME OF R DATASET ---#
in.file <- paste(dd,"/NISTEENPUF12.RData",sep="")
#---READ R DATASET---#
load(in.file)
#---FORMAT---#
ASTHMAlevels=c(1,2,77,99)
ASTHMAlabels=c("YES", "NO", "DON'T KNOW", "REFUSED")
STATElevels=c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78)
STATElabels=c(
"ALABAMA",
"ALASKA",
"ARIZONA",
"ARKANSAS".
"CALIFORNIA",
"COLORADO",
"CONNECTICUT",
"DELAWARE",
"DISTRICT OF COLUMBIA",
"FLORIDA".
"GEORGIA".
"HAWAII",
"IDAHO",
```


```
"ILLINOIS",
"INDIANA",
"IOWA",
"KANSAS".
"KENTUCKY",
"LOUISIANA",
"MAINE",
"MARYLAND",
"MASSACHUSETTS",
"MICHIGAN",
"MINNESOTA",
"MISSISSIPPI",
"MISSOURI",
"MONTANA".
"NEBRASKA",
"NEVADA",
"NEW HAMPSHIRE",
"NEW JERSEY",
"NEW MEXICO",
"NEW YORK",
"NORTH CAROLINA",
"NORTH DAKOTA",
"OHIO",
"OKLAHOMA",
"OREGON",
"PENNSYLVANIA",
"RHODE ISLAND",
"SOUTH CAROLINA",
"SOUTH DAKOTA",
"TENNESSEE",
"TEXAS",
"UTAH",
"VERMONT",
"VIRGINIA",
"WASHINGTON",
"WEST VIRGINIA",
"WISCONSIN",
"WYOMING",
" "
"PUERTO RICO",
```

```
" "
)
#--- RDDWT D WILL BE USED AS A WEIGHT (RDDWT D IS THE DUAL-FRAME WEIGHT EXCLUDING
PUERTO RICO; USE RDDWT D TERR TO INCLUDE PUERTO RICO---#
#---STRATUM WILL BE USED AS A STRATUM VARIABLE FOR VARIANCE ESTIMATION (USE STRATUM FOR
ALL ESTIMATION ---#
R FILE <- subset(NISTEENPUF14, select=c(SEQNUMT, ESTIAPT14, STATE, ASTHMA, RDDWT_D, STRATUM))
names(R FILE) <- c("SEQNUMT", "ESTIAP", "STATE", "ASTHMA", "WT", "STRATUM")
#LIMIT FILE TO CASES WITH NON-MISSING VALUES OF ASTHMA
R FILE <- subset(R FILE, ASTHMA %in% c(1,2))
#---ASSIGN LABELS---#
R FILE$ASTHMA <- factor(R FILE$ASTHMA, levels=ASTHMAlevels, labels=ASTHMAlabels)
R FILE$STATE <- factor(R FILE$STATE, levels=STATElevels, labels=STATElabels)
R FILE <- na.omit(R FILE)
summary(R FILE$ASTHMA)
#---SPECIFY A SAMPLING DESIGN---#
svydsg <- svydesign(id=~SEQNUMT, strata=~STRATUM, weights=~WT, data=R_FILE)
#---U.S. TOTAL ESTIMATES AND STANDARD ERRORS---#
r nation <- svymean(~ASTHMA, svydsg)
PERCENT UTD <- round(r nation*100.2) #CONVERT INTO PERCENT ESTIMATES(MEAN)
SE UTD <- round(SE(r nation)*100,2) #CONVERT INTO PERCENT ESTIMATES(SE)
r nation est3 <- cbind(PERCENT UTD, SE UTD)
prn(r nation est3, "PERCENT ASTHMA = YES ESTIMATES AT A NATIONWIDE LEVEL\n")
#---ASTHMA = YES ESTIMATES BY STATE---#
r est3 <- svyby(~ASTHMA, ~STATE, svydsg, svymean)
r est3[,-c(1)] <- round(r est3[,-c(1)]*100,2) #CONVERT INTO PERCENT ESTIMATES
r est3 <- subset(r est3, select=c(1,2,6)) #SELECT ESTIMATES FOR ASTHMA=YES
names(r est3) <- c("STATE", "PERCENT ASTHMA=YES", "STANDARD ERROR ASTHMA=Y")
prn(r est3, 'PERCENT ASTHMA ESTIMATES BY STATE')
title <- "PROG 4.R"
#TABLE OF P UTDMMR BY INCPOV1 BY RACE K. SAVE % UTD
#ESTIMATES (NOT S.E.'S) FOR USE IN THE PROGRAM GRAPH 4.
#THIS PROGRAM WILL PRODUCE ESTIMATES USING R.
#R NOTES:
#1. R IS CASE SENSITIVE.
#2. A FILE PATH IS SEPERATED BY SLASH(/)
library(survey) #TO USE svydesign(), svymean(), and svyby()
library(Hmisc) #TO USE prn()
dd <- "c:/nisteenpuf14" #"path-to-dataset"
out <-"c:/nisteenpuf14" #"path where output will go"
#--- NAME OF R DATASET ---#
in.file <- paste(dd,"/NISTEENPUF14.RData",sep="")
#---READ R DATASET---#
load(in.file)
#---FORMAT---#
```

```
UTDMMRlevels=c(0.1)
UTDMMRlabels=c("NOT 2+ MMR UTD", "2+ MMR UTD")
RACE PUFlevels=c(1,2,3)
RACE PUFlabels=c("WHITE ONLY", "BLACK ONLY", "OTHER + MULTIPLE RACE")
INCPOVlevels=c(1,2,3,4)
INCPOVlabels=c("ABOVE POVERTY, > $75K", "ABOVE POVERTY, <= $75K", "BELOW
POVERTY", "UNKNOWN")
#--- PROVWT D WILL BE USED AS A WEIGHT (PROVWT D IS THE DUAL-FRAME WEIGHT EXCLUDING
PUERTO RICO; USE PROVWT D TERR TO INCLUDE PUERTO RICO ---#
#---STRATUM WILL BE USED AS A STRATUM VARIABLE FOR VARIANCE ESTIMATION (USE STRATUM FOR
ALL ESTIMATION ---#
R FILE <- subset(NISTEENPUF14, select=c(SEQNUMT, P UTDMMR, ESTIAPT14, RACE K, INCPOV1,
PROVWT D, STRATUM, PDAT2))
names(R FILE) <- c("SEQNUMT", "P UTDMMR", "ESTIAP", "RACE K", "INCPOV1", "WT", "STRATUM",
"PDAT2")
#---ASSIGN LABELS---#
R FILE$P UTDMMR <- factor(R FILE$P UTDMMR, levels=UTDMMRlevels, labels=UTDMMRlabels,
exclude=NULL)
R FILE$RACE K <- factor(R FILE$RACE K, levels=RACE PUFlevels, labels=RACE PUFlabels, exclude=NULL)
R FILE$INCPOV1 <- factor(R FILE$INCPOV1, levels=INCPOVlevels, labels=INCPOVlabels, exclude=NULL)
#---UNWEIGHTED FREOUENCIES---#
unwt freq <- function(UNWT.VAR){#FUNCTION TO PRINT UNWEIGHTED FREQUENCIES
unwt.tab <- wtd.table(UNWT.VAR, weights= NULL, type='table')
unwtd.freq <- data.frame(cbind(
unwt.tab, round(unwt.tab/sum(unwt.tab)*100,2),
cumsum(unwt.tab), cumsum(round(unwt.tab/sum(unwt.tab)*100.2))))
names(unwtd.freq) <- c("Frequency", "Percent", "Cumulative Frequency", "Cumulative Percent")
unwtd.title <- paste('Table 4A, Q1/2014 - Q4/2014', 'UNWEIGHTED FREQUENCIES', label(UNWT.VAR), sep="\n")
label(unwtd.freq) <- unwtd.title
print(unwtd.freq)
unwt freq(R FILE$P UTDMMR[R FILE$PDAT2 == 1])
unwt freq(R FILE$INCPOV1[R FILE$PDAT2 == 1])
unwt freq(R FILE$RACE K[R FILE$PDAT2 == 1])
R FILE <- na.omit(R FILE)
#---SPECIFY A SAMPLING DESIGN---#
svydsg <- svydesign(id=~SEQNUMT, strata=~STRATUM, weights=~WT, data=R FILE)
#---PERCENT 2+ MMR UP-TO-DATE AND ESTIMATED STANDARD ERRORS---#
r est4 <- svyby(~P UTDMMR, ~RACE K+INCPOV1, svydsg, svymean)
r est4[,-c(1,2)] <- round(r est4[,-c(1,2)]*100,2) #CONVERT INTO PERCENT ESTIMATES
r est4 <- subset(r est4, select=c(1,2,4,6)) #SELECT ESTIMATES FOR UP-TO-DATE CASES
names(r_est4) <- c("RACE", "INCOME", "PERCENT_UTD", "STANDARD_ERROR_UTD") title <- "Table 4B. Q1/2014 - Q4/2014, 2+ MMR ESTIMATES BY INCPOV1 BY RACE_K"
#---SAVE PERCENT UP-TO-DATE ESTIMATES FOR USE IN THE PROGRAM GRAPH 4---#
r est4 <- subset(r est4, select=c(RACE, INCOME, PERCENT UTD))
save(r_est4, file=paste(out, "/r_est4_14", sep=""))
title <- "GRAPH 4.R"
#THIS PROGRAM BUILDS OFF OF THE PROGRAM PROG 4. IT PRODUCES A CHART OF
#P UTDMMR BY INCPOV1 BY RACE K. IT CREATES A BAR GRAPH IN R
\#FOR THE 4X3 = 12 CELLS.
#R NOTES:
#1. R IS CASE SENSITIVE.
#2. A FILE PATH IS SEPERATED BY SLASH(/)
library(survey) #TO USE svydesign(), svymean(), and svyby()
library(Hmisc) #TO USE prn()
```

```
dd <- "c:/nisteenpuf14" #---SPECIFY PATH TO R DATASET THAT WAS THE OUTPUT OF R PROG 4---#
out <- "c:/nisteenpuf14" #---SPECIFY THE PATH FOR WHERE YOU WANT THE CHART OUTPUT TO GO---#
#---NAME OF R DATASET OUTPUT FROM R PROG 4---#
in.file <- paste(dd,"/r est4 14",sep="")
#---READ R DATASET---#
load(in.file)
#---BARCHART---#
#NOTE:R DOES NOT SUPPORT CREATING A HTML FILE CONTAINING A BARCHART#
#CREATE A DATA MATRIX FOR DRAWING A BARCHART#
utdmmr <- matrix(r_est4$PERCENT_UTD, nrow=3, ncol=4, byrow=F, dimnames=list(levels(r_est4$RACE),
levels(r est4$INCOME)))
#CREATE GRAPH 4.GIF#
barplot(utdmmr, beside=TRUE, space=c(0.2,1),
col = c("wheat", "lightpink2", "forestgreen"),
axis.lty = 1,
sub="(Graph 4 using 'R')", cex.sub=1, ylim=c(0,120),
xlab="Poverty Status",
ylab="2+ MMR Up-To-Date (%)", cex=1, cex.names=1, border=NA)
legend("top", rownames(utdmmr), col=c("wheat", "lightpink2",
"forestgreen"), title="Race of Teen", pch=15, cex=1)
title1 <- "Percentage of Teens Up-to-date with 2+ MMR \n"
title2 <- "by Race and Poverty Status, National Immunization Survey - Teen, 2014\n"
mtext(paste(title1,title2), cex=1.3)
```

Percentage of Teens Up-to-date with 2+ MMR by Race and Poverty Status, National Immunization Survey - Teen, 2014

Appendix D: Alphabetical Listing of Variables in the NIS-Teen Public-Use Data Files

Table D.1 Alphabetical Listing of Variables in the NIS-Teen Public-Use Data Files, 2008-2014

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
AGE	AGE IN YEARS OF SELECTED TEEN	Y	Y	Y	Y	Y	Y	Y	
AGEGRP_M_I	MOTHER'S AGE CATEGORIES (RECODE)	Y	Y	Y	Y	Y	Y	Y	
ASTHMA	HAS TEEN BEEN TOLD BY DOCTOR OR OTHER HEALTH PROFESSIONAL THAT HE/SHE HAS ASTHMA?	Y	Y	Y	Y	Y	Y	Y	
C1R	NUMBER OF PEOPLE IN HOUSEHOLD (RECODE)	Y	Y	Y	Y	Y	Y	Y	
C5R	RELATIONSHIP OF RESPONDENT TO TEEN (RECODE)	Y	Y	Y	Y	Y	Y	Y	
CEN_REG	CENSUS REGION BASED ON TRUE STATE OF RESIDENCE	Y	Y	Y	Y	Y	Y	Y	
CHILDNM	NUMBER OF CHILDREN UNDER 18 YEARS OF AGE IN HH (RECODE)	Y	Y	Y	Y	Y	Y	Y	
CKUP_11_12	DID TEEN HAVE AN 11-12 YEAR OLD WELL-CHILD EXAM OR CHECK-UP?	Y	Y	Y	Y	Y	Y	Y	
CKUP_AGE	AGE IN YEARS AT LAST CHECK-UP	Y	Y	Y	Y	Y	Y	Y	
CKUP_LAST	WAS TEEN'S LAST CHECK-UP MORE OR LESS THAN (AGE - 12) YEARS AGO?	Y	Y	Y	Y	Y	Y	Y	
CPOX_AGE	AGE IN YEARS WHEN HAD CHICKEN POX DISEASE	Y	Y	Y	Y	Y	Y	Y	
CPOX_AGER	AGE RANGE WHEN HAD CHICKEN POX DISEASE	Y	Y	Y	Y	Y	Y	Y	
CPOX_HAD	TEEN EVER HAD CHICKEN POX DISEASE?	Y	Y	Y	Y	Y	Y	Y	
D6R	NUMBER OF PROVIDERS IDENTIFIED BY RESPONDENT (NOT DE-DUPLICATED) (RECODE)	Y	Y	Y	Y	Y	Y	Y	
D7	CONSENT TO OBTAIN VACCINATION RECORDS FROM PROVIDERS	Y	Y	Y	Y	Y	Y	Y	
EDUC_TR	TEEN'S CURRENT GRADE IN SCHOOL (RECODE)	Y	Y	Y	Y	Y	Y	Y	
EDUC1	EDUCATION LEVEL OF MOTHER WITH 4 CATEGORIES (RECODE)	Y	Y	Y	Y	Y	Y	Y	
ESTIAPT08	ESTIMATION AREA OF RESIDENCE	Y							
ESTIAPT09	ESTIMATION AREA OF RESIDENCE		Y						
ESTIAPT10	ESTIMATION AREA OF RESIDENCE			Y					
ESTIAPT11	ESTIMATION AREA OF RESIDENCE				Y				
ESTIAPT12	ESTIMATION AREA OF RESIDENCE					Y			
ESTIAPT13	ESTIMATION AREA OF RESIDENCE						Y		
ESTIAPT14	ESTIMATION AREA OF RESIDENCE							Y	
EST_GRANT	NIS CORE GRANTEE ESTIMATION AREA					Y	Y	Y	Added in 2012. Includes the 56 core NIS grantee areas.
FACILITY	FACILITY TYPES FOR TEEN'S PROVIDERS	Y	Y	Y	Y	Y	Y	Y	
FLU_AGE	AGE OF TEEN IN YEARS AT HH-REPORTED INFLUENZA VACCINATION RECEIVED MOST RECENTLY	Y							Dropped in 2009 due to mid-year questionnaire changes.

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
FLU_AGE1	AGE IN YEARS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #1	Y	Y	Y	Y	Y	Y	Y	
FLU_AGE2	AGE IN YEARS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #2	Y	Y	Y	Y	Y	Y	Y	
FLU_AGE3	AGE IN YEARS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS $\#3$	Y	Y	Y	Y	Y	Y	Y	
FLU_AGE4	AGE IN YEARS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #4	Y	Y	Y	Y	Y	Y	Y	
FLU_AGE5	AGE IN YEARS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #5	Y	Y	Y	Y	Y	Y	Y	
FLU_AGE6	AGE IN YEARS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS $\#6$	Y	Y	Y	Y	Y	Y	Y	
FLU_AGE7	AGE IN YEARS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS $\#7$	Y	Y	Y	Y	Y	Y	Y	
FLU_AGE8	AGE IN YEARS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #8	Y	Y	Y	Y	Y	Y	Y	
FLU_AGE9	AGE IN YEARS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #9	Y	Y	Y	Y	Y	Y	Y	
FLU_ANY_REC	HH-REPORT: HAS TEEN RECEIVED ANY INFLUENZA VACCINATIONS IN PAST 12 MONTHS? (RECALL)	Y							Dropped in 2009 due to mid-year questionnaire changes.
FLU_ANY_SC	HH-REPORT: HAS TEEN RECEIVED ANY INFLUENZA VACCINATIONS IN PAST 12 MONTHS? (SHOTCARD)	Y							Dropped in 2009 due to mid-year questionnaire changes.
FLU_DAGE1	AGE IN DAYS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #1				Y	Y	Y	Y	
FLU_DAGE2	AGE IN DAYS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #2				Y	Y	Y	Y	
FLU_DAGE3	AGE IN DAYS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #3				Y	Y	Y	Y	
FLU_DAGE4	AGE IN DAYS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #4				Y	Y	Y	Y	
FLU_DAGE5	AGE IN DAYS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #5				Y	Y	Y	Y	
FLU_DAGE6	AGE IN DAYS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #6				Y	Y	Y	Y	
FLU_DAGE7	AGE IN DAYS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #7				Y	Y	Y	Y	
FLU_DAGE8	AGE IN DAYS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #8				Y	Y	Y	Y	
FLU_DAGE9	AGE IN DAYS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #9				Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
FLU_MAGE1	AGE IN MONTHS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #1				Y	Y	Y	Y	
FLU_MAGE2	AGE IN MONTHS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS $\#2$				Y	Y	Y	Y	
FLU_MAGE3	AGE IN MONTHS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS $\#3$				Y	Y	Y	Y	
FLU_MAGE4	AGE IN MONTHS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS $\#4$				Y	Y	Y	Y	
FLU_MAGE5	AGE IN MONTHS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #5				Y	Y	Y	Y	
FLU_MAGE6	AGE IN MONTHS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #6				Y	Y	Y	Y	
FLU_MAGE7	AGE IN MONTHS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #7				Y	Y	Y	Y	
FLU_MAGE8	AGE IN MONTHS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #8				Y	Y	Y	Y	
FLU_MAGE9	AGE IN MONTHS OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #9				Y	Y	Y	Y	
FLU_MONTH	MONTH OF HH-REPORTED INFLUENZA VACCINATION RECEIVED MOST RECENTLY	Y							Dropped in 2009 due to mid-year questionnaire changes.
FLU_MONTH1	MONTH OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #1	Y	Y	Y	Y	Y	Y	Y	
FLU_MONTH2	MONTH OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS $\#2$	Y	Y	Y	Y	Y	Y	Y	
FLU_MONTH3	MONTH OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS $\#3$	Y	Y	Y	Y	Y	Y	Y	
FLU_MONTH4	MONTH OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #4	Y	Y	Y	Y	Y	Y	Y	
FLU_MONTH5	MONTH OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #5	Y	Y	Y	Y	Y	Y	Y	
FLU_MONTH6	MONTH OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #6	Y	Y	Y	Y	Y	Y	Y	
FLU_MONTH7	MONTH OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #7	Y	Y	Y	Y	Y	Y	Y	
FLU_MONTH8	MONTH OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #8	Y	Y	Y	Y	Y	Y	Y	
FLU_MONTH9	MONTH OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #9	Y	Y	Y	Y	Y	Y	Y	
FLU_PLACE	KIND OF PLACE TEEN RECEIVED MOST RECENT FLU SHOT OR SPRAY	Y							Dropped in 2009 due to mid-year questionnaire changes.

