
Collaborative Stage Application Program Interface

(Revised November 29, 2010)

Background:

The Collaborative Stage domain is divided into schemas, selected based on site, histology, and additional factors if needed. A schema consists of a set of tables. These tables- consisting of data, notes, and footnotes, contain the complete rules for deriving Collaborative Stage. Some tables describe inputs, other tables describe derived outputs, and other tables describe intermediate results that are used in calculation but not explicitly returned.
Each schema includes 39 standard tables. Individual schemas may have additional tables. Many tables are shared between schemas, so the number of distinct tables is significantly lower than the number of standard tables times the number of schemas.
CS API Usage:

The CS API is intended to provide a simple and effective way of implementing the CS standard, freeing the user from the need to implement it from scratch. The function library provides functions for calculating stage, validating inputs, and retrieving information about schemas, tables, and their contents.
The CS API is implemented as a Windows DLL that can be dropped into other applications. In addition to the DLL itself, the source code is available for those that prefer to build the Collaborative Stage software themselves.
For those that prefer to implement Collaborative Stage directly, bypassing the source code, the complete Collaborative Stage Manual and Coding Instructions will be available as a PDF file. This manual fully describes the workings of Collaborative Stage.

For those that prefer to implement Collaborative Stage without having to re-implement the CS tables, the tables and data type definition (DTD) have been provided in XML 1.0 format. These are the same tables used by the CS API. Note: the XML tables do not contain 100 percent of the domain logic needed to implement Collaborative Stage; they are intended to be used in conjunction with the CS Manual.
Sample programs that demonstrate the use of the CS API have also been provided.

All CS products (binaries, source code, sample applications, test files, and documentation) can be found at http://www.cancerstaging.org.

This document describes the C/C++ implementation of the CS API. A separate document details the VB implementation of the CS API.
Requirements:

While the API function declarations are C-style and the DLL can be accessed from either C or C++ code, a C++ compiler must be used if the user builds the source code directly. A 32-bit OS or higher is required to run CSv2.
The CS source code uses platform-independent libraries such as the Standard Template Library and does not use Windows-specific libraries. A makefile has been provided for Linux/Unix environments.
The same restrictions do not apply to sample applications; sample applications may or may not be implemented in multiple languages and platforms, and may make use of platform and language-specific libraries.
Collaborative Stage Inputs

All Collaborative Stage variables are taken from the NAACCR 12 record layout.

Name

Item #

Field Length
Column #

Primary Site
[#400],
length 4,
columns 540-543
Histologic Type ICD-O-3
[#522],
length 4,
columns 550-553

Year of Diagnosis

N/A

length 4,
columns 530-533 (from Date of Diagnosis)

CS Version Original

[#2935],
length 6,
columns 1167-1172

Behavior Code ICD-O-3
[#523],
length 1,
column 554

Grade
[#440],
length 1,
column 555
Age at Diagnosis
[#230],
length 3,
columns 193-195
Lymph-vascular Invasion
[#1182],
length 1,
column 984

CS Tumor Size
[#2800],
length 3,
columns 985-987
CS Extension
[#2810],
length 3,
columns 998-990
CS Tumor Size/Ext Eval [#2820],
length 1,
column 991
CS Lymph Nodes
[#2830],
length 3,
columns 992-994
Regional Nodes Positive
[#820],
length 2,
columns 914-915
Regional Nodes Examined
[#830],
length 2,
columns 916-917

CS Lymph Nodes Eval
[#2840],
length 1,
column 995
CS Mets at DX
[#2850],
length 2,
columns 996-997
CS Mets Eval
[#2860],
length 1,
column 998
CS Site-Specific Factor 1
[#2880],
length 3,
columns 1003-1005

CS Site-Specific Factor 2
[#2890],
length 3,
columns 1006-1008

CS Site-Specific Factor 3
[#2900],
length 3,
columns 1009-1011

CS Site-Specific Factor 4
[#2910],
length 3,
columns 1012-1014

CS Site-Specific Factor 5
[#2920],
length 3,
columns 1015-1017

CS Site-Specific Factor 6
[#2930],
length 3,
columns 1018-1020
CS Site-Specific Factor 7
[#2861],
length 3,
columns 1021-1023

CS Site-Specific Factor 8
[#2862],
length 3,
columns 1024-1026

CS Site-Specific Factor 9
[#2863],
length 3,
columns 1027-1029

CS Site-Specific Factor 10
[#2864],
length 3,
columns 1030-1032

CS Site-Specific Factor 11
[#2865],
length 3,
columns 1033-1035

CS Site-Specific Factor 12
[#2866],
length 3,
columns 1036-1038

CS Site-Specific Factor 13
[#2867],
length 3,
columns 1039-1041

CS Site-Specific Factor 14
[#2868],
length 3,
columns 1042-1044

CS Site-Specific Factor 15
[#2869],
length 3,
columns 1045-1047

CS Site-Specific Factor 16
[#2870],
length 3,
columns 1048-1050

CS Site-Specific Factor 17
[#2871],
length 3,
columns 1051-1053

CS Site-Specific Factor 18
[#2872],
length 3,
columns 1054-1056

CS Site-Specific Factor 19
[#2873],
length 3,
columns 1057-1059

CS Site-Specific Factor 20
[#2874],
length 3,
columns 1060-1062

CS Site-Specific Factor 21
[#2875],
length 3,
columns 1063-1065

CS Site-Specific Factor 22
[#2876],
length 3,
columns 1066-1068

CS Site-Specific Factor 23
[#2877],
length 3,
columns 1069-1071

CS Site-Specific Factor 24
[#2878],
length 3,
columns 1072-1074

CS Site-Specific Factor 25
[#2879],
length 3,
columns 1075-1077

Outputs from the Collaborative Stage API

These variables fall into three groups:

1) variables from the NAACCR 12 record layout which the Collaborative Stage algorithm can derive and return.