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
FLU_TYPE	TYPE OF HH-REPORTED INFLUENZA VACCINATION RECEIVED MOST RECENTLY	Y							Dropped in 2009 due to mid-year questionnaire changes.
FLU_YEAR	YEAR OF HH-REPORTED INFLUENZA VACCINATION RECEIVED MOST RECENTLY	Y							Dropped in 2009 due to mid-year questionnaire changes.
FLU_YEAR1	YEAR OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #1	Y	Y	Y	Y	Y	Y	Y	
FLU_YEAR2	YEAR OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #2	Y	Y	Y	Y	Y	Y	Y	
FLU_YEAR3	YEAR OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #3	Y	Y	Y	Y	Y	Y	Y	
FLU_YEAR4	YEAR OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #4	Y	Y	Y	Y	Y	Y	Y	
FLU_YEAR5	YEAR OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #5	Y	Y	Y	Y	Y	Y	Y	
FLU_YEAR6	YEAR OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #6	Y	Y	Y	Y	Y	Y	Y	
FLU_YEAR7	YEAR OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #7	Y	Y	Y	Y	Y	Y	Y	
FLU_YEAR8	YEAR OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #8	Y	Y	Y	Y	Y	Y	Y	
FLU_YEAR9	YEAR OF PROV-REPORTED SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #9	Y	Y	Y	Y	Y	Y	Y	
H1N_AGE1	AGE IN YEARS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #1			Y	Y	Y			
H1N_AGE2	AGE IN YEARS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #2			Y	Y	Y			
H1N_AGE3	AGE IN YEARS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #3			Y	Y	Y			
H1N_AGE4	AGE IN YEARS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #4			Y	Y	Y			
H1N_AGE5	AGE IN YEARS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #5			Y	Y	Y			
H1N_AGE6	AGE IN YEARS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #6			Y	Y	Y			
HIN_AGE7	AGE IN YEARS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #7			Y	Y	Y			
H1N_AGE8	AGE IN YEARS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #8			Y	Y	Y			
H1N_AGE9	AGE IN YEARS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #9			Y	Y	Y			

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
HIN_DAGE1	AGE IN DAYS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #1				Y	Y			
H1N_DAGE2	AGE IN DAYS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #2				Y	Y			
H1N_DAGE3	AGE IN DAYS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #3				Y	Y			
H1N_DAGE4	AGE IN DAYS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #4				Y	Y			
HIN_DAGE5	AGE IN DAYS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #5				Y	Y			
H1N_DAGE6	AGE IN DAYS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #6				Y	Y			
H1N_DAGE7	AGE IN DAYS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #7				Y	Y			
H1N_DAGE8	AGE IN DAYS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #8				Y	Y			
H1N_DAGE9	AGE IN DAYS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #9				Y	Y			
H1N_MAGE1	AGE IN MONTHS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #1				Y	Y			
H1N_MAGE2	AGE IN MONTHS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #2				Y	Y			
H1N_MAGE3	AGE IN MONTHS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #3				Y	Y			
H1N_MAGE4	AGE IN MONTHS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #4				Y	Y			
H1N_MAGE5	AGE IN MONTHS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #5				Y	Y			
H1N_MAGE6	AGE IN MONTHS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #6				Y	Y			
H1N_MAGE7	AGE IN MONTHS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #7				Y	Y			
H1N_MAGE8	AGE IN MONTHS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #8				Y	Y			
H1N_MAGE9	AGE IN MONTHS OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #9				Y	Y			
H1N_MONTH1	MONTH OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #1			Y	Y	Y			
H1N_MONTH2	MONTH OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #2			Y	Y	Y			
H1N_MONTH3	MONTH OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #3			Y	Y	Y			
H1N_MONTH4	MONTH OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #4			Y	Y	Y			

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
H1N_MONTH5	MONTH OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #5			Y	Y	Y			
HIN_MONTH6	MONTH OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #6			Y	Y	Y			
HIN_MONTH7	MONTH OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #7			Y	Y	Y			
HIN_MONTH8	MONTH OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #8			Y	Y	Y			
H1N_MONTH9	MONTH OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #9			Y	Y	Y			
H1N_YEAR1	YEAR OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #1			Y	Y	Y			
H1N_YEAR2	YEAR OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #2			Y	Y	Y			
H1N_YEAR3	YEAR OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #3			Y	Y	Y			
H1N_YEAR4	YEAR OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #4			Y	Y	Y			
H1N_YEAR5	YEAR OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #5			Y	Y	Y			
H1N_YEAR6	YEAR OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #6			Y	Y	Y			
H1N_YEAR7	YEAR OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #7			Y	Y	Y			
H1N_YEAR8	YEAR OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #8			Y	Y	Y			
H1N_YEAR9	YEAR OF PROV-REPORTED MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #9			Y	Y	Y			
HEPA_AGE_SC1	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS A SHOT #1 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPA_AGE_SC2	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS A SHOT #2 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPA_AGE_SC3	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS A SHOT #3 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPA_AGE_SC4	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS A SHOT #4 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
HEPA_AGE_SC5	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS A SHOT #5 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPA_AGE_SC6	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS A SHOT #6 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPA_AGE_SC7	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS A SHOT #7 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPA_AGE_SC8	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS A SHOT #8 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPA_AGE1	AGE IN YEARS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #1	Y	Y	Y	Y	Y	Y	Y	
HEPA_AGE2	AGE IN YEARS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #2	Y	Y	Y	Y	Y	Y	Y	
HEPA_AGE3	AGE IN YEARS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #3	Y	Y	Y	Y	Y	Y	Y	
HEPA_AGE4	AGE IN YEARS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #4	Y	Y	Y	Y	Y	Y	Y	
HEPA_AGE5	AGE IN YEARS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #5	Y	Y	Y	Y	Y	Y	Y	
HEPA_AGE6	AGE IN YEARS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #6	Y	Y	Y	Y	Y	Y	Y	
HEPA_AGE7	AGE IN YEARS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #7	Y	Y	Y	Y	Y	Y	Y	
HEPA_AGE8	AGE IN YEARS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #8	Y	Y	Y	Y	Y	Y	Y	
HEPA_AGE9	AGE IN YEARS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #9	Y	Y	Y	Y	Y	Y	Y	
HEPA_ANY_REC	HH-REPORT: HAS TEEN EVER RECEIVED ANY HEPATITIS A SHOTS? (RECALL)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPA_ANY_SC	HH-REPORT: HAS TEEN EVER RECEIVED ANY HEPATITIS A SHOTS? (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPA_DAGE1	AGE IN DAYS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #1				Y	Y	Y	Y	
HEPA_DAGE2	AGE IN DAYS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #2				Y	Y	Y	Y	
HEPA_DAGE3	AGE IN DAYS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #3	·			Y	Y	Y	Y	
HEPA_DAGE4	AGE IN DAYS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #4				Y	Y	Y	Y	
HEPA_DAGE5	AGE IN DAYS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #5				Y	Y	Y	Y	
HEPA_DAGE6	AGE IN DAYS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #6				Y	Y	Y	Y	
HEPA_DAGE7	AGE IN DAYS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #7				Y	Y	Y	Y	
HEPA_DAGE8	AGE IN DAYS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #8				Y	Y	Y	Y	
HEPA_DAGE9	AGE IN DAYS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #9				Y	Y	Y	Y	
HEPA_MAGE1	AGE IN MONTHS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #1				Y	Y	Y	Y	
HEPA_MAGE2	AGE IN MONTHS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #2		· <u> </u>		Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
HEPA_MAGE3	AGE IN MONTHS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #3				Y	Y	Y	Y	
HEPA_MAGE4	AGE IN MONTHS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #4				Y	Y	Y	Y	
HEPA_MAGE5	AGE IN MONTHS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #5				Y	Y	Y	Y	
HEPA_MAGE6	AGE IN MONTHS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #6				Y	Y	Y	Y	
HEPA_MAGE7	AGE IN MONTHS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #7				Y	Y	Y	Y	
HEPA_MAGE8	AGE IN MONTHS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #8				Y	Y	Y	Y	
HEPA_MAGE9	AGE IN MONTHS OF PROV-REPORTED HEPATITIS A-CONTAINING SHOT #9				Y	Y	Y	Y	
HEPA_NUM_REC	NUMBER OF HH-REPORTED HEPATITIS A SHOTS RECEIVED (RECALL)	Y	Y	Y	Y	Y	Y	Y	
HEPA_NUM_SC	NUMBER OF HH-REPORTED HEPATITIS A SHOTS RECEIVED (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPA_NUM_TOT	NUMBER OF HH-REPORTED HEPATITIS A SHOTS RECEIVED (TOTAL)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPA_RECOM	HAD OR HAS DOCTOR OR OTHER HEALTH CARE PROFESSIONAL EVER RECOMMENDED HEPATITIS A SHOTS?	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPB_AGE_SC1	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT #1 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPB_AGE_SC2	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT #2 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPB_AGE_SC3	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT #3 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPB_AGE_SC4	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT #4 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPB_AGE_SC5	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT #5 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPB_AGE_SC6	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT #6 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
HEPB_AGE_SC7	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT #7 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPB_AGE_SC8	AGE OF TEEN IN YEARS AT HH-REPORTED HEPATITIS B SHOT #8 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPB_AGE1	AGE IN YEARS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #1	Y	Y	Y	Y	Y	Y	Y	
HEPB_AGE2	AGE IN YEARS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #2	Y	Y	Y	Y	Y	Y	Y	
HEPB_AGE3	AGE IN YEARS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #3	Y	Y	Y	Y	Y	Y	Y	
HEPB_AGE4	AGE IN YEARS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #4	Y	Y	Y	Y	Y	Y	Y	
HEPB_AGE5	AGE IN YEARS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #5	Y	Y	Y	Y	Y	Y	Y	
HEPB_AGE6	AGE IN YEARS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #6	Y	Y	Y	Y	Y	Y	Y	
HEPB_AGE7	AGE IN YEARS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #7	Y	Y	Y	Y	Y	Y	Y	
HEPB_AGE8	AGE IN YEARS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #8	Y	Y	Y	Y	Y	Y	Y	
HEPB_AGE9	AGE IN YEARS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #9	Y	Y	Y	Y	Y	Y	Y	
HEPB_ANY_REC	HH-REPORT: HAS TEEN EVER RECEIVED ANY HEPATITIS B SHOTS? (RECALL)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPB_ANY_SC	HH-REPORT: HAS TEEN EVER RECEIVED ANY HEPATITIS B SHOTS? (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPB_DAGE1	AGE IN DAYS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #1				Y	Y	Y	Y	
HEPB_DAGE2	AGE IN DAYS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #2				Y	Y	Y	Y	
HEPB_DAGE3	AGE IN DAYS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #3				Y	Y	Y	Y	
HEPB_DAGE4	AGE IN DAYS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #4				Y	Y	Y	Y	
HEPB_DAGE5	AGE IN DAYS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #5				Y	Y	Y	Y	
HEPB_DAGE6	AGE IN DAYS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #6				Y	Y	Y	Y	
HEPB_DAGE7	AGE IN DAYS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #7				Y	Y	Y	Y	
HEPB_DAGE8	AGE IN DAYS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #8				Y	Y	Y	Y	
HEPB_DAGE9	AGE IN DAYS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #9				Y	Y	Y	Y	
HEPB_MAGE1	AGE IN MONTHS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #1				Y	Y	Y	Y	
HEPB_MAGE2	AGE IN MONTHS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #2				Y	Y	Y	Y	
HEPB_MAGE3	AGE IN MONTHS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #3				Y	Y	Y	Y	
HEPB_MAGE4	AGE IN MONTHS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #4				Y	Y	Y	Y	
HEPB_MAGE5	AGE IN MONTHS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #5				Y	Y	Y	Y	
HEPB_MAGE6	AGE IN MONTHS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #6				Y	Y	Y	Y	
HEPB_MAGE7	AGE IN MONTHS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #7				Y	Y	Y	Y	
HEPB_MAGE8	AGE IN MONTHS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #8				Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
HEPB_MAGE9	AGE IN MONTHS OF PROV-REPORTED HEPATITIS B-CONTAINING SHOT #9				Y	Y	Y	Y	
HEPB_NUM_REC	NUMBER OF HH-REPORTED HEPATITIS B SHOTS RECEIVED (RECALL)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPB_NUM_SC	NUMBER OF HH-REPORTED HEPATITIS B SHOTS RECEIVED (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPB_NUM_TOT	NUMBER OF HH-REPORTED HEPATITIS B SHOTS RECEIVED (TOTAL)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HEPB_SCH	DID TEEN RECEIVE HEPATITIS B SHOTS BECAUSE OF SCHOOL REQUIREMENT?	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HH_FLU	HH REPORT OF NUMBER OF SEASONAL INFLUENZA-CONTAINING VACCINATIONS RECEIVED IN THE 12 MONTHS PRIOR TO INTERVIEW			Y					
HH_H1N	HH REPORT OF NUMBER OF MONOVALENT 2009 H1N1 INFLUENZA VACCINATIONS RECEIVED IN THE TWELVE MONTHS PRIOR TO INTERVIEW			Y					
HPV_AGE1	AGE IN YEARS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #1	Y	Y	Y	Y	Y	Y	Y	
HPV_AGE2	AGE IN YEARS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #2	Y	Y	Y	Y	Y	Y	Y	
HPV_AGE3	AGE IN YEARS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #3	Y	Y	Y	Y	Y	Y	Y	
HPV_AGE4	AGE IN YEARS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #4	Y	Y	Y	Y	Y	Y	Y	
HPV_AGE5	AGE IN YEARS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #5	Y	Y	Y	Y	Y	Y	Y	
HPV_AGE6	AGE IN YEARS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #6	Y	Y	Y	Y	Y	Y	Y	
HPV_AGE7	AGE IN YEARS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #7	Y	Y	Y	Y	Y	Y	Y	
HPV_AGE8	AGE IN YEARS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #8	Y	Y	Y	Y	Y	Y	Y	
HPV_AGE9	AGE IN YEARS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #9	Y	Y	Y	Y	Y	Y	Y	
HPV_DAGE1	AGE IN DAYS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #1				Y	Y	Y	Y	
HPV_DAGE2	AGE IN DAYS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #2				Y	Y	Y	Y	
HPV_DAGE3	AGE IN DAYS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #3				Y	Y	Y	Y	
HPV_DAGE4	AGE IN DAYS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #4				Y	Y	Y	Y	
HPV_DAGE5	AGE IN DAYS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #5				Y	Y	Y	Y	
HPV_DAGE6	AGE IN DAYS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #6				Y	Y	Y	Y	
HPV_DAGE7	AGE IN DAYS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #7				Y	Y	Y	Y	
HPV_DAGE8	AGE IN DAYS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #8				Y	Y	Y	Y	
HPV_DAGE9	AGE IN DAYS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #9				Y	Y	Y	Y	
HPV_MAGE1	AGE IN MONTHS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #1				Y	Y	Y	Y	
HPV_MAGE2	AGE IN MONTHS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #2				Y	Y	Y	Y	
HPV_MAGE3	AGE IN MONTHS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #3				Y	Y	Y	Y	
HPV_MAGE4	AGE IN MONTHS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #4			<u> </u>	Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
HPV_MAGE5	AGE IN MONTHS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #5				Y	Y	Y	Y	
HPV_MAGE6	AGE IN MONTHS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #6				Y	Y	Y	Y	
HPV_MAGE7	AGE IN MONTHS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #7				Y	Y	Y	Y	
HPV_MAGE8	AGE IN MONTHS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #8				Y	Y	Y	Y	
HPV_MAGE9	AGE IN MONTHS OF PROV-REPORTED HUMAN PAPILLOMAVIRUS SHOT #9				Y	Y	Y	Y	
HPVI_AGE_SC1	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #1 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HPVI_AGE_SC2	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #2 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HPVI_AGE_SC3	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #3 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HPVI_AGE_SC4	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #4 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HPVI_AGE_SC5	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #5 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HPVI_AGE_SC6	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #6 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HPVI_AGE_SC7	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #7 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HPVI_AGE_SC8	AGE OF TEEN IN YEARS AT HH-REPORTED HUMAN PAPILLOMAVIRUS SHOT #8 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HPVI_ANY_REC	HH-REPORT: HAS TEEN EVER RECEIVED ANY HUMAN PAPILLOMAVIRUS SHOTS? (RECALL)	Y	Y	Y	Y	Y	Y	Y	
HPVI_ANY_SC	HH-REPORT: HAS TEEN EVER RECEIVED ANY HUMAN PAPILLOMAVIRUS SHOTS? (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HPVI_HEARD	HAVE YOU EVER HEARD OF HUMAN PAPILLOMAVIRUS?	Y	Y	Y	Y				Dropped in 2012 due to questionnaire changes.

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
HPVI_INTENTR	HOW LIKELY IS IT TEEN WILL RECEIVE HPV SHOTS IN NEXT 12 MONTHS?			Y	Y	Y	Y	Y	
HPVI_KNOW	HAVE YOU EVER HEARD OF THE CERVICAL CANCER VACCINE, HPV SHOT, OR GARDASIL?	Y	Y	Y	Y				Dropped in 2012 due to questionnaire changes.
HPVI_NUM_REC	NUMBER OF HH-REPORTED HUMAN PAPILLOMAVIRUS SHOTS RECEIVED (RECALL)	Y	Y	Y	Y	Y	Y	Y	
HPVI_NUM_SC	NUMBER OF HH-REPORTED HUMAN PAPILLOMAVIRUS SHOTS RECEIVED (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HPVI_NUM_TOT	NUMBER OF HH-REPORTED HUMAN PAPILLOMAVIRUS SHOTS RECEIVED (TOTAL)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
HPVI_REAS_1	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: NOT RECOMMENDED	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_10	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: COSTS	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_11	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: SAFETY CONCERN/SIDE EFFECTS	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_12	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: EFFECTIVENESS CONCERN	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_13	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: CHILD FEARFUL	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_14	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: CHILD SHOULD MAKE DECISION	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_15	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: COLLEGE SHOT	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_16	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: DON'T BELIEVE IN IMMUNIZATIONS	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_17	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: FAMILY/PARENTAL DECISION	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_18	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: HANDICAPPED/SPECIAL NEEDS/ILLNESS	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_19	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: RELIGION/ORTHODOX	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_2	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: NOT NEEDED OR NOT NECESSARY	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_20	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: TIME	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_21	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: MORE INFO/NEW VACCINE	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_22	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: ALREADY UP-TO-DATE	Y	Y	Y	Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
HPVI_REAS_23	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: NOT AVAILABLE	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_24	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: NOT A SCHOOL REQUIREMENT	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_25	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: INCREASED SEXUAL ACTIVITY CONCERN	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_26	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: NO OB/GYN	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_27	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: ALREADY SEXUALLY ACTIVE	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_28	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: NO DOCTOR OR DOCTOR'S VISIT NOT SCHEDULED	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_29	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: CHILD IS MALE			Y	Y	Y	Y	Y	
HPVI_REAS_3	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: LACK OF KNOWLEDGE	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_5	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: NOT SEXUALLY ACTIVE	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_6	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: NOT APPROPRIATE AGE	Y	Y	Y	Y	Y	Y	Y	
HPVI_REAS_9	MAIN REASON TEEN WILL NOT RECEIVE HUMAN PAPILLOMAVIRUS SHOTS IN THE NEXT 12 MONTHS: OTHER REASON	Y	Y	Y	Y	Y	Y	Y	
HPVI_RECOM	HAD OR HAS DOCTOR OR OTHER HEALTH CARE PROFESSIONAL EVER RECOMMENDED THAT TEEN RECEIVE HPV SHOTS?	Y	Y	Y	Y	Y	Y	Y	
I_HISP_K	IS TEEN HISPANIC OR LATINO?	Y	Y	Y	Y	Y	Y	Y	
IMM_ANY	HH-REPORT: HAS TEEN EVER RECEIVED ANY VACCINATIONS?	Y	Y	Y	Y	Y	Y	Y	
INCPORAR	INCOME TO POVERTY RATIO (RECODE)	Y	Y	Y	Y	Y	Y	Y	
INCPOV1	POVERTY STATUS	Y	Y	Y	Y	Y	Y	Y	
INCQ298A	FAMILY INCOME CATEGORIES (RECODE)	Y	Y	Y	Y	Y	Y	Y	
LANGUAGE	LANGUAGE IN WHICH INTERVIEW WAS CONDUCTED	Y	Y	Y	Y	Y	Y	Y	
MARITAL	MARITAL STATUS OF MOTHER: IMPUTED (COLLAPSED)	Y							Replaced by MARITAL2 starting 2009.
MARITAL2	MARITAL STATUS OF MOTHER (RECODE)		Y	Y	Y	Y	Y	Y	Replaces MARITAL2 starting 2009.
MCV_AGE_SC1	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #1 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MCV_AGE_SC2	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #2 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
MCV_AGE_SC3	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #3 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MCV_AGE_SC4	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #4 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MCV_AGE_SC5	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #5 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MCV_AGE_SC6	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #6 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MCV_AGE_SC7	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #7 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MCV_AGE_SC8	AGE OF TEEN IN YEARS AT HH-REPORTED MEASLES OR MMR SHOT #8 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MCV_AGE1	AGE IN YEARS OF PROV-REPORTED MEASLES-CONTAINING SHOT #1	Y	Y	Y	Y	Y	Y	Y	
MCV_AGE2	AGE IN YEARS OF PROV-REPORTED MEASLES-CONTAINING SHOT #2	Y	Y	Y	Y	Y	Y	Y	
MCV_AGE3	AGE IN YEARS OF PROV-REPORTED MEASLES-CONTAINING SHOT #3	Y	Y	Y	Y	Y	Y	Y	
MCV_AGE4	AGE IN YEARS OF PROV-REPORTED MEASLES-CONTAINING SHOT #4	Y	Y	Y	Y	Y	Y	Y	
MCV_AGE5	AGE IN YEARS OF PROV-REPORTED MEASLES-CONTAINING SHOT #5	Y	Y	Y	Y	Y	Y	Y	
MCV_AGE6	AGE IN YEARS OF PROV-REPORTED MEASLES-CONTAINING SHOT #6	Y	Y	Y	Y	Y	Y	Y	
MCV_AGE7	AGE IN YEARS OF PROV-REPORTED MEASLES-CONTAINING SHOT #7	Y	Y	Y	Y	Y	Y	Y	
MCV_AGE8	AGE IN YEARS OF PROV-REPORTED MEASLES-CONTAINING SHOT #8	Y	Y	Y	Y	Y	Y	Y	
MCV_AGE9	AGE IN YEARS OF PROV-REPORTED MEASLES-CONTAINING SHOT #9	Y	Y	Y	Y	Y	Y	Y	
MCV_ANY_REC	HH-REPORT: HAS TEEN EVER RECEIVED ANY MMR/MEASLES SHOTS? (RECALL)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MCV_ANY_SC	HH-REPORT: HAS TEEN EVER RECEIVED ANY MMR/MEASLES SHOTS? (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MCV_DAGE1	AGE IN DAYS OF PROV-REPORTED MEASLES-CONTAINING SHOT #1				Y	Y	Y	Y	
MCV_DAGE2	AGE IN DAYS OF PROV-REPORTED MEASLES-CONTAINING SHOT #2				Y	Y	Y	Y	
MCV_DAGE3	AGE IN DAYS OF PROV-REPORTED MEASLES-CONTAINING SHOT #3				Y	Y	Y	Y	
MCV_DAGE4	AGE IN DAYS OF PROV-REPORTED MEASLES-CONTAINING SHOT #4				Y	Y	Y	Y	<u> </u>

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
MCV_DAGE5	AGE IN DAYS OF PROV-REPORTED MEASLES-CONTAINING SHOT #5				Y	Y	Y	Y	
MCV_DAGE6	AGE IN DAYS OF PROV-REPORTED MEASLES-CONTAINING SHOT #6				Y	Y	Y	Y	
MCV_DAGE7	AGE IN DAYS OF PROV-REPORTED MEASLES-CONTAINING SHOT #7				Y	Y	Y	Y	
MCV_DAGE8	AGE IN DAYS OF PROV-REPORTED MEASLES-CONTAINING SHOT #8				Y	Y	Y	Y	
MCV_DAGE9	AGE IN DAYS OF PROV-REPORTED MEASLES-CONTAINING SHOT #9				Y	Y	Y	Y	
MCV_MAGE1	AGE IN MONTHS OF PROV-REPORTED MEASLES-CONTAINING SHOT #1				Y	Y	Y	Y	
MCV_MAGE2	AGE IN MONTHS OF PROV-REPORTED MEASLES-CONTAINING SHOT #2				Y	Y	Y	Y	
MCV_MAGE3	AGE IN MONTHS OF PROV-REPORTED MEASLES-CONTAINING SHOT #3				Y	Y	Y	Y	
MCV_MAGE4	AGE IN MONTHS OF PROV-REPORTED MEASLES-CONTAINING SHOT #4				Y	Y	Y	Y	
MCV_MAGE5	AGE IN MONTHS OF PROV-REPORTED MEASLES-CONTAINING SHOT #5				Y	Y	Y	Y	
MCV_MAGE6	AGE IN MONTHS OF PROV-REPORTED MEASLES-CONTAINING SHOT #6				Y	Y	Y	Y	
MCV_MAGE7	AGE IN MONTHS OF PROV-REPORTED MEASLES-CONTAINING SHOT #7				Y	Y	Y	Y	
MCV_MAGE8	AGE IN MONTHS OF PROV-REPORTED MEASLES-CONTAINING SHOT #8				Y	Y	Y	Y	
MCV_MAGE9	AGE IN MONTHS OF PROV-REPORTED MEASLES-CONTAINING SHOT #9				Y	Y	Y	Y	
MCV_NUM_REC	NUMBER OF HH-REPORTED MMR/MEASLES SHOTS RECEIVED (RECALL)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MCV_NUM_SC	NUMBER OF HH-REPORTED MMR/MEASLES SHOTS RECEIVED (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MCV_NUM_TOT	NUMBER OF HH-REPORTED MMR/MEASLES SHOTS RECEIVED (TOTAL)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MEN_AGE_SC1	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #1 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MEN_AGE_SC2	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #2 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MEN_AGE_SC3	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #3 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MEN_AGE_SC4	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #4 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
MEN_AGE_SC5	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #5 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MEN_AGE_SC6	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #6 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MEN_AGE_SC7	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #7 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MEN_AGE_SC8	AGE OF TEEN IN YEARS AT HH-REPORTED MENINGOCOCCAL SHOT #8 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MEN_AGE1	AGE IN YEARS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #1	Y	Y	Y	Y	Y	Y	Y	
MEN_AGE2	AGE IN YEARS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #2	Y	Y	Y	Y	Y	Y	Y	
MEN_AGE3	AGE IN YEARS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #3	Y	Y	Y	Y	Y	Y	Y	
MEN_AGE4	AGE IN YEARS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #4	Y	Y	Y	Y	Y	Y	Y	
MEN_AGE5	AGE IN YEARS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #5	Y	Y	Y	Y	Y	Y	Y	
MEN_AGE6	AGE IN YEARS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #6	Y	Y	Y	Y	Y	Y	Y	
MEN_AGE7	AGE IN YEARS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #7	Y	Y	Y	Y	Y	Y	Y	
MEN_AGE8	AGE IN YEARS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #8	Y	Y	Y	Y	Y	Y	Y	
MEN_AGE9	AGE IN YEARS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #9	Y	Y	Y	Y	Y	Y	Y	
MEN_ANY_REC	HH-REPORT: HAS TEEN EVER RECEIVED ANY MENINGITIS SHOTS? (RECALL)	Y	Y	Y	Y	Y	Y	Y	
MEN_ANY_SC	HH-REPORT: HAS TEEN EVER RECEIVED ANY MENINGITIS SHOTS? (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MEN_DAGE1	AGE IN DAYS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #1				Y	Y	Y	Y	
MEN_DAGE2	AGE IN DAYS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #2				Y	Y	Y	Y	
MEN_DAGE3	AGE IN DAYS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #3				Y	Y	Y	Y	
MEN_DAGE4	AGE IN DAYS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #4				Y	Y	Y	Y	
MEN_DAGE5	AGE IN DAYS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #5				Y	Y	Y	Y	
MEN_DAGE6	AGE IN DAYS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #6				Y	Y	Y	Y	
MEN_DAGE7	AGE IN DAYS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #7				Y	Y	Y	Y	
MEN_DAGE8	AGE IN DAYS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #8				Y	Y	Y	Y	
MEN_DAGE9	AGE IN DAYS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #9				Y	Y	Y	Y	
MEN_MAGE1	AGE IN MONTHS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #1				Y	Y	Y	Y	
MEN_MAGE2	AGE IN MONTHS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #2				Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
MEN_MAGE3	AGE IN MONTHS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #3				Y	Y	Y	Y	
MEN_MAGE4	AGE IN MONTHS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #4				Y	Y	Y	Y	
MEN_MAGE5	AGE IN MONTHS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #5				Y	Y	Y	Y	
MEN_MAGE6	AGE IN MONTHS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #6				Y	Y	Y	Y	
MEN_MAGE7	AGE IN MONTHS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #7				Y	Y	Y	Y	
MEN_MAGE8	AGE IN MONTHS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #8				Y	Y	Y	Y	
MEN_MAGE9	AGE IN MONTHS OF PROV-REPORTED MENINGOCOCCAL-CONTAINING SHOT #9				Y	Y	Y	Y	
MEN_NUM_REC	NUMBER OF HH-REPORTED MENINGITIS SHOTS RECEIVED (RECALL)	Y	Y	Y	Y	Y	Y	Y	
MEN_NUM_SC	NUMBER OF HH-REPORTED MENINGITIS SHOTS RECEIVED (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MEN_NUM_TOT	NUMBER OF HH-REPORTED MENINGITIS SHOTS RECEIVED (TOTAL)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MEN_REAS_1	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: NOT RECOMMENDED	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_10	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: COSTS	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_11	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: SAFETY CONCERN/SIDE EFFECTS	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_12	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: EFFECTIVENESS CONCERN	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_13	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: CHILD FEARFUL	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_14	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: CHILD SHOULD MAKE DECISION	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_15	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: COLLEGE SHOT	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_16	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: DON'T BELIEVE IN VACCINATIONS	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_17	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: FAMILY/PARENTAL DECISION	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_18	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: HANDICAPPED/SPECIAL NEEDS/ILLNESS	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_19	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: RELIGION/ORTHODOX	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_2	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: LACK OF KNOWLEDGE	Y	Y	Y	Y	Y	Y	Y	
MEN REAS 20	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: TIME	Y	Y	Y	Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
MEN_REAS_21	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: MORE INFO/NEW VACCINE	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_22	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: ALREADY UP-TO-DATE	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_23	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: NO DOCTOR OR DOCTOR'S VISIT NOT SCHEDULED	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_3	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: NOT NEEDED OR NOT NECESSARY	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_4	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: NOT SCHOOL REQUIREMENT	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_5	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: NOT AVAILABLE	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_6	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: NOT APPROPRIATE AGE	Y	Y	Y	Y	Y	Y	Y	
MEN_REAS_7	MAIN REASON TEEN DID NOT RECEIVE MENINGITIS SHOTS: OTHER REASON	Y	Y	Y	Y	Y	Y	Y	
MEN_RECOM	HAD OR HAS DOCTOR OR OTHER HEALTH CARE PROFESSIONAL EVER RECOMMENDED THAT TEEN RECEIVE MENINGITIS SHOTS?	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
MOBIL_I	GEOGRAPHIC MOBILITY STATUS: STATE OF RESIDENCE AT BIRTH VERSUS CURRENT STATE	Y	Y	Y	Y	Y	Y	Y	
N_PRV	NUMBER OF IHQS WITH VACCINATION INFORMATION FOR THE TEEN (RECODE)	Y	Y	Y	Y	Y	Y	Y	
NOSCHOOLR	DURING PAST 12 MONTHS, ABOUT HOW MANY DAYS DID TEEN MISS SCHOOL BECAUSE OF ILLNESS OR INJURY? (RECODE)	Y	Y	Y	Y	Y	Y	Y	
NUM_CELLS_HH	NUMBER OF WORKING CELL PHONES HOUSEHOLD MEMBERS HAVE AVAILABLE FOR PERSONAL USE		Y	Y	Y	Y	Y	Y	
NUM_CELLS_PARENTS	NUMBER OF WORKING CELL PHONES USUALLY USED BY PARENTS OR GUARDIANS		Y	Y	Y	Y	Y	Y	
NUM_PHONE	NUMBER OF RESIDENTIAL TELEPHONE NUMBERS IN HOUSEHOLD (EXCLUDING CELL PHONES)		Y	Y	Y	Y	Y	Y	
NUM_PROV	NUMBER OF VALID, UNIQUE PROVIDERS IDENTIFIED BY RESPONDENT (FOR TEENS WITH CONSENT) (RECODE)	Y	Y	Y	Y	Y	Y	Y	
P_N13FLU	NUMBER OF SEASONAL INFLUENZA VACCINATIONS IN THE PAST THREE YEARS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13FLU_FL	NUMBER OF SEASONAL INFLUENZA VACCINATIONS OF UNKNOWN TYPE IN PAST THREE YEARS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13FLU_FM	NUMBER OF SEASONAL FLUMIST VACCINATIONS IN PAST THREE YEARS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13FLU_FN	NUMBER OF INJECTED SEASONAL INFLUENZA SHOTS OF OTHER/UNKNOWN TYPE IN PAST THREE YEARS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
P_N13FLU_FV	NUMBER OF SEASONAL FLUVIRIN SHOTS IN PAST THREE YEARS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13FLU_FZ	NUMBER OF SEASONAL FLUZONE SHOTS IN PAST THREE YEARS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13H1N	NUMBER OF MONOVALENT 2009 HINI INFLUENZA VACCINATIONS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE AND EXCLUDING VACCINATIONS GIVEN PRIOR TO 10/5/2009.			Y	Y	Y			
P_N13H1N_1L	NUMBER OF MONOVALENT 2009 H1N1 INFLUENZA VACCINATIONS OF UNKNOWN TYPE BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE AND EXCLUDING VACCINATIONS GIVEN PRIOR TO 10/5/2009.			Y	Y	Y			
P_N13H1N_1M	NUMBER OF INHALED NASAL MONOVALENT 2009 HINI INFLUENZA SPRAY VACCINATIONS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE AND EXCLUDING VACCINATIONS GIVEN PRIOR TO 10/5/2009.			Y	Y	Y			
P_N13H1N_1N	NUMBER OF INJECTED MONOVALENT 2009 HINI INFLUENZA VACCINATIONS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE AND EXCLUDING VACCINATIONS GIVEN PRIOR TO 10/5/2009.			Y	Y	Y			
P_N13HEPA	NUMBER OF HEPATITIS A-CONTAINING SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13HEPA_HA	NUMBER OF HEPATITIS A-CONTAINING SHOTS OF UNKNOWN TYPE BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13HEPA_HO	NUMBER OF HEPATITIS A-ONLY SHOTS DETERMINED BY AGE 13 YEARS FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13HEPB	NUMBER OF HEPATITIS B-CONTAINING SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13HEPB_43	NUMBER OF HEPB/HIB COMBO SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13HEPB_61	NUMBER OF HEPATITIS B 0.5 ML RECOMBIVAX SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13HEPB_62	NUMBER OF HEPATITIS B 1.0 ML RECOMBIVAX SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13HEPB_63	NUMBER OF HEPATITIS B ENGERIX SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
P_N13HEPB_64	NUMBER OF HEPATITIS B-ONLY SHOTS OF UNKNOWN TYPE BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13HEPB_HB	NUMBER OF HEPATITIS B-CONTAINING SHOTS OF UNKNOWN TYPE BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13HPV	NUMBER OF HUMAN PAPILLOMAVIRUS SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13MCV	NUMBER OF MEASLES-CONTAINING SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13MCV_30	NUMBER OF MMR-ONLY SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13MCV_31	NUMBER OF MEASLES-ONLY SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13MCV_32	NUMBER OF MEASLES-MUMPS SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13MCV_33	NUMBER OF MEASLES-RUBELLA SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13MCV_MM	NUMBER OF MEASLES-CONTAINING SHOTS OF UNKNOWN TYPE BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13MCV_VM	NUMBER OF MMR/VARICELLA SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13MEN	NUMBER OF MENINGOCOCCAL-CONTAINING SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13MEN_80	NUMBER OF MENINGOCOCCAL MCV4 SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13MEN_81	NUMBER OF MENINGOCOCCAL MPSV4 SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13MEN_82	NUMBER OF MENINGOCOCCAL-CONTAINING SHOTS OF UNKNOWN TYPE BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13MMR	NUMBER OF MMR-CONTAINING SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
P_N13PPS	NUMBER OF PNEUMOCOCCAL POLYSACCHARIDE SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13TDAP_POST10	NUMBER OF TDAP SHOTS SINCE AGE 10 YEARS AND BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13TDAP_POST7	NUMBER OF TDAP SHOTS SINCE AGE 7 YEARS AND BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.			Y	Y	Y	Y	Y	
P_N13TDP	NUMBER OF TD/TDAP-CONTAINING SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13TDP_11	NUMBER OF TD-ONLY SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13TDP_14	NUMBER OF TDAP-ONLY SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13TDP_15	NUMBER OF TD/TDAP-CONTAINING SHOTS OF UNKNOWN TYPE BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13TDP_POST10	NUMBER OF TD/TDAP-CONTAINING SHOTS SINCE AGE 10 YEARS AND BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13VRC	NUMBER OF VARICELLA-CONTAINING SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13VRC_POST1	NUMBER OF VARICELLA-CONTAINING SHOTS AT 12+ MONTHS OF AGE AND BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13VRC_VA	NUMBER OF VARICELLA-CONTAINING SHOTS OF UNKNOWN TYPE BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13VRC_VM	NUMBER OF MMR/VARICELLA SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_N13VRC_VO	NUMBER OF VARICELLA-ONLY SHOTS BY AGE 13 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMFLU	NUMBER OF SEASONAL INFLUENZA VACCINATIONS IN THE PAST THREE YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMFLU_FL	NUMBER OF SEASONAL INFLUENZA VACCINATIONS OF UNKNOWN TYPE IN PAST THREE YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
P_NUMFLU_FM	NUMBER OF SEASONAL FLUMIST VACCINATIONS IN PAST THREE YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMFLU_FN	NUMBER OF INJECTED SEASONAL INFLUENZA SHOTS OF OTHER/UNKNOWN TYPE IN PAST THREE YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMFLU_FV	NUMBER OF SEASONAL FLUVIRIN SHOTS IN PAST THREE YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMFLU_FZ	NUMBER OF SEASONAL FLUZONE SHOTS IN PAST THREE YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMH1N	NUMBER OF MONOVALENT 2009 HINI INFLUENZA VACCINATIONS DETERMINED FROM PROVIDER INFO, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE AND EXCLUDING VACCINATIONS GIVEN PRIOR TO 10/5/2009.			Y	Y	Y			