Derived AJCC-7 T

[#3400]
length 3,
columns 1114-1116

Derived AJCC-7 T Descript

[#3402]
length 1,
column 1117

Derived AJCC-7 N

[#3410]
length 3,
columns 1118-1120
Derived AJCC-7 N Descript

[#3412]
length 1,
column 1121

Derived AJCC-7 M

[#3420]
length 3,
columns 1122-1124

Derived AJCC-7 M Descript

[#3422]
length 1,
column 1125

Derived AJCC-7 Stage Grp

[#3430]
length 3
columns 1126-1128

Derived AJCC-6 T

[#2940],
length 2,
columns 1103-1104
Derived AJCC-6 T Descript

[#2950],
length 1,
column 1105

Derived AJCC-6 N

[#2960],
length 2,
columns 1106-1107
Derived AJCC-6 N Descript

[#2970],
length 1,
column 1108

Derived AJCC-6 M

[#2980],
length 2,
columns 1109-1110
Derived AJCC-6 M Descript

[#2990],
length 1,
column 1111

Derived AJCC-6 Stage Group
[#3000],
length 2,
columns 1112-1113

Derived SS1977

[#3010],
length 1,
column 1155
Derived SS2000

[#3020],
length 1,
column 1156
2) equivalent “display” variables, or short code strings consisting of numbers and letters familiar to physicians and others working with cancer staging. The display variables are provided for screen display and printing.

3) Collaborative Stage status variables.

 Calculation error code

 Calculation message text

 Function return codes

4) Collaborative Stage version information.
While not explicitly returned as outputs of stage calculation, these variables can be set by an application after calling the function CStage_get_version() at the appropriate time for each variable.
CS Version Original

[#2935],
length 6,
columns 1167-1172
CS Version Derived

[#2936],
length 6,
columns 1173-1178
CS Version Input Current
[#2937],
length 6,
columns 1161-1166
There are also three NAACCR 12 staging flags to be considered by the developer. Although these are related to Collaborative Stage, they are not used by Collaborative Stage. An application program must set these according to its own logic. These flags are:

Derived AJCC--Flag
[#3030],
length 1,
column 1158
Derived SS1977--Flag
[#3040],
length 1,
column 1159
Derived SS2000--Flag
[#3050],
length 1,
column 1160
Required Data Structure

Inputs and outputs to the Collaborative Stage calculation use the following structure, defined in the file collab.h:

typedef struct { /* inputs */

 char hist[4];

 char site[5];

 char diagnosis_year[4];

 char csver_original[6];

 char behav;

 char grade;

 char age[3];

 char lvi;

 char size[3];

 char ext[3];

 char exteval;

 char nodes[3];

 char nodeseval;

 char lnpos[2];

 char lnexam[2];

 char mets[2];

 char metseval;

 char ssf1[3];

 char ssf2[3];

 char ssf3[3];

 char ssf4[3];

 char ssf5[3];

 char ssf6[3];

 char ssf7[3];

 char ssf8[3];

 char ssf9[3];

 char ssf10[3];

 char ssf11[3];

 char ssf12[3];

 char ssf13[3];

 char ssf14[3];

 char ssf15[3];

 char ssf16[3];

 char ssf17[3];

 char ssf18[3];

 char ssf19[3];

 char ssf20[3];

 char ssf21[3];

 char ssf22[3];

 char ssf23[3];

 char ssf24[3];

 char ssf25[3];

 /* display outputs */

 char t[12];

 char tdescr[4];

 char n[12];

 char ndescr[4];

 char m[12];

 char mdescr[4];

 char ajcc[12];

 char ajcc7_t[12];

 char ajcc7_tdescr[4];

 char ajcc7_n[12];

 char ajcc7_ndescr[4];

 char ajcc7_m[12];

 char ajcc7_mdescr[4];

 char ajcc7_stage[12];

 char t77[8];

 char n77[8];

 char m77[8];

 char ss77[8];

 char t2000[8];

 char n2000[8];

 char m2000[8];

 char ss2000[8];

 /* storage outputs */

 char stor_t[3];

 char stor_tdescr[3];

 char stor_n[3];

 char stor_ndescr[3];

 char stor_m[3];

 char stor_mdescr[3];

 char stor_ajcc[3];

 char stor_ajcc7_t[4];

 char stor_ajcc7_tdescr[3];

 char stor_ajcc7_n[4];

 char stor_ajcc7_ndescr[3];

 char stor_ajcc7_m[4];

 char stor_ajcc7_mdescr[3];

 char stor_ajcc7_stage[4];

 char stor_ss77[3];

 char stor_ss2000[3];