P_NUMH1N_1L	NUMBER OF MONOVALENT 2009 HINI INFLUENZA VACCINATIONS OF UNKNOWN TYPE DETERMINED FROM PROVIDER INFO, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE AND EXCLUDING VACCINATIONS GIVEN PRIOR TO 10/5/2009.			Y	Y	Y			
P_NUMH1N_1M	NUMBER OF INHALED NASAL MONOVALENT 2009 HIN1 INFLUENZA SPRAY VACCINATIONS DETERMINED FROM PROVIDER INFO, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE AND EXCLUDING VACCINATIONS GIVEN PRIOR TO 10/5/2009.			Y	Y	Y			
P_NUMH1N_1N	NUMBER OF INJECTED MONOVALENT 2009 HIN1 INFLUENZA VACCINATIONS DETERMINED FROM PROVIDER INFO, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE AND EXCLUDING VACCINATIONS GIVEN PRIOR TO 10/5/2009.			Y	Y	Y			
P_NUMHEPA	NUMBER OF HEPATITIS A-CONTAINING SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMHEPA_HA	NUMBER OF HEPATITIS A-CONTAINING SHOTS OF UNKNOWN TYPE DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMHEPA_HO	NUMBER OF HEPATITIS A-ONLY SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMHEPB	NUMBER OF HEPATITIS B-CONTAINING SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMHEPB_43	NUMBER OF HEPB/HIB COMBO SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMHEPB_61	NUMBER OF HEPATITIS B 0.5 ML RECOMBIVAX SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMHEPB_62	NUMBER OF HEPATITIS B 1.0 ML RECOMBIVAX SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
P_NUMHEPB_63	NUMBER OF HEPATITIS B ENGERIX SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMHEPB_64	NUMBER OF HEPATITIS B-ONLY SHOTS OF UNKNOWN TYPE DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMHEPB_HB	NUMBER OF HEPATITIS B-CONTAINING SHOTS OF UNKNOWN TYPE DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMHPV	NUMBER OF HUMAN PAPILLOMAVIRUS SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMMCV	NUMBER OF MEASLES-CONTAINING SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMMCV_30	NUMBER OF MMR-ONLY SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMMCV_31	NUMBER OF MEASLES-ONLY SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMMCV_32	NUMBER OF MEASLES-MUMPS SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMMCV_33	NUMBER OF MEASLES-RUBELLA SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMMCV_MM	NUMBER OF MEASLES-CONTAINING SHOTS OF UNKNOWN TYPE DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMMCV_VM	NUMBER OF MMR/VARICELLA SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMMEN	NUMBER OF MENINGOCOCCAL-CONTAINING SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMMEN_80	NUMBER OF MENINGOCOCCAL MCV4 SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMMEN_81	NUMBER OF MENINGOCOCCAL MPSV4 SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMMEN_82	NUMBER OF MENINGOCOCCAL-CONTAINING SHOTS OF UNKNOWN TYPE DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMMMR	NUMBER OF MMR-CONTAINING SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMPPS	NUMBER OF PNEUMOCOCCAL POLYSACCHARIDE SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMTDAP_POST10	NUMBER OF TDAP SHOTS SINCE AGE 10 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMTDAP_POST7	NUMBER OF TDAP SHOTS SINCE AGE 7 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.			Y	Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
P_NUMTDP	NUMBER OF TD/TDAP-CONTAINING SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMTDP_11	NUMBER OF TD-ONLY SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMTDP_14	NUMBER OF TDAP-ONLY SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMTDP_15	NUMBER OF TD/TDAP-CONTAINING SHOTS OF UNKNOWN TYPE DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMTDP_POST10	NUMBER OF TD/TDAP-CONTAINING SHOTS SINCE AGE 10 YEARS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMVRC	NUMBER OF VARICELLA-CONTAINING SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMVRC_POST1	NUMBER OF VARICELLA-CONTAINING SHOTS AT 12+ MONTHS OF AGE DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMVRC_VA	NUMBER OF VARICELLA-CONTAINING SHOTS OF UNKNOWN TYPE DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMVRC_VM	NUMBER OF MMR/VARICELLA SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_NUMVRC_VO	NUMBER OF VARICELLA-ONLY SHOTS DETERMINED FROM PROVIDER INFO, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_U131321	UP-TO-DATE FLAG (PROV INFO): 1:3:2:1 SERIES BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_U1313212	UP-TO-DATE FLAG (PROV INFO): 1:3:2:1:2 SERIES BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_U13FLU0607	UP-TO-DATE FLAG (PROV INFO): 1+ INFLUENZA VACCINATION BETWEEN SEPT 1, 2006 AND JAN 31, 2007, BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y							
P_U13FLU0708	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2007 AND JAN 31, 2008, BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y						
P_U13FLU0809	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2008 AND JAN 31, 2009, BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y					
P_U13FLU0910	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2009 AND JAN 31, 2010, BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.		Y	Y	Y				
P_U13FLU1011	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2010 AND JAN 31, 2011, BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.			Y	Y	Y			
P_U13FLU1112	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2011 AND JAN 31, 2012, BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.				Y	Y	Y		

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
P_U13FLU1213	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2012 AND JAN 31, 2013, BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.					Y	Y	Y	
P_U13FLU1314	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2013 AND JAN 31, 2014, BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.						Y	Y	
P_U13FLU1415	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2014 AND JAN 31, 2015, BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.							Y	
P_U13H1N_1	UP-TO-DATE FLAG (PROV INFO): 1+ MONOVALENT 2009 HIN1 FLU VACCINATION BEFORE AGE 13 YEARS, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE AND EXCLUDING VACCINATIONS GIVEN PRIOR TO 10/5/2009.			Y	Y	Y			
P_U13H1N_2	UP-TO-DATE FLAG (PROV INFO): 2+ MONOVALENT 2009 HIN1 FLU VACCINATIONS BEFORE AGE 13 YEARS, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE AND EXCLUDING VACCINATIONS GIVEN PRIOR TO 10/5/2009.			Y	Y	Y			
P_U13HEPA	UP-TO-DATE FLAG (PROV INFO): 2+ HEPATITIS A-CONTAINING SHOTS BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
Р_U13НЕРВ	UP-TO-DATE FLAG (PROV INFO): 2+ HEPB 1.0 ML RECOMBIVAX SHOTS BEFORE AGE 13 YEARS, OR 3+ ANY COMBINATION OF HEPATITIS B-CONTAINING SHOTS BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_U13HPV	UP-TO-DATE FLAG (PROV INFO): 1+ HUMAN PAPILLOMAVIRUS SHOT BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_U13HPV3	UP-TO-DATE FLAG (PROV INFO): 3+ HUMAN PAPILLOMAVIRUS SHOTS BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.			Y	Y	Y	Y	Y	
P_U13MCV	UP-TO-DATE FLAG (PROV INFO): 2+ MEASLES-CONTAINING SHOTS BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_U13MEN	UP-TO-DATE FLAG (PROV INFO): 1+ MENINGOCOCCAL-CONTAINING SHOT BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_U13MMR	UP-TO-DATE FLAG (PROV INFO): 2+ MMR-CONTAINING SHOTS BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_U13PPS	UP-TO-DATE FLAG (PROV INFO): 1+ PNEUMOCOCCAL POLYSACCHARIDE SHOT BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_U13TD	UP-TO-DATE FLAG (PROV INFO) FOR TD/TDAP BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_U13TDAP	UP-TO-DATE FLAG (PROV INFO): 1+ TDAP-ONLY SHOT SINCE AGE 10 YEARS AND BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
P_U13TDAP7	UP-TO-DATE FLAG (PROV INFO): 1+ TDAP-ONLY SHOT SINCE AGE 7 YEARS AND BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.			Y	Y	Y	Y	Y	
P_U13VRC	UP-TO-DATE FLAG (PROV INFO): 1+ VARICELLA-CONTAINING SHOT AT 12+ MONTHS OF AGE AND BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_U13VRC2	UP-TO-DATE FLAG (PROV INFO): 2+ VARICELLA-CONTAINING SHOTS AT 12+ MONTHS OF AGE AND BEFORE AGE 13 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_UTD1321	UP-TO-DATE FLAG (PROV INFO): 1:3:2:1 SERIES, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_UTD13212	UP-TO-DATE FLAG (PROV INFO): 1:3:2:1:2 SERIES, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_UTDFLU0607	UP-TO-DATE FLAG (PROV INFO): 1+ INFLUENZA VACCINATION BETWEEN SEPT 1, 2006 AND JAN 31, 2007, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y							
P_UTDFLU0708	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2007 AND JAN 31, 2008, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y						
P_UTDFLU0809	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2008 AND JAN 31, 2009, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y					
P_UTDFLU0910	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2009 AND JAN 31, 2010, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.		Y	Y	Y				
P_UTDFLU1011	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2010 AND JAN 31, 2011, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.			Y	Y	Y			
P_UTDFLU1112	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2011 AND JAN 31, 2012, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.				Y	Y	Y		
P_UTDFLU1213	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2012 AND JAN 31, 2013, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.					Y	Y	Y	
P_UTDFLU1314	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2013 AND JAN 31, 2014, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.						Y	Y	
P_UTDFLU1415	UP-TO-DATE FLAG (PROV INFO): 1+ SEASONAL INFLUENZA VACCINATION BETWEEN SEPT 1, 2014 AND JAN 31, 2015, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.							Y	
P_UTDH1N_1	UP-TO-DATE FLAG (PROV INFO): 1+ MONOVALENT 2009 HIN1 FLU VACCINATION, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE AND EXCLUDING VACCINATIONS GIVEN PRIOR TO 10/5/2009.			Y	Y	Y			

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
P_UTDH1N_2	UP-TO-DATE FLAG (PROV INFO): 2+ MONOVALENT 2009 HINI FLU VACCINATIONS, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE AND EXCLUDING VACCINATIONS GIVEN PRIOR TO 10/5/2009.			Y	Y	Y			
P_UTDHEPA	UP-TO-DATE FLAG (PROV INFO): 2+ HEPATITIS A-CONTAINING SHOTS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_UTDHEPA1	UP-TO-DATE FLAG (PROV INFO): 1+ HEPATITIS A-CONTAINING SHOTS, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE.				Y	Y	Y	Y	
P_UTDHEPB	UP-TO-DATE FLAG (PROV INFO): 2+ HEPB 1.0 ML RECOMBIVAX SHOTS, OR 3+ ANY COMBINATION OF HEPATITIS B-CONTAINING SHOTS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_UTDHPV	UP-TO-DATE FLAG (PROV INFO): 1+ HUMAN PAPILLOMAVIRUS SHOT, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_UTDHPV11	UP-TO-DATE FLAG (PROV INFO): 1 HUMAN PAPILLOMAVIRUS SHOT GIVEN 1+ SHOT, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE.				Y	Y	Y	Y	
P_UTDHPV12	UP-TO-DATE FLAG (PROV INFO): 2 HUMAN PAPILLOMAVIRUS SHOTS GIVEN 1+ SHOT, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE.				Y	Y	Y	Y	
P_UTDHPV13	UP-TO-DATE FLAG (PROV INFO): 3+ HUMAN PAPILLOMAVIRUS SHOTS GIVEN 1+ SHOT, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE.				Y	Y	Y	Y	
P_UTDHPV2	UP-TO-DATE FLAG (PROV INFO): 2+ HUMAN PAPILLOMAVIRUS SHOTS, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE.				Y	Y	Y	Y	
P_UTDHPV3	UP-TO-DATE FLAG (PROV INFO): 3+ HUMAN PAPILLOMAVIRUS SHOTS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.			Y	Y	Y	Y	Y	
P_UTDHPV3C	UP-TO-DATE FLAG (PROV INFO): HPV CONDITIONAL COMPLETION RATE, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE.				Y	Y	Y	Y	
P_UTDMCV	UP-TO-DATE FLAG (PROV INFO): 2+ MEASLES-CONTAINING SHOTS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_UTDMEN	UP-TO-DATE FLAG (PROV INFO): 1+ MENINGOCOCCAL-CONTAINING SHOT, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_UTDMENACWY	UP-TO-DATE FLAG (PROV INFO): 1+ MENINGOCOCCAL-CONJUGATE SHOT OR MENINGOCOCCAL-UNKNOWN TYPE SHOT, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE.				Y	Y	Y	Y	
P_UTDMMR	UP-TO-DATE FLAG (PROV INFO): 2+ MMR-CONTAINING SHOTS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_UTDPPS	UP-TO-DATE FLAG (PROV INFO): 1+ PNEUMOCOCCAL POLYSACCHARIDE SHOT, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_UTDTD	UP-TO-DATE FLAG (PROV INFO) FOR TD/TDAP, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_UTDTD_POST10	UP-TO-DATE FLAG (PROV INFO): 1+ TD-ONLY SINCE AGE 10 YEARS, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE.				Y	Y	Y	Y	
P_UTDTDAP	UP-TO-DATE FLAG (PROV INFO): 1+ TDAP-ONLY SHOT SINCE AGE 10 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
P_UTDTDAP7	UP-TO-DATE FLAG (PROV INFO): 1+ TDAP-ONLY SHOT SINCE AGE 7 YEARS, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.			Y	Y	Y	Y	Y	
P_UTDTDP_POST10	UP-TO-DATE FLAG (PROV INFO): 1+ TD/TDAP-CONTAINING SINCE AGE 10 YEARS, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE.				Y	Y	Y	Y	
P_UTDVRC	UP-TO-DATE FLAG (PROV INFO): 1+ VARICELLA-CONTAINING SHOT AT 12+ MONTHS OF AGE, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_UTDVRC_NOHIST4	UP-TO-DATE FLAG (PROV INFO): 1+ VARICELLA-CONTAINING SHOT AT 4+ YEARS OF AGE, NO HISTORY OF CHICKEN POX DISEASE, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE.				Y	Y	Y	Y	
P_UTDVRC2	UP-TO-DATE FLAG (PROV INFO): 2+ VARICELLA-CONTAINING SHOTS AT 12+ MONTHS OF AGE, EXCLUDING ANY VACCINATIONS AFTER THE RDD INTERVIEW DATE.	Y	Y	Y	Y	Y	Y	Y	
P_UTDVRC2_NOHIST4	UP-TO-DATE FLAG (PROV INFO): 2+ VARICELLA-CONTAINING SHOT AT 4+ YEARS OF AGE, NO HISTORY OF CHICKEN POX DISEASE, EXCLUDING VACCINATIONS AFTER THE HOUSEHOLD INTERVIEW DATE.				Y	Y	Y	Y	
PDAT	ADEQUATE PROVIDER DATA FLAG	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to change in adequate provider data definition
PDAT2	ADEQUATE PROVIDER DATA FLAG							Y	Added in 2014 due to change in adequate provider data definition
PPS_AGE1	AGE IN YEARS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #1	Y	Y	Y	Y	Y	Y	Y	
PPS_AGE2	AGE IN YEARS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #2	Y	Y	Y	Y	Y	Y	Y	
PPS_AGE3	AGE IN YEARS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #3	Y	Y	Y	Y	Y	Y	Y	
PPS_AGE4	AGE IN YEARS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #4	Y	Y	Y	Y	Y	Y	Y	
PPS_AGE5	AGE IN YEARS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #5	Y	Y	Y	Y	Y	Y	Y	
PPS_AGE6	AGE IN YEARS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #6	Y	Y	Y	Y	Y	Y	Y	
PPS_AGE7	AGE IN YEARS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #7	Y	Y	Y	Y	Y	Y	Y	
PPS_AGE8	AGE IN YEARS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #8	Y	Y	Y	Y	Y	Y	Y	
PPS_AGE9	AGE IN YEARS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #9	Y	Y	Y	Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
PPS_DAGE1	AGE IN DAYS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #1				Y	Y	Y	Y	
PPS_DAGE2	AGE IN DAYS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #2				Y	Y	Y	Y	
PPS_DAGE3	AGE IN DAYS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #3				Y	Y	Y	Y	
PPS_DAGE4	AGE IN DAYS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #4				Y	Y	Y	Y	
PPS_DAGE5	AGE IN DAYS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #5				Y	Y	Y	Y	
PPS_DAGE6	AGE IN DAYS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #6				Y	Y	Y	Y	
PPS_DAGE7	AGE IN DAYS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #7				Y	Y	Y	Y	
PPS_DAGE8	AGE IN DAYS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #8				Y	Y	Y	Y	
PPS_DAGE9	AGE IN DAYS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #9				Y	Y	Y	Y	
PPS_MAGE1	AGE IN MONTHS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #1				Y	Y	Y	Y	
PPS_MAGE2	AGE IN MONTHS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #2				Y	Y	Y	Y	
PPS_MAGE3	AGE IN MONTHS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #3				Y	Y	Y	Y	
PPS_MAGE4	AGE IN MONTHS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #4				Y	Y	Y	Y	
PPS_MAGE5	AGE IN MONTHS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #5				Y	Y	Y	Y	
PPS_MAGE6	AGE IN MONTHS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #6				Y	Y	Y	Y	
PPS_MAGE7	AGE IN MONTHS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #7				Y	Y	Y	Y	
PPS_MAGE8	AGE IN MONTHS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #8				Y	Y	Y	Y	
PPS_MAGE9	AGE IN MONTHS OF PROV-REPORTED PNEUMOCOCCAL POLYSACCHARIDE SHOT #9				Y	Y	Y	Y	
PROVWT	FINAL PROVIDER-PHASE WEIGHT (EXCLUDING U.S. VIRGIN ISLANDS)	Y	Y	Y					
PROVWT_D	FINAL DUAL-FRAME PROVIDER-PHASE WEIGHT				Y	Y	Y	Y	
PROVWT_LL	FINAL LANDLINE PROVIDER-PHASE WEIGHT (EXCLUDING U.S. VIRGIN ISLANDS)				Y				
PROVWTVI	FINAL PROVIDER-PHASE WEIGHT (INCLUDING U.S. VIRGIN ISLANDS)		Y	Y					
PROVWTVI_D	FINAL PROVIDER-PHASE WEIGHT (INCLUDING U.S. VIRGIN ISLANDS)					Y			
PROVWTVIGU_D	FINAL PROVIDER-PHASE WEIGHT (INCLUDING U.S. VIRGIN ISLANDS AND GUAM)						Y		

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
PROVWT_D_TERR	FINAL PROVIDER-PHASE WEIGHT (INCLUDING PUERTO RICO)							Y	
PROVWTVI_LL	FINAL LANDLINE PROVIDER-PHASE WEIGHT (INCLUDING U.S. VIRGIN ISLANDS)				Y				
RACE_K	RACE OF TEEN WITH MULTIRACE CATEGORY (RECODE)	Y	Y	Y	Y	Y	Y	Y	
RACEETHK	RACE/ETHNICITY OF TEEN WITH MULTIRACE CATEGORY (RECODE)	Y	Y	Y	Y	Y	Y	Y	
RDDWT	FINAL HOUSEHOLD-PHASE WEIGHT (EXCLUDING U.S. VIRGIN ISLANDS)	Y	Y	Y					
RDDWT_D	FINAL DUAL-FRAME HOUSEHOLD-PHASE WEIGHT				Y	Y	Y	Y	
RDDWT_LL	FINAL LANDLINE HOUSEHOLD-PHASE WEIGHT (EXCLUDING U.S. VIRGIN ISLANDS)				Y				
RDDWTVI	FINAL HOUSEHOLD-PHASE WEIGHT (INCLUDING U.S. VIRGIN ISLANDS)		Y	Y					
RDDWTVI_D	FINAL HOUSEHOLD-PHASE WEIGHT (INCLUDING U.S. VIRGIN ISLANDS)					Y			
RDDWTVIGU_D	FINAL HOUSEHOLD-PHASE WEIGHT (INCLUDING U.S. VIRGIN ISLANDS AND GUAM)						Y		
RDDWT_D_TERR	FINAL HOUSEHOLD-PHASE WEIGHT (INCLUDING PUERTO RICO)							Y	
RDDWTVI_LL	FINAL LANDLINE HOUSEHOLD-PHASE WEIGHT (INCLUDING U.S. VIRGIN ISLANDS)				Y				
REGISTRY	DID TEEN'S PROVIDERS REPORT TEEN'S IMMUNIZATIONS TO IMMUNIZATION REGISTRY?	Y	Y	Y	Y	Y	Y	Y	
RENT_OWN	IS HOME OWNED/BEING BOUGHT, RENTED, OR OCCUPIED BY SOME OTHER ARRANGEMENT?		Y	Y	Y	Y	Y	Y	
RISK_EVER	HAS DOCTOR, NURSE, OR OTHER HEALTH CARE PROFESSIONAL EVER SAID THAT TEEN HAS HAD ANY OF THE FOLLOWING HEALTH CONDITIONS?	Y	Y	Y	Y	Y	Y	Y	
RISK_HH	DO ANY OTHER MEMBERS OF TEEN'S HOUSEHOLD HAVE ANY OF THE FOLLOWING HEALTH CONDITIONS?	Y	Y	Y	Y	Y	Y	Y	
RISK_NOW	DOES TEEN STILL HAVE ANY OF THESE CONDITIONS?	Y	Y	Y	Y	Y	Y	Y	
SEQNUMT	UNIQUE TEEN IDENTIFIER	Y	Y	Y	Y	Y	Y	Y	
SEX	GENDER OF TEEN	Y	Y	Y	Y	Y	Y	Y	
SHOTCARD	SHOT CARD FLAG	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
SHOTCARD_ALL	HH-REPORT: DOES SHOT RECORD INCLUDE ALL VACCINATIONS?	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
STATE	TRUE STATE OF RESIDENCE (STATE FIPS CODE)	Y	Y	Y	Y	Y	Y	Y	
STRATUM	STRATUM VARIABLE FOR ALL VARIANCE ESTIMATION					Y	Y	Y	
STRATUM_D	STRATUM VARIABLE FOR DUAL-FRAME VARIANCE ESTIMATION				Y				
TDP_AGE1	AGE IN YEARS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #1	Y	Y	Y	Y	Y	Y	Y	
TDP_AGE2	AGE IN YEARS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #2	Y	Y	Y	Y	Y	Y	Y	
TDP_AGE3	AGE IN YEARS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #3	Y	Y	Y	Y	Y	Y	Y	
TDP_AGE4	AGE IN YEARS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #4	Y	Y	Y	Y	Y	Y	Y	
TDP_AGE5	AGE IN YEARS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #5	Y	Y	Y	Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
TDP_AGE6	AGE IN YEARS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #6	Y	Y	Y	Y	Y	Y	Y	
TDP_AGE7	AGE IN YEARS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #7	Y	Y	Y	Y	Y	Y	Y	
TDP_AGE8	AGE IN YEARS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #8	Y	Y	Y	Y	Y	Y	Y	
TDP_AGE9	AGE IN YEARS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #9	Y	Y	Y	Y	Y	Y	Y	
TDP_DAGE1	AGE IN DAYS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #1				Y	Y	Y	Y	
TDP_DAGE2	AGE IN DAYS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #2				Y	Y	Y	Y	
TDP_DAGE3	AGE IN DAYS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #3				Y	Y	Y	Y	
TDP_DAGE4	AGE IN DAYS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #4				Y	Y	Y	Y	
TDP_DAGE5	AGE IN DAYS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #5				Y	Y	Y	Y	
TDP_DAGE6	AGE IN DAYS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #6				Y	Y	Y	Y	
TDP_DAGE7	AGE IN DAYS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #7				Y	Y	Y	Y	
TDP_DAGE8	AGE IN DAYS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #8				Y	Y	Y	Y	
TDP_DAGE9	AGE IN DAYS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #9				Y	Y	Y	Y	
TDP MAGE1	AGE IN MONTHS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #1				Y	Y	Y	Y	
TDP_MAGE2	AGE IN MONTHS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #2				Y	Y	Y	Y	
TDP MAGE3	AGE IN MONTHS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #3				Y	Y	Y	Y	
TDP MAGE4	AGE IN MONTHS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #4				Y	Y	Y	Y	
TDP MAGE5	AGE IN MONTHS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #5				Y	Y	Y	Y	
TDP MAGE6	AGE IN MONTHS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #6				Y	Y	Y	Y	
TDP MAGE7	AGE IN MONTHS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #7				Y	Y	Y	Y	
TDP MAGE8	AGE IN MONTHS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #8				Y	Y	Y	Y	
TDP MAGE9	AGE IN MONTHS OF PROV-REPORTED TD/TDAP-CONTAINING SHOT #9				Y	Y	Y	Y	
TEL_SAMPFRAME	SAMPLE FRAME INDICATOR (LANDLINE OR CELL-PHONE)				Y				
TET_AGE_SC1	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #1 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_AGE_SC2	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #2 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_AGE_SC3	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #3 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_AGE_SC4	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #4 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_AGE_SC5	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #5 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
TET_AGE_SC6	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #6 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_AGE_SC7	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #7 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_AGE_SC8	AGE OF TEEN IN YEARS AT HH-REPORTED TETANUS BOOSTER SHOT #8 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_ANY_REC	HH-REPORT: HAS TEEN EVER RECEIVED ANY TETANUS BOOSTER SHOTS? (RECALL)	Y	Y	Y	Y	Y	Y	Y	
TET_ANY_SC	HH-REPORT: HAS TEEN EVER RECEIVED ANY TETANUS BOOSTER SHOTS? (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_LAST_AGE	AGE IN YEARS AT LAST TETANUS BOOSTER SHOT (RECALL)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_LAST_TYPE	TYPE OF LAST TETANUS BOOSTER SHOT (RECALL)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_NUM_SC	NUMBER OF HH-REPORTED TETANUS BOOSTER SHOTS RECEIVED (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_PLACE_1	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: DOCTOR'S OFFICE	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_PLACE_10	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: HOSPITAL-BASED CLINIC					Y	Y		Dropped in 2014 due to shortened questionnaire
TET_PLACE_11	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: WHILE HOSPITALIZED					Y	Y		Dropped in 2014 due to shortened questionnaire
TET_PLACE_12	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: ELEMENTARY/MIDDLE/HIGH SCHOOL					Y	Y		Dropped in 2014 due to shortened questionnaire

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
TET_PLACE_2	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: EMERGENCY ROOM	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_PLACE_3	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: HEALTH DEPARTMENT	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_PLACE_4	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: CLINIC OR HEALTH CENTER	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_PLACE_5	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: HOSPITAL	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_PLACE_6	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: OTHER MEDICALLY-RELATED PLACE	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_PLACE_7	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: PHARMACY OR DRUG STORE	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_PLACE_8	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: WORKPLACE	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_PLACE_9	KIND OF PLACE TEEN RECEIVED TETANUS BOOSTER SHOT AFTER AGE 7 YEARS: OTHER NON-MEDICALLY-RELATED PLACE	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_REAS_1	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: NOT RECOMMENDED	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_10	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: COSTS	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_11	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: SAFETY CONCERN/SIDE EFFECTS	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_12	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: EFFECTIVENESS CONCERN	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_13	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: CHILD FEARFUL	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_14	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: CHILD SHOULD MAKE DECISION	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_15	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: COLLEGE SHOT	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_16	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: DON'T BELIEVE IN VACCINATIONS	Y	Y	Y	Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
TET_REAS_17	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: FAMILY/PARENTAL DECISION	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_18	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: HANDICAPPED/SPECIAL NEEDS/ILLNESS	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_19	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: RELIGION/ORTHODOX	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_2	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: LACK OF KNOWLEDGE	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_20	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: TIME	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_21	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: MORE INFO/NEW VACCINE	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_22	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: ALREADY UP-TO-DATE	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_23	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: NOT AVAILABLE	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_24	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: NOT A SCHOOL REQUIREMENT	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_3	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: NOT NEEDED OR NOT NECESSARY	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_4	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: NO DOCTOR OR DOCTOR'S VISIT NOT SCHEDULED	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_5	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: NOT APPROPRIATE AGE	Y	Y	Y	Y	Y	Y	Y	
TET_REAS_7	MAIN REASON TEEN DID NOT RECEIVE TETANUS BOOSTER SHOTS: OTHER REASON	Y	Y	Y	Y	Y	Y	Y	
TET_RECOM	HAD OR HAS DOCTOR OR OTHER HEALTH CARE PROFESSIONAL EVER RECOMMENDED THAT TEEN RECEIVE TETANUS BOOSTER SHOTS?	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
ТЕТ_ТҮРЕ1	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #1	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_TYPE2	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #2	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
ТЕТ_ТҮРЕЗ	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #3	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_TYPE4	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #4	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
TET_TYPE5	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #5	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_TYPE6	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #6	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_TYPE7	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #7	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TET_TYPE8	TYPE OF HH-REPORTED TETANUS BOOSTER SHOT #8	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
TIS_INS_1	IS TEEN COVERED BY HEALTH INSURANCE PROVIDED THROUGH EMPLOYER OR UNION?	Y	Y	Y	Y	Y	Y	Y	
TIS_INS_11	SINCE AGE 11, ANY TIME WHEN TEEN WAS NOT COVERED BY ANY HEALTH INSURANCE?	Y	Y	Y	Y	Y	Y	Y	
TIS INS 2	IS TEEN COVERED BY ANY MEDICAID PLAN?	Y	Y	Y	Y	Y	Y	Y	
TIS INS 3	IS TEEN COVERED BY S-CHIP?	Y	Y	Y	Y	Y	Y	Y	
TIS_INS_3A	IS TEEN COVERED BY ANY MEDICAID PLAN OR S-CHIP?	Y	Y	Y	Y	Y	Y	Y	
TIS_INS_4	IS TEEN COVERED BY INDIAN HEALTH SERVICE?	Y							Replaced by TIS_INS_4_5 starting 2009.
TIS_INS_4_5	IS TEEN COVERED BY INDIAN HEALTH SERVICE, MILITARY HEALTH CARE, TRICARE, CHAMPUS, OR CHAMP-VA?		Y	Y	Y	Y	Y	Y	Replaces TIS_INS_4 and TIS_INS_5 starting 2009.
TIS_INS_5	IS TEEN COVERED BY MILITARY HEALTH CARE, TRICARE, CHAMPUS, OR CHAMP-VA?	Y							Replaced by TIS_INS_4_5 starting 2009.
TIS_INS_6	IS TEEN COVERED BY ANY OTHER HEALTH INSURANCE OR HEALTH CARE PLAN?	Y	Y	Y	Y	Y	Y	Y	
VFC_I	DERIVED: IS TEEN VFC ELIGIBLE?		Y	Y	Y				
VFC_ORDER	DO TEEN'S PROVIDERS ORDER VACCINES FROM STATE/LOCAL HEALTH DEPT?	Y	Y	Y	Y	Y	Y	Y	
VISITS	IN PAST 12 MONTHS NUMBER OF TIMES TEEN HAS SEEN A DOCTOR OR OTHER HEALTH CARE PROFESSIONAL	Y	Y	Y	Y	Y	Y	Y	
VRC_AGE_SC1	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #1 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
VRC_AGE_SC2	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #2 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
VRC_AGE_SC3	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #3 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
VRC_AGE_SC4	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #4 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
VRC_AGE_SC5	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #5 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
VRC_AGE_SC6	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #6 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
VRC_AGE_SC7	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #7 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
VRC_AGE_SC8	AGE OF TEEN IN YEARS AT HH-REPORTED VARICELLA SHOT #8 (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
VRC_AGE1	AGE IN YEARS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #1	Y	Y	Y	Y	Y	Y	Y	
VRC_AGE2	AGE IN YEARS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #2	Y	Y	Y	Y	Y	Y	Y	
VRC_AGE3	AGE IN YEARS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #3	Y	Y	Y	Y	Y	Y	Y	
VRC_AGE4	AGE IN YEARS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #4	Y	Y	Y	Y	Y	Y	Y	
VRC_AGE5	AGE IN YEARS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #5	Y	Y	Y	Y	Y	Y	Y	
VRC_AGE6	AGE IN YEARS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #6	Y	Y	Y	Y	Y	Y	Y	
VRC_AGE7	AGE IN YEARS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #7	Y	Y	Y	Y	Y	Y	Y	
VRC_AGE8	AGE IN YEARS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #8	Y	Y	Y	Y	Y	Y	Y	
VRC_AGE9	AGE IN YEARS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #9	Y	Y	Y	Y	Y	Y	Y	
VRC_ANY_REC	HH-REPORT: HAS TEEN EVER RECEIVED ANY VARICELLA SHOTS? (RECALL)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
VRC_ANY_SC	HH-REPORT: HAS TEEN EVER RECEIVED ANY VARICELLA SHOTS? (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
	AGE IN DAYS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #1				Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
VRC_DAGE2	AGE IN DAYS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #2				Y	Y	Y	Y	
VRC_DAGE3	AGE IN DAYS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #3				Y	Y	Y	Y	
VRC_DAGE4	AGE IN DAYS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #4				Y	Y	Y	Y	
VRC_DAGE5	AGE IN DAYS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #5				Y	Y	Y	Y	
VRC_DAGE6	AGE IN DAYS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #6				Y	Y	Y	Y	
VRC_DAGE7	AGE IN DAYS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #7				Y	Y	Y	Y	
VRC_DAGE8	AGE IN DAYS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #8				Y	Y	Y	Y	
VRC_DAGE9	AGE IN DAYS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #9				Y	Y	Y	Y	
VRC_HIST	HISTORY OF CHICKEN POX REPORTED BY THE HOUSEHOLD OR BY ANY PROVIDER	Y	Y	Y	Y	Y	Y	Y	
VRC_MAGE1	AGE IN MONTHS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #1				Y	Y	Y	Y	
VRC_MAGE2	AGE IN MONTHS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #2				Y	Y	Y	Y	
VRC_MAGE3	AGE IN MONTHS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #3				Y	Y	Y	Y	
VRC_MAGE4	AGE IN MONTHS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #4				Y	Y	Y	Y	
VRC_MAGE5	AGE IN MONTHS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #5				Y	Y	Y	Y	
VRC_MAGE6	AGE IN MONTHS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #6				Y	Y	Y	Y	
VRC_MAGE7	AGE IN MONTHS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #7				Y	Y	Y	Y	
VRC_MAGE8	AGE IN MONTHS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #8				Y	Y	Y	Y	
VRC_MAGE9	AGE IN MONTHS OF PROV-REPORTED VARICELLA-CONTAINING SHOT #9				Y	Y	Y	Y	
VRC_NUM_REC	NUMBER OF HH-REPORTED VARICELLA SHOTS RECEIVED (RECALL)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
VRC_NUM_SC	NUMBER OF HH-REPORTED VARICELLA SHOTS RECEIVED (SHOTCARD)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
VRC_NUM_TOT	NUMBER OF HH-REPORTED VARICELLA SHOTS RECEIVED (TOTAL)	Y	Y	Y	Y	Y	Y		Dropped in 2014 due to shortened questionnaire
XFLUTY1	SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #1 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XFLUTY2	SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #2 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XFLUTY3	SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #3 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XFLUTY4	SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #4 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XFLUTY5	SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #5 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XFLUTY6	SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #6 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XFLUTY7	SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #7 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XFLUTY8	SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #8 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XFLUTY9	SEASONAL INFLUENZA VACCINATION IN PAST THREE YEARS #9 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XH1NTY1	MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #1 TYPE CODE			Y	Y	Y			