 /* error messages */

 unsigned long error;

 char messages[3000];

 } datacard;

Variables are passed to and from the Collaborative Stage calculation using the datacard structure. This is a C struct provided by the calling program which contains all the inputs and outputs used by the Collaborative Stage calculation. The structure contains the inputs as fixed-length fields that correspond to NAACCR 12 fields. (Note that a few of the input variables have an extra character beyond what is needed for the equivalent NAACCR 12 field. These extra spaces are used internally. Input values should be left-justified, and usually they will fill the space provided.) Storage outputs and display outputs are short strings with normal C termination. The error message buffer is a single null-terminated string possibly containing multiple newline-terminated lines of text.

Note: API users should take care to not overflow datacard fields when copying data to the datacard. Since most of the datacard fields have the exact length as the NAACCR equivalents, strcpy(), which appends a null terminating character, can cause buffer overflow and unexpected behavior. It is recommended that memcpy(), strncpy(), an equivalent function, or the API function CStage_move_naaccr_to_datacard() be used instead.
Functions

Prototypes for the following functions are defined in the file csapi.h.

The CSTAGE_API macro is defined in csapi.h. For Windows application programs using the Collaborative Stage library, this macro is defined as:

#define CSTAGE_API __declspec(dllimport)

The functions defined in this document may be used in the construction of choice lists, in generating documentation on-screen or for reports, and for testing input values for validity. Although the domain knowledge of Collaborative Stage (CS) is mostly contained in its tables’ grids, some of the logic is contained in the table notes and footnotes. Effective use of some of the remaining functions may require that additional understanding of CS be built into application program code.

CSTAGE_ERROR

CSTAGE_ERROR is a constant (defined in collab.h) that indicates that a general failure has occurred. It is returned by some (but not all) of the API functions whose return type is an integer, to indicate an error. Other API functions use alternate values to indicate errors (0, the range of negative numbers, etc.). Please consult individual function descriptions for information on legal return values.

The usage of CSTAGE_ERROR does not preclude the usage of other error constants, either at the current time or in future releases.

General purpose calculation
Given a collection of Collaborative Stage input variables: get a collection of results from the Collaborative Stage calculations.

CSTAGE_API int CStage_calculate(datacard *dc);

This function is responsible for calculating Collaborative Stage. When the fields of the datacard are loaded with the appropriate inputs and the address of the structure is passed to CStage_calculate(), upon return from the function, the structure will contain the results of Collaborative Stage calculations.

It is not necessary for the calling program to clear any parts of the datacard except for the input section. The whole datacard may be initialized in the application program code or a call can be made to CStage_clear_datacard(), described later.

Selective staging

CSv2 introduces AJCC 7th edition staging. Unlike AJCC 6th edition staging, AJCC 7th edition staging can only be done on data coded to CSv2 standards. Calculation of AJCC 7th edition staging is controlled by two parameters: year of diagnosis (the first 4 digits of the date of diagnosis), and CS Version Original, both datacard fields. CStage_calculate() will automatically compute the appropriate staging systems based on the values of these fields.

If one of the following conditions is true, AJCC 7th edition staging will be calculated:

· Year of diagnosis >= 2010 AND year of diagnosis <= current year
· Year of diagnosis is blank AND CS Version Original >= 020000
In addition, if one of the following conditions is true, NONE of AJCC 7th ed. stage, AJCC 6th ed. stage, SEER 77 summary stage, or SEER 2000 summary stage will be calculated, and CStage_calculate() will return a negative number:

· Year of diagnosis is invalid

· Year of diagnosis < 2004 OR Year of diagnosis > current year
· Year of diagnosis is blank AND CS Version Original is invalid

· Site is invalid OR histology is invalid

· Schema discriminator is needed for schema selection AND schema discriminator is invalid, blank, or maps to ERROR
The following inputs: site, histology, schema discriminator (SSF25), year of diagnosis, or CS Version Original can cause total failure of staging for the following reasons:

· A schema cannot be determined from the data

· The CS version the record was coded under cannot be determined from the data

This situation will be referred to in this document as systemic failure. This is different from situations where stage calculation is allowed to proceed but fails for some or all individual derivations (which is still considered successful calculation overall).
Function return value

The value returned by CStage_calculate() is:

>= 0 : if the calculation proceeded.

< 0 : if systemic failure occurred.

Datacard error flag

The datacard.error value summarizes information about calculation errors that have occurred. An error is defined as the failure to calculate one or more outputs (example: T, N, M, stage group).
The value of datacard.error is:

0 : if the calculation has completed successfully with no warnings or errors.
1 : if no errors occurred, but one or more warnings were generated. Warnings indicate that one more CS input values were invalid but not required for stage calculation.

>1 : if one or more errors occurred. If one or more warnings also occurred, the return value will be odd.
CStage_calculate() calculates staging systems independently and intermediate values independently; therefore it is possible after CStage_calculate() for the datacard to hold successfully derived results in some of its fields but not others. The datacard.error flag reserves 1 bit for each type of derived error (except for the least significant bit, which indicates that one or more warnings were generated). The flag can be bitwise AND’ed with constants provided by Collaborative Stage, and the errors can then be interpreted as needed by the calling application. All error flags are defined in collab.h.
The following error constants indicate systemic failure has occurred: SITEFAIL, HISTFAIL, DISCRIMINATORFAIL, VERSIONFAIL.
List of error flag constants (from collab.h)
/* error codes relating to AJCC Staging */

#define EXTAJCCFAIL (1<<1)

#define NODESAJCCFAIL (1<<2)

#define METSAJCCFAIL (1<<3)

#define EXTEVALFAIL (1<<4)

#define NODESEVALFAIL (1<<5)

#define METSEVALFAIL (1<<6)

#define STAGEAJCCFAIL (1<<7)

#define TNMAJCCFAIL (EXTAJCCFAIL | NODESAJCCFAIL | METSAJCCFAIL)

#define AJCCFAIL (TNMAJCCFAIL | STAGEAJCCFAIL)

#define EVALSFAIL (EXTEVALFAIL | NODESEVALFAIL | METSEVALFAIL)

#define TNMorEVALSFAIL (AJCCFAIL | EVALSFAIL)

/* error codes relating to SEER Summary Stage 77 */

#define EXT77FAIL (1<<8)

#define NODES77FAIL (1<<9)

#define METS77FAIL (1<<10)

#define STAGE77FAIL (1<<11)

#define TNM77FAIL (EXT77FAIL | NODES77FAIL | METS77FAIL)

#define SEER77FAIL (TNM77FAIL | STAGE77FAIL)

/* error codes relating to SEER Summary Stage 2000 */

#define EXT2000FAIL (1<<12)

#define NODES2000FAIL (1<<13)

#define METS2000FAIL (1<<14)

#define STAGE2000FAIL (1<<15)

#define TNM2000FAIL (EXT2000FAIL | NODES2000FAIL | METS2000FAIL)

#define SEER2000FAIL (TNM2000FAIL | STAGE2000FAIL)

#define CSTAGEFAIL (TNMorEVALSFAIL | TNM7orEVALS7FAIL | SEER77FAIL | SEER2000FAIL)

/* other error codes */

#define TorEFAIL (EXTAJCCFAIL | EXTEVALFAIL)

#define NorEFAIL (NODESAJCCFAIL | NODESEVALFAIL)

#define MorEFAIL (METSAJCCFAIL | METSEVALFAIL)

#define SITEFAIL (1<<16)

#define HISTFAIL (1<<17)

#define DISCRIMINATORFAIL (1<<18)

// Invalid schema discriminator

#define VERSIONFAIL (1<<19)

// Invalid Year of diagnosis or CS Version Original

#define SITEorHISTFAIL (SITEFAIL | HISTFAIL)

// Schema selection failed

#define SCHEMASELECTIONFAIL (SITEorHISTFAIL | DISCRIMINATORFAIL)

// New error flags for AJCC 7th edition

#define EXTAJCC7FAIL (1<<20)

#define NODESAJCC7FAIL (1<<21)

#define METSAJCC7FAIL (1<<22)

#define EXTEVALAJCC7FAIL (1<<23)

#define NODESEVALAJCC7FAIL (1<<24)

#define METSEVALAJCC7FAIL (1<<25)

#define STAGEAJCC7FAIL (1<<26)

// New support error flags for AJCC 7th edition

#define TNMAJCC7FAIL (EXTAJCC7FAIL | NODESAJCC7FAIL | METSAJCC7FAIL)

#define AJCC7FAIL (TNMAJCC7FAIL | STAGEAJCC7FAIL)

#define EVALS7FAIL (EXTEVALAJCC7FAIL | NODESEVALAJCC7FAIL | METSEVALAJCC7FAIL)

#define TNM7orEVALS7FAIL (AJCC7FAIL | EVALS7FAIL)
Datacard messages buffer

The datacard.messages field may contain additional information about any problems detected, including both warnings and errors.
Validation of inputs

All CS inputs are validated upfront, before stage calculation proceeds. An input code is defined to be valid if it is present in the corresponding table of the associated schema. For inputs that do not have associated tables (example: Age), validity is based on the definition of the NAACCR 12 field.

Note: As Lymph-vascular invasion (LVI) did not exist in NAACCR 11, blank values for LVI will be considered valid for records for which Year of diagnosis is < 2010 and CS Version Original < 020000.
A few inputs, if invalid, will completely halt all calculation- see the documentation on systemic failure.

Inputs that are invalid but not required in the calculation of stage (including intermediate values) will trigger a warning, information about which is stored in the datacard error flag and messages buffer.

Inputs that are invalid and required in the calculation of stage (including intermediate values) will trigger both a warning at the time of validation and an error at the time of stage calculation, information about which is stored in the datacard error flag and messages buffer.
Interpretation of datacard derived outputs
When an error occurs in the derivation of a value, the derived outputs are set according to the following rule:

Display string: A single blank space (" ")

Storage code: A string containing blank spaces whose length is equal to the length of the NAACCR field

Note 1: This rule should not be confused with the situation where a display string equal to the empty string ("") is returned. “”, which is not an error.