XH1NTY2	MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #2 TYPE CODE			Y	Y	Y			

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
XH1NTY3	MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #3 TYPE CODE			Y	Y	Y			
XH1NTY4	MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #4 TYPE CODE			Y	Y	Y			
XH1NTY5	MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #5 TYPE CODE			Y	Y	Y			
XH1NTY6	MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #6 TYPE CODE			Y	Y	Y			
XH1NTY7	MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #7 TYPE CODE			Y	Y	Y			
XH1NTY8	MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #8 TYPE CODE			Y	Y	Y			
XH1NTY9	MONOVALENT 2009 H1N1 INFLUENZA VACCINATION #9 TYPE CODE			Y	Y	Y			
XHEPATY1	HEPATITIS A-CONTAINING VACCINATION #1 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPATY2	HEPATITIS A-CONTAINING VACCINATION #2 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPATY3	HEPATITIS A-CONTAINING VACCINATION #3 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPATY4	HEPATITIS A-CONTAINING VACCINATION #4 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPATY5	HEPATITIS A-CONTAINING VACCINATION #5 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPATY6	HEPATITIS A-CONTAINING VACCINATION #6 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPATY7	HEPATITIS A-CONTAINING VACCINATION #7 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPATY8	HEPATITIS A-CONTAINING VACCINATION #8 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPATY9	HEPATITIS A-CONTAINING VACCINATION #9 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPBTY1	HEPATITIS B-CONTAINING VACCINATION #1 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPBTY2	HEPATITIS B-CONTAINING VACCINATION #2 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPBTY3	HEPATITIS B-CONTAINING VACCINATION #3 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPBTY4	HEPATITIS B-CONTAINING VACCINATION #4 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPBTY5	HEPATITIS B-CONTAINING VACCINATION #5 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPBTY6	HEPATITIS B-CONTAINING VACCINATION #6 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPBTY7	HEPATITIS B-CONTAINING VACCINATION #7 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPBTY8	HEPATITIS B-CONTAINING VACCINATION #8 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XHEPBTY9	HEPATITIS B-CONTAINING VACCINATION #9 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMCVTY1	MEASLES-CONTAINING VACCINATION #1 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMCVTY2	MEASLES-CONTAINING VACCINATION #2 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMCVTY3	MEASLES-CONTAINING VACCINATION #3 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMCVTY4	MEASLES-CONTAINING VACCINATION #4 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMCVTY5	MEASLES-CONTAINING VACCINATION #5 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMCVTY6	MEASLES-CONTAINING VACCINATION #6 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMCVTY7	MEASLES-CONTAINING VACCINATION #7 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMCVTY8	MEASLES-CONTAINING VACCINATION #8 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMCVTY9	MEASLES-CONTAINING VACCINATION #9 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMENTY1	MENINGOCOCCAL-CONTAINING VACCINATION #1 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMENTY2	MENINGOCOCCAL-CONTAINING VACCINATION #2 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMENTY3	MENINGOCOCCAL-CONTAINING VACCINATION #3 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMENTY4	MENINGOCOCCAL-CONTAINING VACCINATION #4 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMENTY5	MENINGOCOCCAL-CONTAINING VACCINATION #5 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	

Variable Name	Variable Label	2008	2009	2010	2011	2012	2013	2014	Notes
XMENTY6	MENINGOCOCCAL-CONTAINING VACCINATION #6 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMENTY7	MENINGOCOCCAL-CONTAINING VACCINATION #7 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMENTY8	MENINGOCOCCAL-CONTAINING VACCINATION #8 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XMENTY9	MENINGOCOCCAL-CONTAINING VACCINATION #9 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XTDPTY1	TD/TDAP-CONTAINING VACCINATION #1 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XTDPTY2	TD/TDAP-CONTAINING VACCINATION #2 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XTDPTY3	TD/TDAP-CONTAINING VACCINATION #3 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XTDPTY4	TD/TDAP-CONTAINING VACCINATION #4 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XTDPTY5	TD/TDAP-CONTAINING VACCINATION #5 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XTDPTY6	TD/TDAP-CONTAINING VACCINATION #6 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XTDPTY7	TD/TDAP-CONTAINING VACCINATION #7 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XTDPTY8	TD/TDAP-CONTAINING VACCINATION #8 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XTDPTY9	TD/TDAP-CONTAINING VACCINATION #9 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XVRCTY1	VARICELLA-CONTAINING VACCINATION #1 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XVRCTY2	VARICELLA-CONTAINING VACCINATION #2 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XVRCTY3	VARICELLA-CONTAINING VACCINATION #3 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XVRCTY4	VARICELLA-CONTAINING VACCINATION #4 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XVRCTY5	VARICELLA-CONTAINING VACCINATION #5 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XVRCTY6	VARICELLA-CONTAINING VACCINATION #6 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XVRCTY7	VARICELLA-CONTAINING VACCINATION #7 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XVRCTY8	VARICELLA-CONTAINING VACCINATION #8 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
XVRCTY9	VARICELLA-CONTAINING VACCINATION #9 TYPE CODE	Y	Y	Y	Y	Y	Y	Y	
YEAR	SAMPLING YEAR	Y	Y	Y	Y	Y	Y	Y	

Appendix E: Summary Tables

Table E.1: Estimated Population Totals and Sample Sizes of Teens 13-17 Years of Age by State and Estimation Area, National Immunization Survey - Teen, 2014

State/Estimation Area	ESTIAPT14	Estimated Population Total of Teens	Number of Teens with Complete Household Interviews	Number of Teens with Adequate Provider Data	Percent of Teens with Adequate Provider Data
U.S. National*	ESHAI 114	20,842,714	38,047	20,827	54.74
Alabama	20	319,757	690	378	54.78
Alaska	74	47,037	673	377	56.02
Arizona	66	453,818	785	421	53.63
Arkansas	46	199,835	659	368	55.84
California	68	2,573,806	684	356	52.05
Colorado	60	343,280	713	394	55.26
Connecticut	1	238,616	732	386	52.73
Delaware	13	56,943	711	374	52.60
District of Columbia	12	25,081	555	285	51.35
Florida	22	1,169,950	709	363	51.20
Georgia	25	704,533	657	373	56.77
Hawaii	72	80,260	635	363	57.17
Idaho	75	119,545	585	341	58.29
Illinois	13	863,386	1,398	709	50.72
IL-City of Chicago	35	160,837	556	274	49.28
IL-Rest of State	34	702,549	842	435	51.66
Indiana Indiana	36	453,374	650	370	56.92
Iowa	56	204,263	596	328	55.03
Kansas	57	198,370	613	352	57.42
Kentucky	27	286,295	595	335	56.30
Louisiana	47	308,510	636	335	52.67
Maine	47	78,326	599	341	56.93
Maryland	4 14		826	409	49.52
Massachusetts		380,851	655	358	
	2 38	411,163		330	54.66
Michigan		669,523	557		59.25
Minnesota	40	355,999	521	286	54.89
Mississippi Missouri	28	207,833	649	356	54.85
	58	398,320	665	361	54.29
Montana	61	62,436	673	367	54.53
Nebraska	59	124,549	563	321	57.02
Nevada	73	185,485	709	351	49.51
New Hampshire	5	82,999	694	402	57.93
New Jersey	8	583,635	719	328	45.62
New Mexico	49	140,960	695	378	54.39
New York	11	1,204,315	1,199	594	49.54
NY-City of New York	11	466,475	616	288	46.75
NY-Rest of State	10	737,840	583	306	52.49
North Carolina	29	647,948	712	372	52.25
North Dakota	62	41,880	545	327	60.00
Ohio	41	772,912	754	430	57.03
Oklahoma	50	258,140	608	356	58.55
Oregon	76	245,058	646	399	61.76
Pennsylvania		787,571	1,458	785	53.84
PA-Philadelphia County	17	90,585	612	343	56.05
PA-Rest of State	16	696,986	846	442	52.25

State/Estimation Area	ESTIAPT14	Estimated Population Total of Teens	Number of Teens with Complete Household Interviews	Number of Teens with Adequate Provider Data	Percent of Teens with Adequate Provider Data
Rhode Island	6	61,899	683	414	60.61
South Carolina	30	304,367	704	380	53.98
South Dakota	63	55,439	622	358	57.56
Tennessee	31	422,685	637	339	53.22
Texas		1,950,300	3,079	1,652	53.65
TX-Bexar County	55	101,246	740	385	52.03
TX-City of Houston	54	134,635	679	379	55.82
TX-El Paso County	53	70,824	651	397	60.98
TX-Rest of State	51	1,643,595	1,009	491	48.66
Utah	64	237,210	646	398	61.61
Vermont	7	36,991	586	367	62.63
Virginia	18	522,759	698	350	50.14
Washington	77	443,358	648	374	57.72
West Virginia	19	107,983	640	350	54.69
Wisconsin	44	376,417	606	340	56.11
Wyoming	65	36,744	775	446	57.55
Puerto Rico	106	248,374	656	230	35.06

^{*} Excludes Puerto Rico.

Table E.2: Estimated Population Totals and Sample Sizes by Age of Teen by Maternal Education, National Immunization Survey - Teen, 2014

		TEENS WITH COMPLETED	TEENS WITH COMPLETED	TEENS WITH ADEQUATE	TEENS WITH ADEQUATE
		HOUSEHOLD	HOUSEHOLD	PROVIDER	PROVIDER
Age of		INTERVIEWS*	INTERVIEWS*	DATA*	DATA*
Teen in		Unweighted	Weighted	Unweighted	Weighted
Years	Maternal Education	Completes	Completes [†]	Completes	Completes§
13	<12 Years	805	616,980	506	682,027
13	12 Years	1,282	948,325	702	889,559
	>12, Non College				
13	Graduate	2,052	1,090,650	1,151	1,109,075
13	College Grad	3,394	1,516,736	1,933	1,516,198
14	<12 Years	843	598,869	482	582,964
14	12 Years	1,333	1,002,878	745	1,069,540
	>12, Non College				_
14	Graduate	2,140	1,095,570	1,167	1,069,363
14	College Grad	3,535	1,532,581	1,935	1,483,862
15	<12 Years	719	514,855	431	501,348
15	12 Years	1,335	996,028	726	1,013,887
	>12, Non College				_
15	Graduate	2,123	1,036,228	1,127	1,005,585
15	College Grad	3,433	1,615,580	1,859	1,527,692
16	<12 Years	840	689,570	484	641,218
16	12 Years	1,365	971,154	750	970,574
	>12, Non College				_
16	Graduate	2,088	1,057,759	1,142	1,063,967
16	College Grad	3,448	1,549,025	1,839	1,637,085
17	<12 Years	669	435,456	389	441,879
17	12 Years	1,280	974,525	673	955,375
	>12, Non College				
17	Graduate	2,050	1,091,652	1,061	1,145,417
17	College Grad	3,313	1,508,293	1,725	1,536,097
Total		38,047	20,842,714	20,827	20,842,714

^{*} Excludes Puerto Rico.

 $^{^{\}dagger}$ Weighted by dual-frame weight RDDWT_D.

[§] Weighted by dual-frame weight PROVWT_D.

Table E.3: Estimated Population Totals and Sample Sizes by Age of Teen by Poverty Status, National Immunization Survey - Teen, 2014

Age of		TEENS WITH COMPLETED HOUSEHOLD INTERVIEWS*	TEENS WITH COMPLETED HOUSEHOLD INTERVIEWS*	TEENS WITH ADEQUATE PROVIDER DATA*	TEENS WITH ADEQUATE PROVIDER DATA*
Teen in		Unweighted	Weighted	Unweighted	Weighted
Years	Poverty Status	Completes	Completes [†]	Completes	Completes [§]
10	Above poverty, >	2 222	1 402 002	1.066	1 202 121
13	\$75K	3,232	1,403,883	1,866	1,383,131
10	Above poverty, <=	2 (04	1 444 022	1 407	1 467 202
13	\$75K	2,604	1,444,933	1,487	1,467,382
13	Below poverty	1,254	1,029,790	806	1,077,253
13	Unknown	443	294,084	133	269,094
1.4	Above poverty, >	2 210	1 401 (00	1 000	1 555 000
14	\$75K	3,319	1,491,689	1,890	1,555,090
1.4	Above poverty, <= \$75K	2 679	1 425 207	1.460	1 422 572
$\frac{14}{14}$	Below poverty	2,678 1,337	1,425,397	1,469 812	1,432,572
14	Unknown	517	1,024,578 288,235	158	996,751 221,316
14	Above poverty, >	317	288,233	138	221,310
15	\$75K	3,356	1,503,931	1,858	1,487,479
13	Above poverty, <=	3,330	1,303,931	1,030	1,407,479
15	\$75K	2,622	1,464,722	1,413	1,417,664
15	Below poverty	1,171	961,190	723	940,391
15	Unknown	461	232,849	149	202,978
	Above poverty, >	101	232,019	117	202,570
16	\$75K	3,300	1,486,038	1,828	1,569,188
	Above poverty, <=	2,200	1,100,020	1,020	1,000,100
16	\$75K	2,737	1,505,359	1,473	1,502,928
16	Below poverty	1,230	1,047,434	776	1,054,046
16	Unknown	474	228,678	138	186,683
	Above poverty, >		,		,
17	\$75K	3,229	1,478,718	1,726	1,541,718
	Above poverty, <=				
17	\$75K	2,640	1,527,179	1,394	1,538,102
17	Below poverty	950	720,727	592	761,985
17	Unknown	493	283,301	136	236,963
Total		38,047	20,842,714	20,827	20,842,714

^{*} Excludes Puerto Rico.

[†] Weighted by dual-frame weight RDDWT_D.

[§] Weighted by dual-frame weight PROVWT_D.

Table E.4: Estimated Population Totals and Sample Sizes by Race/Ethnicity by Poverty Status, National Immunization Survey - Teen, 2014

		TEENS WITH	TEENS WITH	TEENS WITH	TEENS WITH
		COMPLETED	COMPLETED	ADEQUATE	ADEQUATE
		HOUSEHOLD	HOUSEHOLD	PROVIDER	PROVIDER
		INTERVIEWS*	INTERVIEWS*	DATA*	DATA*
Race/Ethnicity of		Unweighted	Weighted	Unweighted	Weighted
Teen [†]	Poverty Status	Completes	Completes§	Completes	Completes¶
	Above poverty,				
Hispanic	> \$75K	1,290	751,233	680	695,823
	Above poverty,	4.0=0		4.4.0	
Hispanic	<= \$75K	1,978	1,541,274	1,129	1,649,916
Hispanic	Below poverty	2,137	2,081,608	1,304	2,054,417
Hispanic	Unknown	370	303,775	142	270,317
Non-Hispanic White	Above poverty,				
Only	> \$75K	12,695	5,396,539	7,224	5,613,061
Non-Hispanic White	Above poverty,				
Only	<= \$75K	8,395	4,024,328	4,534	3,907,505
Non-Hispanic White		4 000			
Only	Below poverty	1,988	1,277,957	1,263	1,297,065
Non-Hispanic White	TT 1	1 400	(70.210	42.4	514.022
Only Non-Hispanic Black	Unknown	1,498	678,319	424	514,832
Only	Above poverty, > \$75K	925	558,797	413	515,134
Non-Hispanic Black	Above poverty,	923	330,191	413	313,134
Only	<= \$75K	1,514	1,130,129	787	1,140,898
Non-Hispanic Black	· \$131X	1,511	1,150,127	707	1,110,070
Only	Below poverty	1,126	1,022,072	700	1,074,023
Non-Hispanic Black		-,	-,,		
Only	Unknown	290	209,486	85	193,184
Non-Hispanic Other	Above poverty,				<u> </u>
& Multiple Race	> \$75K	1,526	657,690	851	712,589
Non-Hispanic Other	Above poverty,				_
& Multiple Race	<= \$75K	1,394	671,857	786	660,328
Non-Hispanic Other					
& Multiple Race	Below poverty	691	402,083	442	404,921
Non-Hispanic Other				-	
& Multiple Race	Unknown	230	135,566	63	138,702
Total		38,047	20,842,714	20,827	20,842,714

^{*} Excludes Puerto Rico.

 $^{^{\}dagger}$ Race/ethnicity is respondent-reported and the categories presented here are mutually-exclusive.

[§] Weighted by dual-frame weight RDDWT_D.

[¶] Weighted by dual-frame weight PROVWT_D.

Table E.5: Estimated Population Totals and Sample Sizes by Age of Teen by Race/Ethnicity, National Immunization Survey - Teen, 2014

		TEENS WITH COMPLETED	TEENS WITH COMPLETED	TEENS WITH ADEQUATE	TEENS WITH ADEQUATE
		HOUSEHOLD	HOUSEHOLD	PROVIDER	PROVIDER
Age of		INTERVIEWS*	INTERVIEWS*	DATA*	DATA*
Teen in		Unweighted	Weighted	Unweighted	Weighted
Years	Race/Ethnicity of Teen†	Completes	Completes §	Completes	Completes¶
13	Hispanic	1,238	1,009,928	740	1,016,705
13	Non-Hispanic White Only	4,718	2,192,484	2,677	2,180,495
13	Non-Hispanic Black Only	783	592,257	401	578,020
	Non-Hispanic Other &				
13	Multi-Racial	794	378,020	474	421,640
14	Hispanic	1,233	974,244	680	978,292
14	Non-Hispanic White Only	5,026	2,291,225	2,803	2,267,779
14	Non-Hispanic Black Only	779	580,038	402	599,774
	Non-Hispanic Other &				
14	Multi-Racial	813	384,392	444	359,884
15	Hispanic	1,114	904,514	608	894,417
15	Non-Hispanic White Only	5,001	2,320,986	2,737	2,271,990
15	Non-Hispanic Black Only	777	576,114	386	515,833
	Non-Hispanic Other &				
15	Multi-Racial	718	361,077	412	366,273
16	Hispanic	1,196	1,004,221	665	954,885
16	Non-Hispanic White Only	4,959	2,252,758	2,703	2,281,822
16	Non-Hispanic Black Only	828	616,637	428	616,689
	Non-Hispanic Other &				
16	Multi-Racial	758	393,893	419	459,449
17	Hispanic	994	784,982	562	826,174
17	Non-Hispanic White Only	4,872	2,319,690	2,525	2,330,376
17	Non-Hispanic Black Only	688	555,438	368	612,922
	Non-Hispanic Other &				
17	Multi-Racial	758	349,815	393	309,295
Total		38,047	20,842,714	20,827	20,842,714

^{*} Excludes Puerto Rico.

[†] Race/ethnicity is respondent-reported and the categories presented here are mutually-exclusive.

[§] Weighted by dual-frame weight RDDWT_D.

[¶] Weighted by dual-frame weight PROVWT_D.

Table E.6: Estimated Population Totals and Sample Sizes by Age and Gender of Teen, National Immunization Survey - Teen, 2014

	mmumzati	on Survey - Teen, 20	·1-T		
		TEENS WITH	TEENS WITH	TEENS WITH	TEENS WITH
		COMPLETED	COMPLETED	ADEQUATE	ADEQUATE
		HOUSEHOLD	HOUSEHOLD	PROVIDER	PROVIDER
		INTERVIEWS*	INTERVIEWS*	DATA*	DATA*
Age of Teen		Unweighted	Weighted	Unweighted	Weighted
in Years	Gender	Completes	Completes [†]	Completes	Completes§
13	Male	3,818	2,118,206	2,175	2,158,287
13	Female	3,715	2,054,484	2,117	2,038,573
14	Male	4,041	2,146,450	2,241	2,179,869
14	Female	3,810	2,083,449	2,088	2,025,860
15	Male	4,004	2,162,262	2,167	2,048,505
15	Female	3,606	2,000,429	1,976	2,000,007
16	Male	4,003	2,196,502	2,192	2,276,392
16	Female	3,738	2,071,007	2,023	2,036,453
17	Male	3,779	2,036,345	1,968	1,996,712
17	Female	3,533	1,973,580	1,880	2,082,057
Total		38,047	20,842,714	20,827	20,842,714

^{*} Excludes Puerto Rico.

[†] Weighted by dual-frame weight RDDWT_D.

[§] Weighted by dual-frame weight PROVWT_D.