Note 2: The intermediate values of T, N, and M for SEER summary stage do not have storage codes.
Note 3: in the inverse situation, the presence of blanks in the derived outputs according to the above rules, does not necessarily mean that an error has occurred.

Case 1: If a staging system is not derived (see Selective staging) due to invalid site, histology, schema discriminator, year of diagnosis, or CS Version Original, this is defined as an error. Blanks are copied to the appropriate outputs; this is done so that the outputs can be copied to a contiguous text buffer, preserving the integrity of the NAACCR record.

Case 2: If derivation of AJCC 7 is skipped because the year of diagnosis and CS Version Original indicate that the record was coded to CSv1 standards, this is not an error, but blanks are copied to the appropriate outputs so that the outputs can be copied to a contiguous text buffer.

To determine the reason for the presence of blanks in outputs, one can examine the value returned by CStage_Calculate() for systemic failures, and if no systemic failure has occurred, the datacard field datacard.error will indicate if a partial staging error has occurred.
Move inputs from NAACCR 12 record to datacard.

CSTAGE_API int CStage_move_naaccr_to_datacard(datacard *dc, const char *naaccr_buffer);

Input values may be loaded into the datacard from any source in any way that is desired. In many cases, the data will come from a NAACCR data exchange layout held in memory and this function provides an easy way to load the datacard.

This function always returns 0.

Move outputs from datacard to NAACCR 12 record.

CSTAGE_API int CStage_move_datacard_to_naaccr(char *naaccr_buffer, const datacard *dc);

After a function call to CStage_calculate(), the data card will contain derived output values and processing codes. An application program should test the function return value and some bits of the error code in the datacard to decide on the next processing step. This function will transfer the datacard storage outputs to the NAACCR 12 record buffer pointed to by naaccr_buffer. The values so stored will not over-run any fields in the record buffer and will not contain any nulls or other strange characters. Space characters in the derived fields of the NAACCR record usually but not always indicate errors in the CS derivation.

This function always returns 0.

Clear the datacard outputs in preparation for a new calculation.

CSTAGE_API int CStage_clear_datacard(datacard *dc);

Not every record will require every input variable for CS calculation. This function clears the datacard derived outputs, error code, and message buffer to prevent inputs or outputs from contaminating subsequent calculations. “Clearing” is defined as copying blank strings of the appropriate length to the derived outputs (as defined for CStage_calculate()), setting dc.error to 0, and copying the empty string “” to dc.messages.
This function always returns 0.

Schema selection

Given site, histology, and schema discriminator: get schema number.

CSTAGE_API int CStage_get_schema_number(const char *site, const char *histology, const char *discriminator);

Every schema is assigned a schema number, ranging from 1 to the total number of schemas. This number can be used to select a schema and retrieve information about it and its tables.
Due to the development of new schemas for CSv2 and restrictions on the assignment of site and histology codes, some combinations of site and histology values lead to multiple schemas. To distinguish between these schemas, a third parameter, discriminator, was added. If site and histology are sufficient to select a schema, the value of discriminator will be ignored by CStage_get_schema_number(). (However, if the same data is supplied to CStage_calculate(), an invalid value for the discriminator will trigger a warning regardless of whether it is needed or not)
Note: discriminator should always be set to the value of SSF25 (either the value of the NAACCR SSF25 field or a user-selected value for SSF25, depending on the circumstances). The NAACCR 12 CS Site-Specific Factor 25 field is reserved for the discriminator value.
Interpretation of function return value
< 0 : the supplied site or histology is invalid

1-S (where S is the total # of schemas, as returned by CStage_get_number_of_schemas ()) : a valid schema number
>S : there is insufficient information to select a schema based on the values of site and histology. A valid non-blank discriminator that does not map to ERROR must be passed to the function.

Selecting a discriminator value
If the return value of CStage_get_schema_number() is greater than S, a valid value for the discriminator must be passed to the function. If the function is being called in the context of data entry, the value of the discriminator should be selected by the user from a table, called the schema discriminator table, that is present in each of the candidate schemas. If the function is called using data from an existing NAACCR record, then the discriminator value should be supplied directly from the record.
Note: while some discriminator tables contain 981 and 982 codes, 981 and 982 should not be used as a discriminator value when a discriminator is required (as indicated by the function return value). These values were included in the tables in order to provide a valid SSF25 value for cases that do not require a discriminator but belong to schemas with discriminator tables.
When a discriminator value is required, the schema number and table number of the discriminator table will be stored in the value returned by CStage_get_schema_number(). The integer’s high-order 16 bits will contain the schema number and its low-order 16 bits will contain the table number.
Note: the table number of the discriminator table will always be the table number for CS Site-Specific Factor 25.
Once the location of the schema discriminator table has been determined, its codes and descriptions can be retrieved and displayed to the user. After the user selects a discriminator value, another call to CStage_get_schema_number() can be made with the chosen discriminator value.
Example calls to CStage_get_schema_number():
Example 1: Invalid site/histology

CStage_get_schema_number(“C032”, “8000, “988”) == negative number

Example 2: Valid site/histology

CStage_get_schema_number(“C000”, “8000”, “988”) == 1 (valid schema)
Example 3: Valid schema discriminator required but not supplied
CStage_get_schema_number(“C694”, “8720”, “ ”) == 8781858
// Get the schema number of the discriminator table by taking the quotient of the return value divided by 216. One method: truncate the result of dividing two integers by storing the result in an integer

8781858 / 65536 = 134 (schema number 134 = MelanomaIris, the default schema for the group)

// Get the table number of the discriminator table by taking the remainder of the return value divided by 216
8781858 % 65536 = 34 (TableNum SSF25)

// Discriminator table is located in schema 134, table 34. The appropriate discriminator
// value can be selected from the table.

// There are two possible schemas- MelanomaIris and MelanomaCiliaryBody
Example 4: Valid schema discriminator required but not supplied
CStage_get_schema_number(“C161”, “8000”, “ “) == 2883618
// Get the schema number of the discriminator table by taking the quotient of the return value divided by 216. One method: truncate the result of dividing two integers by storing the result in an integer

2883618 / 65536 = 44 (schema number 44 = Stomach, the default schema for the group)
// Get the table number of the discriminator table by taking the remainder of the return value divided by 216
2883618 % 65536 = 34 (TableNum SSF25)

// Discriminator table is located in schema 44, table 34. The appropriate discriminator

// value can be selected from the table.

// There are 2 possible schemas – EsophagusGEJunction and Stomach

Example 5: Schema discriminator not required, but schema contains a discriminator table (see Example 4 for comparison)
// This is an unusual scenario where schemas share some but not all of their sites, and a
// discriminator is required for the shared sites but not the unique sites.
CStage_get_schema_number(“C163”, “8000”, “981“) = 44 (Stomach)
// Stomach has a discriminator table but a discriminator value was not required

// for this particular combination of site and histology

// Use 981 or 982 depending on the site and histology

Sample code for building a schema discriminator picklist when a discriminator is required
// For this example, the inputs to CStage_get_schema_number() are hardcoded.
// In an actual workflow, they may be supplied by a user

int result = CStage_get_schema_number("C161", "8000", " ");

int num_schemas = CStage_get_number_of_schemas();
if (result > num_schemas)

{
// For brevity, the code within these brackets is written as follows
}
// Get the schema number and table number that identifies the location of the discriminator table

const int bitshift = (int)pow(2.0, 16.0);

int disc_schema_num = result / bitshift;

int disc_table_num = result % bitshift;
// Construct picklist by extracting data from the discriminator table
int num_rows = CStage_get_number_of_rows(disc_schema_num, disc_table_num);

const char* pattern = CStage_get_table_pattern(disc_schema_num, disc_table_num);

int num_forecols = 0, num_desc = 0, num_aftcols = 0;

sscanf(pattern, "%d-%d-%d", &num_forecols, &num_desc, &num_aftcols);

int last_col = num_forecols + num_aftcols;
// Iterate through discriminator table
for (int i=1; i<=num_rows; i++)

{

const char *code = CStage_get_code_string(disc_schema_num, disc_table_num, i, 1);

const char *desc = CStage_get_description_string(disc_schema_num, disc_table_num, i);

const char *choice_name = CStage_get_code_string(disc_schema_num, disc_table_num, i, last_col);

// Your code here: construct a picklist using the input codes, descriptions, and/or

// schema names in each row.

// Remember to exclude 981 and 982 codes for discriminated sites
}
// Your code here: display picklist, retrieve selected value, and pass value to

// CStage_get_schema_number().
[image: image1.png]
Figure 1: Sample discriminator table (layouts may vary)
Flowchart for interactive schema selection and data entry

The following flowchart details one possible way CStage_get_schema_number() can be used to select a schema for the purpose of data entry. For the sake of simplicity, the loops for data entry have been omitted.
[image: image2.png]

Schema accessor functions
[image: image3.png]
Figure 3: Sample schema (layouts may vary)
Get number of CS schemas, S.

CSTAGE_API int CStage_get_number_of_schemas(void);

Returns the total number of schemas.
This function is useful for iterating through the full list of schemas. The number of schemas and their ordering is constant throughout the lifetime of a release; however, individual schema numbers should not be treated as constants.
The function returns 0 if an error occurred.

Given a schema index number 1-S: get schema name.
CSTAGE_API const char *CStage_get_schema_name(const int schema_number);

The schema name is a short string, part of the Collaborative Stage standard, which uniquely identifies a particular schema. The schema names contain upper- and lower-case letters. The case is considered significant, but all schema names are unique in a case-insensitive way as well. The function returns the schema name as a string.
If the schema number is invalid, the function returns NULL.
Given a schema index number 1-S: get schema title

CSTAGE_API const char* CStage_get_schema_title(const int schema_number);

The schema title provides descriptive information about the schema. The function returns the schema title as a string.

If the schema number is invalid, the function returns NULL.
Given a schema index number 1-S: get schema subtitle

CSTAGE_API const char* CStage_get_schema_subtitle(const int schema_number);

The schema subtitle provides additional descriptive information about the schema. The function returns the schema subtitle as a string.