Table E.7: Estimated Vaccination Coverage*†, With Selected Vaccines Among Adolescents Aged 13-17 Years§, by State and Selected Area -- National Immunization Survey-Teen, United States, 2014

	BOTH	BOTH	BOTH	FEMALE	FEMALE	FEMALE	MALE	MALE	MALE
	<u>SEXES</u>	SEXES	<u>SEXES</u>			11037.2.1			1103/2 1
	≥ 1 Td or	≥1 Tdap**	≥1	1 HPV§§	≥3 doses	HPV 3 dose series	1 HPV§§	≥3 doses	HPV 3 dose series
	Z T Tu bi Tdap¶	≥ 1 Tuap	MenACWY ^{††}	1 111 7	HPV¶¶	completion***	1 111 4	HPV¶¶	completion***
	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)
US National†††	89.8(±0.8)	87.6(±0.9)	79.3(±1.1)	60.0(±1.9)	39.7(±1.9)	69.3(±2.4)	41.7(±1.8)	21.6(±1.6)	57.8(±3.0)
Alabama	90.9(±3.8)	88.6(±4.0)	71.6(±5.7)	54.7(±9.3)	35.3(±8.8)	65.7(±11.8)	27.6(±7.2)	9.0(±4.7)	37.4(±16.1)
Alaska	77.3(±5.1)	73.8(±5.4)	56.9(±6.1)	48.7(±8.8)	34.4(±8.2)	74.7(±11.0)	37.9(±8.6)	13.3(±6.3)	41.7(±16.2)
Arizona	85.2(±4.7)	84.2(±4.8)	85.9(±4.7)	58.2(±9.4)	35.8(±8.8)	67.9(±12.2)	40.6(±8.3)	16.7(±5.7)	46.4(±13.7)
Arkansas	85.4(±4.7)	84.6(±4.7)	64.8(±6.1)	54.6(±9.1)	23.4(±7.5)	49.1(±13.0)	35.1(±8.9)	11.4(±5.6)	41.1(±17.6)
California	90.3(±4.1)	87.7(±4.6)	79.3(±5.7)	69.2(±9.4)	47.7(±9.8)	70.2(±10.9)	52.1(±9.3)	31.1(±8.9)	62.3(±12.1)
Colorado	92.4(±3.2)	90.2(±3.6)	76.8(±4.9)	62.5(±8.3)	42.1(±8.7)	70.6(±11.1)	40.7(±8.2)	21.9(±7.0)	56.4(±13.4)
Connecticut	96.2(±2.7)	94.8(±3.2)	94.9(±3.0)	63.5(±8.5)	48.5(±9.1)	78.6(±9.2)	50.3(±9.0)	27.0(±7.8)	58.9(±13.5)
Delaware	91.5(±3.5)	90.5(±3.7)	86.7(±4.6)	67.6(±9.3)	42.3(±9.8)	69.7(±11.8)	54.6(±9.5)	31.0(±9.7)	63.6(±14.3)
Dist. of Columbia	86.4(±5.3)	81.4(±5.9)	93.5(±2.8)	75.2(±9.4)	56.9(±10.9)	76.7(±10.8)	68.1(±9.5)	34.5(±11.0)	57.1(±14.4)
Florida	93.3(±3.5)	90.7(±4.2)	72.2(±6.7)	57.2(±10.4)	28.5(±9.1)	53.9(±14.6)	41.0(±10.1)	17.5(±8.1)	50.8(±17.9)
Georgia	87.5(±4.5)	86.1(±4.8)	74.9(±6.1)	65.4(±9.1)	47.1(±9.7)	73.6(±10.2)	41.2(±9.0)	21.0(±7.2)	56.2(±14.2)
Hawaii	85.4(±4.4)	82.3(±4.8)	77.7(±5.2)	60.4(±8.6)	38.0(±8.4)	66.5(±11.1)	56.5(±8.6)	30.9(±8.5)	62.0(±12.1)
Idaho	80.7(±5.5)	70.8(±6.4)	78.1(±5.8)	59.4(±10.2)	38.3(±9.9)	67.7(±12.7)	32.0(±8.7)	17.2(±6.9)	60.6(±16.5)
Illinois	94.4(±2.0)	91.9(±2.4)	77.1(±4.2)	64.4(±6.5)	47.7(±6.9)	76.9(±7.6)	44.7(±6.6)	22.6(±5.7)	59.5(±9.7)
IL-City of Chicago	87.9(±5.3)	84.6(±5.8)	83.4(±5.9)	78.1(±8.1)	52.6(±10.7)	69.4(±11.9)	64.9(±10.0)	26.1(±9.3)	44.5(±14.1)
IL-Rest of State	95.9(±2.1)	93.6(±2.6)	75.6(±5.0)	61.2(±7.7)	46.5(±8.2)	79.1(±9.2)	40.0(±7.6)	21.8(±6.6)	65.6(±11.8)
Indiana	90.1(±3.9)	88.6(±4.1)	90.0(±3.9)	61.4(±8.5)	44.4(±9.0)	74.0(±10.9)	23.2(±6.9)	12.8(±5.1)	61.4(±16.9)
Iowa	80.1(±6.1)	76.7(±6.4)	64.4(±6.9)	59.5(±9.9)	37.6(±9.3)	67.7(±11.9)	30.2(±8.8)	18.7(±7.3)	64.3(±16.8)
Kansas	84.3(±5.1)	79.8(±5.6)	65.1(±6.5)	38.3(±9.5)	24.8(±8.0)	69.8(±15.0)	32.8(±8.6)	19.5(±7.4)	62.4(±16.4)
Kentucky	89.5(±4.1)	85.5(±4.8)	$78.2(\pm 5.7)$	52.1(±9.5)	$37.5(\pm 9.2)$	$74.5(\pm 11.7)$	$23.7(\pm 8.0)$	$13.3(\pm 6.6)$	$63.8(\pm 19.9)$
Louisiana	94.7(±2.5)	93.8(±2.8)	$91.8(\pm 3.4)$	53.2(±9.5)	$38.4(\pm 9.0)$	$73.7(\pm 11.3)$	$44.7(\pm 9.2)$	21.5(±7.6)	$53.6(\pm 14.4)$
Maine	85.8(±4.6)	85.4(±4.7)	$73.6(\pm 5.7)$	66.8(±8.1)	43.0(±8.6)	$75.9(\pm 9.8)$	53.1(±9.0)	$27.5(\pm 7.6)$	$60.5(\pm 12.8)$
Maryland	89.5(±4.5)	$85.0(\pm 5.3)$	86.5(±4.9)	57.9(±9.9)	$39.4(\pm 9.7)$	$70.3(\pm 12.8)$	$46.9(\pm 9.7)$	24.5(±8.6)	59.0(±15.2)
Massachusetts	96.0(±2.6)	93.2(±3.4)	92.1(±3.3)	69.0(±8.5)	49.5(±9.2)	74.4(±10.5)	54.3(±8.5)	27.3(±7.7)	64.1(±11.8)
Michigan	82.1(±5.1)	79.3(±5.4)	90.7(±4.0)	58.0(±9.1)	40.9(±9.1)	73.5(±11.9)	39.8(±9.5)	22.1(±8.2)	59.5(±14.9)
Minnesota	89.9(±4.5)	87.2(±5.0)	75.5(±6.0)	67.0(±9.4)	42.5(±10.3)	67.4(±12.5)	43.9(±9.9)	13.6(±7.0)	35.2(±16.0)
Mississippi	71.1(±6.3)	70.8(±6.3)	46.0(±6.5)	45.8(±9.5)	24.6(±8.4)	54.5(±13.8)	26.5(±8.0)	NA	31.0(±16.6)
Missouri	87.8(±4.3)	86.1(±4.6)	63.3(±6.5)	47.5(±9.2)	28.3(±8.2)	62.2(±13.7)	27.9(±8.4)	11.3(±5.7)	47.9(±19.0)
Montana	86.5(±4.6)	84.7(±4.7)	$60.2(\pm 6.5)$	57.2(±9.2)	42.9(±9.1)	$79.6(\pm 8.6)$	33.3(±9.2)	13.0(±6.4)	45.8(±18.4)

	BOTH SEXES	BOTH SEXES	BOTH SEXES	FEMALE	FEMALE	FEMALE	MALE	MALE	MALE
	<u>SEAES</u> ≥1 Td or Tdap¶	<u>SEXES</u> ≥ 1 Tdap**	$\frac{SEXES}{\geq 1}$ MenACWY ^{††}	1 HPV ^{§§}	≥3 doses HPV¶	HPV 3 dose series completion***	1 HPV ^{§§}	≥3 doses HPV¶	HPV 3 dose series completion***
	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)
Nebraska	85.6(±5.0)	82.2(±5.4)	74.1(±5.8)	59.6(±9.1)	43.3(±9.5)	74.5(±11.5)	39.5(±9.1)	22.8(±7.8)	60.2(±15.0)
Nevada	89.2(±3.5)	87.6(±3.8)	66.5(±5.9)	54.2(±8.6)	32.5(±8.2)	60.9(±11.3)	43.4(±9.0)	15.7(±6.0)	46.9(±15.2)
New Hampshire	95.5(±2.4)	94.4(±2.6)	90.6(±3.2)	71.0(±7.2)	50.1(±8.4)	75.3(±8.9)	56.1(±7.8)	33.0(±7.6)	65.7(±10.9)
New Jersey	95.3(±2.8)	90.1(±4.4)	94.9(±3.2)	48.0(±9.8)	34.5(±9.3)	76.6(±13.0)	35.5(±9.4)	21.2(±8.4)	62.9(±16.8)
New Mexico	88.7(±4.6)	83.3(±5.3)	75.1(±5.6)	59.0(±8.9)	39.9(±8.9)	71.0(±11.5)	42.8(±9.3)	23.3(±8.1)	58.8(±15.2)
New York	92.9(±2.6)	91.5(±2.8)	79.6(±4.2)	58.8(±7.4)	40.1(±7.3)	72.1(±9.4)	49.8(±6.8)	28.5(±6.3)	63.9(±9.8)
NY-City of New York	91.5(±4.3)	88.7(±4.9)	86.8(±4.9)	58.0(±10.2)	38.3(±9.9)	70.0(±12.8)	56.6(±9.8)	35.0(±10.0)	64.7(±13.8)
NY-Rest of State	93.8(±3.4)	93.2(±3.5)	75.1(±6.0)	59.3(±10.2)	41.2(±10.1)	73.4(±13.0)	45.5(±9.1)	24.4(±8.1)	63.2(±13.8)
North Carolina	92.6(±3.7)	92.3(±3.7)	74.1(±5.6)	71.1(±8.1)	54.0(±9.2)	78.9(±9.6)	45.2(±8.9)	20.9(±7.3)	50.8(±14.4)
North Dakota	94.2(±3.2)	92.1(±4.0)	91.8(±3.3)	60.9(±9.4)	41.7(±9.4)	75.8(±11.2)	37.6(±9.0)	25.3(±7.8)	71.7(±14.3)
Ohio	85.0(±4.6)	83.0(±4.8)	73.7(±5.4)	61.0(±8.4)	35.2(±8.3)	60.0(±12.0)	36.8(±8.1)	23.3(±7.3)	69.8(±12.5)
Oklahoma	84.7(±4.4)	82.6(±4.7)	$70.8(\pm 5.8)$	65.3(±8.6)	36.4(±9.1)	56.1(±11.7)	43.2(±8.9)	19.9(±7.1)	49.4(±14.4)
Oregon	89.7(±4.0)	88.0(±4.2)	68.4(±6.0)	64.6(±8.7)	43.1(±9.1)	72.4(±10.8)	36.9(±8.4)	12.3(±4.8)	39.4(±13.8)
Pennsylvania	94.4(±2.5)	93.0(±2.7)	95.2(±1.9)	66.8(±7.4)	48.2(±8.1)	77.6(±9.6)	47.4(±7.9)	26.0(±6.7)	59.3(±12.2)
PA-Philadelphia	93.0(±3.9)	90.3(±4.3)	92.6(±3.7)	80.3(±8.1)	59.3(±10.1)	76.6(±10.4)	62.8(±9.1)	34.8(±8.9)	59.3(±12.2)
PA-Rest of State	94.6(±2.7)	93.4(±2.9)	95.6(±2.1)	65.1(±8.4)	46.7(±9.1)	77.7(±11.1)	45.4(±8.9)	24.9(±7.4)	59.3(±14.2)
Rhode Island	94.7(±2.9)	92.4(±3.4)	94.1(±3.2)	76.0(±7.7)	53.7(±8.5)	75.8(±8.7)	69.0(±7.5)	42.9(±7.9)	71.9(±9.5)
South Carolina	74.8(±6.0)	72.6(±6.2)	67.3(±6.3)	52.1(±9.5)	35.9(±9.1)	73.0(±12.2)	29.4(±8.5)	16.1(±6.8)	71.5(±16.1)
South Dakota	76.1(±5.9)	75.0(±5.9)	57.0(±6.6)	61.0(±9.4)	33.1(±8.8)	60.4(±12.9)	34.4(±9.1)	23.5(±8.5)	71.9(±15.2)
Tennessee	88.3(±4.2)	86.0(±4.5)	74.0(±5.8)	47.8(±9.8)	20.1(±6.7)	43.3(±13.4)	30.5(±8.5)	14.0(±6.6)	61.5(±17.3)
Texas	89.5(±3.0)	88.2(±3.1)	88.6(±3.0)	50.7(±7.0)	33.9(±6.5)	70.5(±9.5)	36.6(±6.4)	17.7(±5.2)	53.7(±11.3)
TX-Bexar County	89.3(±3.6)	85.7(±4.3)	84.3(±5.0)	47.7(±9.4)	30.8(±8.5)	65.2(±13.1)	35.6(±8.8)	15.0(±6.7)	48.0(±16.3)
TX-City of Houston	89.8(±4.4)	87.8(±4.6)	87.4(±5.0)	66.8(±9.0)	43.8(±9.8)	71.6(±11.1)	53.7(±9.9)	27.1(±9.0)	59.3(±14.1)
TX-El Paso County	90.4(±4.4)	86.3(±5.1)	91.7(±4.1)	71.9(±9.9)	45.6(±11.0)	66.5(±12.8)	54.2(±10.3)	31.8(±9.7)	60.0(±13.6)
TX-Rest of State	89.5(±3.6)	88.5(±3.6)	88.9(±3.5)	48.7(±8.2)	32.8(±7.7)	71.0(±11.7)	34.4(±7.5)	16.5(±6.1)	52.9(±14.0)
Utah	88.4(±3.9)	84.8(±4.5)	66.9(±5.9)	59.2(±8.3)	26.0(±7.3)	48.5(±12.1)	28.6(±8.0)	12.4(±5.5)	50.4(±17.8)
Vermont	94.9(±3.1)	93.4(±3.3)	81.3(±5.1)	63.4(±8.9)	49.8(±9.2)	80.2(±9.7)	50.5(±9.3)	30.5(±8.4)	68.7(±12.6)
Virginia	94.4(±3.3)	91.2(±3.9)	72.5(±6.6)	59.2(±10.4)	35.9(±9.7)	64.7(±13.8)	36.3(±10.5)	22.5(±9.4)	75.9(±15.4)
Washington	89.4(±4.0)	88.5(±4.1)	82.1(±4.9)	65.8(±8.8)	43.8(±9.4)	73.5(±10.3)	53.8(±8.8)	24.6(±7.9)	50.0(±13.0)
West Virginia	79.6(±5.7)	77.9(±5.8)	78.9(±5.6)	58.0(±9.4)	40.0(±9.0)	70.9(±11.5)	42.7(±8.9)	23.5(±7.7)	60.8(±14.1)
Wisconsin	94.1(±3.6)	93.3(±3.7)	73.8(±6.2)	61.0(±9.8)	40.9(±9.9)	67.7(±11.7)	49.3(±9.4)	23.6(±8.1)	58.6(±15.7)
Wyoming	90.1(±3.4)	89.1(±3.5)	55.6(±5.7)	50.3(±8.1)	33.6(±7.6)	68.9(±10.9)	29.3(±7.4)	12.2(±5.5)	50.5(±17.1)

	<u>BOTH</u> SEXES	BOTH SEXES	BOTH SEXES	<u>FEMALE</u>	<u>FEMALE</u>	FEMALE	MALE	MALE	MALE
	≥1 Td or Tdap¶	≥ 1 Tdap**	≥1 MenACWY ^{††}	1 HPV ^{§§}	≥3 doses HPV¶¶	HPV 3 dose series completion***	1 HPV ^{§§}	≥3 doses HPV¶¶	HPV 3 dose series completion***
	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)
Puerto Rico	85.5(±6.3)	81.7(±7.2)	83.5(±6.7)	76.1(±10.4)	49.9(±13.0)	69.2(±15.4)	54.3(±12.5)	23.7(±10.9)	46.8(±18.0)

^{*} Estimate presented as point estimate (%) ± 95% confidence interval (CI). Estimate=NA (Not Available) if the unweighted sample size for the denominator was <30 or (95% CI half width)/Estimate > 0.6.

[†]Estimates with 95% CI half-widths >10 may not be reliable.

[§] Adolescents in the 2014 NIS-Teen were born between January 1996 and February 2002. Vaccination coverage estimates include only adolescents who had adequate provider-reported immunization records.

[¶] \geq 1 dose of tetanus toxoid-diphtheria vaccine (Td) or tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) since the age of ten years. ** \geq 1 dose of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) since the age of ten years.

^{†† ≥1} dose of meningococcal conjugate vaccine or meningococcal-unknown type vaccine.

^{§§ ≥1} dose of human papillomavirus vaccine, either quadrivalent or bivalent.

^{¶≥3} doses of human papillomavirus vaccine, either quadrivalent or bivalent. Some adolescents may have received more than the three recommended HPV doses.

^{***} Percent who received three doses among those who had at least one HPV dose and at least 24 weeks between the first dose and the interview date.

^{†††} Excludes Puerto Rico.

Appendix F: Vaccine Type Codes

Table F.1: 2014 NIS-Teen Vaccine Type Codes

Vaccine Code	Description
11	Td
14	Tdap
15	Td/Tdap-containing, unknown subtype
30	MMR-only
31	Measles-only
32	Measles-Mumps
33	Measles-Rubella
43	HepB-Hib
61	0.5 ml Recombivax
62	1.0 ml Recombivax
63	Engerix
64	Hepatitis B-only, unknown subtype checked
80	MCV4 (Menactra, Menveo)
81	MPSV4 (Menomune)
82	Meningococcal-containing, unknown subtype
CV	Human Papillomavirus, Cervarix
FL	Seasonal Flu-containing, unknown subtype
FM	Seasonal Flumist
FN	Injected Seasonal Flu, other/unknown subtype
FV	Seasonal Fluvirin
FZ	Seasonal Fluzone
GD	Human Papillomavirus, Gardasil
НА	Hepatitis A-containing, unknown subtype
НВ	Hepatitis B-containing, unknown subtype
НО	Hepatitis A-only (Havrix or Vaqta)
HP	Human Papillomavirus, unknown subtype
MM	Measles-containing, unknown subtype
VA	Varicella-containing, unknown subtype
VM	MMR-Varicella
VO	Varicella-only

Vaccine Type Codes APPENDIX F

Appendix G: Trends in the NIS-Teen Response Rates and Vaccination Coverage Rates, 2006-2014

Table G.1: Key Indicators* from Landline Sample Household and Provider Data Collection by Survey Year, National Immunization Survey - Teen, 2006-2014[†]

Survey Year	Resolution Rate (%)	Screener Completion Rate (%)	Interview Completion Rate (%)	CASRO Response Rate (%)	Teens with Adequate Provider Data (%)
2006§	82.4	81.4	83.7	56.2	52.7
2007§	82.2	81.5	83.5	55.9	53.8
2008	82.2	83.8	85.2	58.7	58.1
2009	82.7	85.0	82.5	58.0	57.4
2010	83.1	85.4	81.6	57.9	59.4
2011	82.9	84.7	81.5	57.2	61.5
2012	84.0	84.9	77.2	55.1	62.0
2013	83.5	86.1	71.1	51.1	59.5
2014	82.6	87.2	83.8	60.3	57.1

^{*}For the definitions of the key indicators see Table 1 of NIS-Teen Data User's Guides for the survey year of interest.

[†] Excludes the U.S. Virgin Islands, Guam, and Puerto Rico.

 $[\]S$ In 2006 and 2007, NIS-Teen was conducted only in Quarter 4.



Figure G.1: Trends in Landline Sample Key Indicators from Household and Provider Data Collection by Survey Year, National Immunization Survey - Teen, 2006-2014*

Figure G.1 presents a graphical representation of the data contained in Table G.1. It shows how selected key indicators from landline sample household and provider data collection performed throughout the years, from 2006 to present. Note that these data apply to the landline sample only.

^{*} Excludes the U.S. Virgin Islands, Guam, and Puerto Rico.

[†] In 2006 and 2007, NIS-Teen was conducted only in Quarter 4.

Table G.2: Key Indicators* from Cell-Phone Sample Household and Provider Data Collection by Survey Year, National Immunization Survey - Teen, 2011-2014[†]

Survey Year [§]	Resolution Rate (%)	Screener Completion Rate (%)	Interview Completion Rate (%)	CASRO Response Rate (%)	Teens with Adequate Provider Data (%)
2011	46.9	70.2	68.0	22.4	54.6
2012	52.0	70.6	64.0	23.6	56.4
2013	53.9	73.1	59.1	23.3	54.5
2014	58.9	72.9	72.7	31.2	52.3

^{*}For the definitions of the key indicators see Table 1 of NIS-Teen Data User's Guides for the survey year of interest.

[†] Excludes the U.S. Virgin Islands, Guam, and Puerto Rico.