If the schema number is invalid, the function returns NULL.

Given a schema index number 1-S: get the schema site summary
CSTAGE_API const char* CStage_get_schema_sitesummary(const int schema_number);

The site summary is a string denoting which sites are used by the schema. The function returns the site summary as a string.

If the schema number is invalid, the function returns NULL.

Given a schema index number 1-S: get the number of schema notes

CSTAGE_API int CStage_get_number_schema_notes(const int schema_number);

The function returns the number of notes for the indicated schema.

If the schema number is invalid, the function returns CSTAGE_ERROR.

Given a schema index number 1-S and note index number 1-N: get the Nth note for the schema

CSTAGE_API const char* CStage_get_schema_note(const int schema_number, const int note_number);

The function returns the specified note as a string.

If the schema number or note number is invalid, the function returns NULL.

Given a schema index number 1-S: get the schema revision date
CSTAGE_API const char* CStage_get_schema_revision_date(const int schema_number);

The function returns the schema revision date as a string.
The schema revision date is written in the format “MM/DD/YYYY”. The schema revision date is defined as the most recent date of the revision date of the schema body and the revision dates of its individual tables.

If the schema number is invalid, the function returns NULL.

Given a schema index number 1-S: get the number of tables T in the schema.

CSTAGE_API int CStage_get_number_of_tables(const int schema_number);

Due to the existence of schema-specific “extra” tables, some schemas have more tables than others. For applications which need to retrieve information about all the tables of a schema, this function returns the total number of tables for a given schema.

If the schema number is invalid, the function returns CSTAGE_ERROR.

Table accessor functions
[image: image4.png]
Figure 4: Sample table (layouts may vary)
Table numbers
A list of table number constants is defined in collab.h. The constants can be passed to table-related functions to obtain table properties.

The constants listed below represent the 39 standard tables that are present in every schema in the specified ordering.

enum TableNum { SIZ = 1, EXT, EXTEVAL, NODES, LNEVAL, LNPOS, LNEXAM,

 METS, METSEVAL, SSF1, SSF2, SSF3, SSF4, SSF5, SSF6,

SSF7, SSF8, SSF9, SSF10, SSF11, SSF12, SSF13, SSF14, SSF15,

SSF16, SSF17, SSF18, SSF19, SSF20, SSF21, SSF22, SSF23, SSF24, SSF25, HIST7, HIST, AJCC7, AJCC, SEERSUM, … }
Given a schema index number 1-S and table index number 1-T: get the unique identifier for the table

CSTAGE_API const char* CStage_get_table_id(const int schema_number, const int table_number);

This function returns the table ID of the specified table. A table ID is a short string used to identify a table. Distinct tables are guaranteed to have different IDs, therefore, table IDs can be compared to determine if tables are identical. A table used by multiple schemas will have the same ID regardless of which schema is specified. On the other hand, tables can be distinct in non-obvious ways (for example, two tables can have the same content from a visual standpoint but different usage attribute values, making them distinct).

Table IDs are not guaranteed to stay the same from release to release and should not be treated as constant. No assumptions can be made about the format of a table ID beyond the current release.
If the schema number or table number is invalid, the function returns NULL.
Given a schema index number 1-S and table index number 1-T: get the table title.

CSTAGE_API const char *CStage_get_table_title(const int schema_number, const int table_number);

The title describes the content of the table. The function returns the title as a string.
If the schema number or table number is invalid, the function returns NULL.

Given a schema index number 1-S and table index number 1-T: get the table subtitle.

CSTAGE_API const char *CStage_get_table_subtitle(const int schema_number, const int table_number);

The subtitle describes the content of the table. This function returns the title as a string. Most tables do not have subtitles; in this case the returned string will be empty ("").

If the schema number or table number is invalid, the function returns NULL.

Given a schema index number 1-S and table index number 1-T: return a string which describes the table column structure.
A table has one or more code columns and at most one description column. The individual table rows follow this layout.

Table rows have the following characteristics:

1)
The cells of a table proper, as distinct from column-headers and labels, consist of codes and descriptions. Codes tend to be short strings of letters and numerals with no punctuation or spaces; descriptions are also strings, but their sizes range from one character to multiple paragraphs of ascii printable characters.

2)
Table rows always begin with one or more code cells.

3)
A table row has zero or one description cells, as determined by the table layout.

4)
A description cell may be followed in its row by zero or more code cells.

CSTAGE_API const char *CStage_get_table_pattern(const int schema_number, const int table_number);

This function returns the table pattern. The table pattern provides the basis for a program to reproduce the structure of a table for a choice list or documentation presentation.
For any table the pattern attribute is a string that shows the column structure of the table. Pattern strings have the form “J-K-L”, in which J represents the number of code cells at the beginning of a row; K represents the number (0 or 1) of description cells; and L represents the number of code cells following a description cell.

“1-0-0” is the minimal table pattern, indicating a row consisting of only one code cell. “1-1-3”, a common pattern, indicates a row consisting of a single code cell followed by a description cell followed by three code cells. “1-0-3” is not allowed, and a table which matches this pattern is correctly described with the pattern “4-0-0”.