[§] Cell-phone sample was added to the NIS-Teen in 2011.

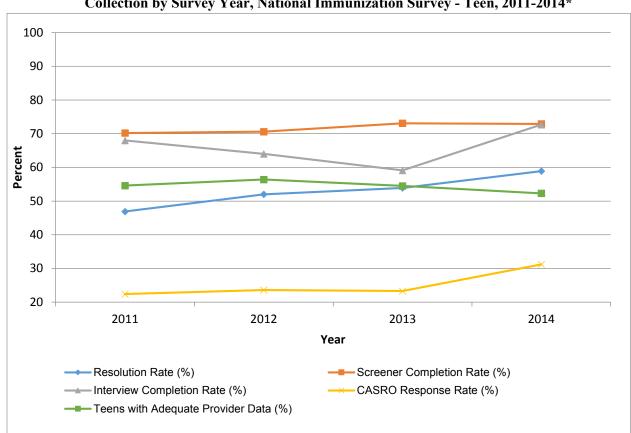


Figure G.2: Trends in Cell-Phone Sample Key Indicators from Household and Provider Data Collection by Survey Year, National Immunization Survey - Teen, 2011-2014*

Figure G.2 presents a graphical representation of the data contained in Table G.2. It shows how selected key indicators from cell-phone sample household and provider data collection performed from 2011 to present. Note that these data apply to the cell-phone sample only. Cell-phone sample was added to the NIS in 2011.

^{*} Excludes the U.S. Virgin Islands, Guam, and Puerto Rico.

Table G.3: Vaccine-Specific Coverage Levels among Teens Age 13-17 Years in the United States by Survey Year, National Immunization Survey - Teen, 2006-2014*

										VARICELLA
										\geq 2 Doses
										Varicella
									VARICELLA	Vaccine if Had
≥1 Td	≥ 1 Tdap		FEMALE	FEMALE	MALE	MALE			History of	No History of
or	Since Age	≥1	≥1 Dose	≥3 Doses	≥1 Dose	≥3 Doses	≥2		Varicella	Varicella
Tdap [†]	10 §	MenACWY	HPV**	$\mathbf{HPV}^{\dagger\dagger}$	HPV**	$\mathbf{HPV}^{\dagger\dagger}$	MMR ^{§§}	≥ 3 HepB ^{¶¶}	Disease***	Disease
60.1	10.8	11.7	N.A.	N.A.			86.9	81.3	69.9	N.A
72.3	30.4	32.4	25.1	N.A.			88.9	87.6	65.8	18.8
72.2	40.8	41.8	37.2	17.9			89.3	87.9	59.8	34.1
76.2	55.6	53.6	44.3	26.7			89.1	89.9	52.7	48.6
81.2	68.7	62.6	48.7	31.9			90.4	91.6	44.7	58.1
85.3	78.2	70.5	53.0	34.8	8.3	1.3	91.1	92.3	36.6	68.3
88.5	84.6	74.0	53.8	33.4	20.8	6.8	91.4	92.8	30.6	74.9
89.1	86.0	77.8	57.3	37.6	34.6	13.9	91.8	93.2	25.4	78.5
89.8	87.6	79.3	60.0	39.7	41.7	21.6	90.7	91.4	21.0	81.0
	or Tdap [†] 60.1 72.3 72.2 76.2 81.2 85.3 88.5 89.1	or Idap† Since Age 108 60.1 10.8 72.3 30.4 72.2 40.8 76.2 55.6 81.2 68.7 85.3 78.2 88.5 84.6 89.1 86.0	or Idap† Since Age 10 $^{\$}$ ≥ 1 MenACWY¶ 60.1 10.8 11.7 72.3 30.4 32.4 72.2 40.8 41.8 76.2 55.6 53.6 81.2 68.7 62.6 85.3 78.2 70.5 88.5 84.6 74.0 89.1 86.0 77.8	or Idap [†] Since Age 10 [§] ≥ 1 MenACWY [†] ≥ 1 Dose HPV** 60.1 10.8 11.7 N.A. 72.3 30.4 32.4 25.1 72.2 40.8 41.8 37.2 76.2 55.6 53.6 44.3 81.2 68.7 62.6 48.7 85.3 78.2 70.5 53.0 88.5 84.6 74.0 53.8 89.1 86.0 77.8 57.3	or Idap [†] Since Age 10 [§] ≥ 1 MenACWY [¶] ≥ 1 Dose HPV** ≥ 3 Doses HPV†† 60.1 10.8 11.7 N.A. N.A. 72.3 30.4 32.4 25.1 N.A. 72.2 40.8 41.8 37.2 17.9 76.2 55.6 53.6 44.3 26.7 81.2 68.7 62.6 48.7 31.9 85.3 78.2 70.5 53.0 34.8 88.5 84.6 74.0 53.8 33.4 89.1 86.0 77.8 57.3 37.6	or Γdap^{\dagger} Since Age $10^{\$}$ ≥1 $PV + **$ ≥1 $PV + **$ ≥3 $PV + **$ ≥1 $PV + **$ ≥2 $PV + V + **$ ≥2 $PV + V + **$ ≥2 $PV + V + V + **$ ≥2 $PV + V + V + V + V + V + V + V + V + V +$	or Γ dap [†] Since Age Γ dap [†] ≥1 Dose Γ dap [†] ≥3 Doses Γ dap [†] ≥1 Dose Γ dap [†] ≥3 Doses Γ dap [†] ≥1 Dose Γ dap [†] ≥3 Doses Γ dap [†] ≥1 Dose Γ dap [†] ≥3 Doses Γ dap [†] ≥3 Doses Γ dap [†] ≥4 Dose Γ dap [†] ≥3 Doses Γ dap [†] ≥4 Dose Γ dap [†] ≥3 Doses Γ dap [†] ≥4 Dose Γ dap [†]	or Idap [†] Since Age 10 $\$$ ≥1 MenACWY [†] ≥1 Dose HPV** ≥3 Doses HPV** ≥1 Dose HPV** ≥3 Doses HPV** ≥2 MenACWY [†] 60.1 10.8 11.7 N.A. N.A. N.A. 86.9 72.3 30.4 32.4 25.1 N.A. 88.9 72.2 40.8 41.8 37.2 17.9 89.3 76.2 55.6 53.6 44.3 26.7 89.1 81.2 68.7 62.6 48.7 31.9 90.4 85.3 78.2 70.5 53.0 34.8 8.3 1.3 91.1 88.5 84.6 74.0 53.8 33.4 20.8 6.8 91.4 89.1 86.0 77.8 57.3 37.6 34.6 13.9 91.8	or $Tdap^{\dagger}$ Since Age $10^{\$}$ ≥1 $PV**$ Dose $PV**$ ≥3 $PV**$ ≥4 $PV**$ ≥3 $PV**$ ≥4 $PV**$ ≥4 $PV**$ ≥4 $PV**$ ≥4 $PV**$ ≥4 $PV**$ ≥4 $PV**$ ≥5 $PV**$ ≥5 $PV**$ ≥4 $PV**$ ≥5 $PV**$ ≥5 $PV**$ ≥5 $PV**$ ≥6 $PV**$ ≥5 $PV**$ ≥6 $PV**$ ≥7 $PV**$ ≥7 $PV**$ ≥7 $PV**$ ≥8 $PV**$ ≥9 $PV**$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

^{*} Excludes the U.S. Virgin Islands, Guam, and Puerto Rico.

Source: http://www.cdc.gov/vaccines/imz-managers/coverage/nis/teen/index.html

VARICELLA

^{†≥1} dose of tetanus toxoid-diphtheria vaccine (Td) or tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) since the age of ten years.

^{§ ≥1} tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) since the age of ten years.

^{¶≥1} meningococcal conjugate vaccine or meningococcal -unknown type vaccine.

^{** ≥1} human papillomavirus vaccine, either quadrivalent or bivalent.

^{†† ≥3} human papillomavirus vaccine, either quadrivalent or bivalent.

^{\$} ≥ 2 doses of measles-mumps-rubella vaccine.

^{¶≥3} doses of hepatitis B vaccine.

^{***} By parent/guardian report or provider records.

^{†††} In 2006 and 2007, NIS-Teen was conducted only in Quarter 4.

Prior to 2011, estimates are single-frame, landline-sample estimates. From 2011 onward, estimates are dual-frame (landline plus cell-phone) estimates.

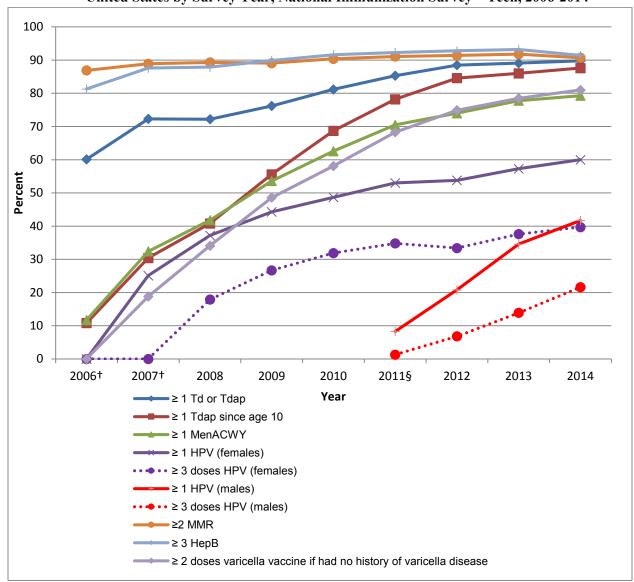


Figure G.3: Trends in Vaccine-Specific Coverage Levels among Teens Aged 13-17 Years in the United States by Survey Year, National Immunization Survey – Teen, 2006-2014*

Figure G.3 presents a graphical representation of selected data contained in Table G.3. It displays the trend in selected vaccine-specific coverage levels among teens aged 13-17 years from 2006 to 2014. Note that these data apply to the landline sample only from 2006-2010, and to the dual-frame sample from 2011 forward.

^{*} Excludes the U.S. Virgin Islands, Guam, and Puerto Rico.

[†] In 2006 and 2007, NIS-Teen was conducted only in Quarter 4.

[§] Prior to 2011, estimates are single-frame, landline-sample estimates. From 2011 onward, estimates are dual-frame (landline plus cell-phone) estimates.

Appendix H: Key NIS-Teen Response Rates by Area

Table H.1: Key Indicators* for the Landline Sample by Estimation Area, National Immunization Survey-Teen, 2014

State/Estimation Area	Resolution Rate (%)	Screener Completion Rate (%)	Interview Completion Rate (%)	CASRO Response Rate (%)	Teens with Adequate Provider Data (%)
U.S. National [†]	82.6	87.2	83.8	60.3	57.1
Alabama	83.1	88.3	80.8	59.3	56.3
Alaska	87.5	85.5	84.9	63.5	60.1
Arizona	83.3	87.0	84.6	61.4	57.9
Arkansas	85.7	90.4	84.3	65.3	59.7
California	80.7	83.3	80.4	54.1	54.3
Colorado	83.5	87.2	88.9	64.7	54.9
Connecticut	77.2	85.1	81.5	53.6	52.5
Delaware	73.3	86.9	82.6	52.6	55.6
District of Columbia	82.0	87.8	86.7	62.5	52.5
Florida	81.9	86.8	77.3	55.0	54.5
Georgia	83.1	86.7	81.9	59.0	59.8
Hawaii	85.3	82.8	77.6	54.8	56.0
Idaho	86.4	88.5	87.7	67.0	61.6
Illinois	85.1	86.9	84.1	62.2	52.6
IL-City of Chicago	86.1	86.7	83.2	62.0	52.4
IL-Rest of State	83.4	87.2	85.0	61.8	52.8
Indiana	85.6	88.5	85.4	64.7	57.1
Iowa	87.4	90.5	86.6	68.5	57.0
Kansas	85.1	89.2	82.4	62.6	61.4
Kentucky	84.2	88.8	84.4	63.1	60.0
Louisiana	84.6	87.4	80.1	59.3	56.0
Maine	84.2	89.7	88.5	66.8	56.9
Maryland	77.8	85.1	84.5	55.9	53.6
Massachusetts	74.8	85.4	86.0	55.0	55.1
Michigan	84.4	88.7	85.8	64.2	63.0
Minnesota	85.2	89.4	87.8	66.9	61.2
Mississippi	86.0	88.6	81.3	61.9	58.5
Missouri	84.1	89.1	85.5	64.1	58.8
Montana	87.2	89.4	85.1	66.4	58.4
Nebraska	84.0	88.5	86.1	64.0	60.4
Nevada	78.8	85.3	81.6	54.9	52.0
New Hampshire	78.3	87.5	87.1	59.7	56.1
New Jersey	76.1	83.7	80.3	51.2	45.9

State/Estimation Area	Resolution Rate (%)	Screener Completion Rate (%)	Interview Completion Rate (%)	CASRO Response Rate (%)	Teens with Adequate Provider Data (%)
New Mexico	86.1	89.0	85.5	65.5	56.7
New York	77.7	82.6	77.5	49.7	51.4
NY-City of New York	77.0	80.9	76.0	47.3	47.9
NY-Rest of State	79.0	85.2	79.3	53.4	55.4
North Carolina	81.6	87.9	83.0	59.5	55.3
North Dakota	88.2	89.6	89.0	70.4	61.9
Ohio	84.7	88.4	84.6	63.3	61.6
Oklahoma	84.2	88.3	84.0	62.5	59.4
Oregon	86.0	89.1	85.5	65.5	62.7
Pennsylvania	76.2	86.9	83.1	55.0	56.0
PA-Philadelphia County	76.1	85.9	78.5	51.3	57.8
PA-Rest of State	76.5	88.1	87.1	58.7	54.7
Rhode Island	72.1	87.7	86.4	54.7	62.5
South Carolina	83.2	88.5	83.7	61.6	55.6
South Dakota	88.7	90.0	90.6	72.3	58.4
Tennessee	83.4	88.6	84.3	62.2	55.4
Texas	84.3	85.4	81.5	58.7	57.4
TX-Bexar County	83.0	85.9	83.8	59.8	54.3
TX-City of Houston	85.2	84.6	77.6	55.9	59.4
TX-El Paso County	84.8	85.2	83.1	60.0	64.7
TX-Rest of State	83.6	86.4	82.6	59.7	50.6
Utah	85.7	86.0	88.9	65.5	66.7
Vermont	82.4	89.6	86.3	63.7	66.6
Virginia	78.8	86.8	84.6	57.8	52.5
Washington	83.6	87.3	86.9	63.5	60.5
West Virginia	77.5	89.6	80.4	55.9	55.3
Wisconsin	83.5	89.6	84.5	63.2	60.2
Wyoming	86.1	89.3	88.4	68.0	58.2
Puerto Rico	91.5	88.0	70.3	56.6	33.8

^{*} For the definition of the key indicators see Table 1.

[†]Excludes Puerto Rico.

Table H.2: Key Indicators* for the Cell-Phone Sample by Estimation Area, National Immunization Survey-Teen, 2014

Area	Resolution Rate (%)	Screener Completion Rate (%)	Interview Completion Rate (%)	CASRO Response Rate (%)	Children with Adequate Provider Data (%)
U.S. National [†]	58.9	72.9	72.7	31.2	52.3
Alabama	64.1	71.3	69.2	31.7	53.5
Alaska	79.6	76.1	76.2	46.1	51.3
Arizona	54.5	71.5	70.1	27.3	49.4
Arkansas	67.8	75.5	76.1	39.0	52.2
California	53.9	68.9	71.4	26.5	49.4
Colorado	56.0	73.3	77.0	31.6	55.7
Connecticut	45.0	71.6	69.8	22.5	53.1
Delaware	51.6	72.5	68.2	25.5	49.1
District of Columbia	58.1	73.8	71.0	30.4	50.0
Florida	53.8	72.4	68.8	26.8	47.9
Georgia	58.9	72.0	72.3	30.6	53.9
Hawaii	51.6	68.1	68.8	24.2	58.4
Idaho	57.9	74.7	74.4	32.1	55.3
Illinois	63.8	72.9	70.6	32.8	48.8
IL-City of Chicago	68.1	72.6	68.5	33.8	44.5
IL-Rest of State	60.1	73.2	72.4	31.9	50.8
Indiana	56.9	74.1	73.3	30.9	56.7
Iowa	61.5	77.3	76.1	36.2	52.7
Kansas	69.4	75.3	73.5	38.4	53.9
Kentucky	59.0	73.4	73.1	31.7	52.4
Louisiana	67.0	72.0	68.7	33.1	49.4
Maine	54.6	76.3	79.5	33.1	56.9
Maryland	55.8	72.2	71.5	28.8	44.8
Massachusetts	52.9	72.0	74.2	28.2	54.1
Michigan	60.8	73.1	69.2	30.8	55.4
Minnesota	57.1	73.3	76.9	32.2	48.7
Mississippi	66.4	72.9	73.1	35.4	51.7
Missouri	61.3	73.8	70.9	32.0	50.4
Montana	67.1	77.3	78.3	40.7	50.0
Nebraska	63.5	73.8	76.6	35.9	54.2
Nevada	55.5	70.6	67.7	26.5	47.1
New Hampshire	51.1	74.3	73.9	28.0	59.7
New Jersey	51.8	71.0	69.6	25.6	45.2
New Mexico	63.9	72.0	75.0	34.5	52.0
New York	52.9	71.2	66.4	25.0	46.3

Area	Resolution Rate (%)	Screener Completion Rate (%)	Interview Completion Rate (%)	CASRO Response Rate (%)	Children with Adequate Provider Data (%)
NY-City of New York	54.4	71.0	60.7	23.4	44.4
NY-Rest of State	50.8	71.6	74.0	26.9	48.1
North Carolina	56.3	72.4	72.1	29.4	49.3
North Dakota	68.2	76.2	73.7	38.3	58.2
Ohio	53.5	73.9	73.4	29.0	53.0
Oklahoma	68.4	73.3	74.2	37.2	57.7
Oregon	54.6	74.6	78.8	32.1	60.6
Pennsylvania	54.1	71.1	69.5	26.7	51.8
PA-Philadelphia County	54.4	71.0	69.2	26.7	54.3
PA-Rest of State	50.0	73.0	72.4	26.4	50.0
Rhode Island	49.1	71.8	76.7	27.1	58.5
South Carolina	56.2	72.4	74.4	30.3	52.3
South Dakota	65.9	76.2	76.5	38.4	56.5
Tennessee	57.2	73.9	76.6	32.4	51.3
Texas	58.0	69.6	71.5	28.9	49.5
TX-Bexar County	59.3	70.3	72.0	30.0	49.7
TX-City of Houston	55.4	69.3	72.5	27.8	49.4
TX-El Paso County	60.0	68.6	68.0	28.0	54.7
TX-Rest of State	59.9	70.9	75.0	31.9	47.4
Utah	60.6	73.3	76.7	34.0	56.3
Vermont	53.0	76.7	80.6	32.7	57.4
Virginia	53.9	72.1	73.1	28.4	46.6
Washington	51.4	73.8	73.7	28.0	54.5
West Virginia	58.4	74.5	71.8	31.2	54.0
Wisconsin	62.2	74.7	73.6	34.2	51.9
Wyoming	78.9	76.6	77.5	46.8	56.9
Puerto Rico	71.3	76.0	65.0	35.2	36.3

^{*}For the definition of the key indicators see Table 1.

[†]Excludes Puerto Rico.