If the schema number or table number is invalid, the function returns NULL.

Given a schema index number 1-S and table index number 1-T: get the revision date for the table

CSTAGE_API const char* CStage_get_table_revision_date(const int schema_number, const int table_number);

If the schema number and table number are valid, the function returns the revision date as a string. The table revision date is written in the format “MM/DD/YYYY”.

If the schema number or table number is invalid, the function returns NULL.

Given a schema index number 1-S and table index number 1-T, get the number of notes at the top of the table.

CSTAGE_API int CStage_get_number_table_notes(const int schema_number, const int table_number);

The function returns the number of notes at the top of a table.
If the schema number or table number is invalid, the function returns CSTAGE_ERROR.

Given a schema index number 1-S, table index number 1-T, and note index number 1-N: get the Nth note for the table.
CSTAGE_API const char *CStage_get_table_note(const int schema_number, const int table_number, const int note_number);

The function returns the text of a note. note_number is an integer in the range 1-n, where n is the number returned by CStage_get_number_table_notes() for the table.

If the schema number, table number, or note number is invalid, the function returns NULL.

Given a schema index number 1-S and table index number 1-T: get the number of footnotes at the bottom of the table.

CSTAGE_API int CStage_get_number_table_footnotes(const int schema_number, const int table_number);

The function returns the number of footnotes at the bottom of a table.

If the schema number or table number is invalid, the function returns CSTAGE_ERROR.

Given a schema index number 1-S, table index number 1-T, and footnote index number 1-N: get the Nth footnote for the table.

CSTAGE_API const char *CStage_get_table_footnote(const int schema_number, const int table_number, const int footnote_number);

The function returns the text of a footnote. footnote_number is an integer in the range 1-n, where n is the number returned by CStage_get_number_table_footnotes() for the same table.

If the schema number, table number, or footnote number is invalid, the function returns NULL.

Given a schema index number 1-S and table index number 1-T: get the usage attribute of the table.

CSTAGE_API int CStage_get_table_usage(const int schema_number, const int table_number);

This function returns the table usage, an integer indicating whether the table is used in the calculation of stage.

If the schema number or table number is invalid, the function returns CSTAGE_ERROR.

Appropriate constants for table usage are defined in collab.h.

#define TB_USAGE_ACTIVE 0
// Used in calculation of stage

#define TB_USAGE_DRONE 1
// Not used in calculation of stage

#define TB_USAGE_UNDEFINED 2
// Undefined

#define TB_USAGE_DISCRIMINATOR 3
// Schema discriminator

Explanation of usage attribute values

TB_USAGE_ACTIVE – table plays a role in the calculation of one or more staging systems.

TB_USAGE_DRONE – table does not play a role in the calculation of any staging system.

TB_USAGE_UNDEFINED – table is undefined (sometimes referred to as “not applicable”). This table indicates that an input is not defined for a schema and only contains placeholder codes that are obsolete or not applicable. Users interested only in defined tables can filter out tables with this attribute.

TB_USAGE_DISCRIMINATOR – schema discriminator table.
Given a schema index number 1-S and table index number 1-T: get the currency attribute of the table.

CSTAGE_API int CStage_get_table_currency(const int schema_number, const int table_number);

This function returns the table currency, an integer indicating whether the table is currently valid for Collaborative Stage, obsolete, or will be used in a future release.

If the schema number or table number is invalid, the function returns CSTAGE_ERROR.

Appropriate constants for table currency are defined in collab.h.

#define TB_CURRENCY_CURRENT 0
// Current

#define TB_CURRENCY_FUTURE 1
// Will be defined in a future release

#define TB_CURRENCY_OBSOLETE 2
// Obsolete

Explanation of currency attribute values

TB_CURRENCY_CURRENT – table is currently used in CSv2.

TB_CURRENCY_FUTURE – table is not used in CSv2 and is a placeholder that will be defined in a future release.

TB_CURRENCY_OBSOLETE – table is used in CSv1 but not in CSv2. Usually these tables have been replaced by tables with a similar purpose, but are left in so that older records will still be valid after conversion to CSv2. Users interested in dealing only with CSv2 tables can filter out tables with this attribute. Note: a table is obsolete only if all its codes are obsolete; if one or more of its codes are valid in CSv2, the table is current.

Given a schema index number 1-S and table index number 1-T: get the role attribute of the table.

CSTAGE_API int CStage_get_table_role(const int schema_number, const int table_number);

NOTE: this function is not the CStage_get_table_role() from CS version 1, which has been removed.

This function returns the table role, an integer indicating the general purpose of the table.

If the schema number or table number is invalid, the function returns CSTAGE_ERROR.

Appropriate constants for table role are defined in collab.h.

#define TB_ROLE_INPUT 0
// CS input table

#define TB_ROLE_HISTOINC 1
// Histology inclusion table

#define TB_ROLE_HISTOEXC 2
// Histology exclusion table

#define TB_ROLE_STAGE 3
// Stage table

#define TB_ROLE_EXTRA 4
// Extra table for intermediate calculation

Explanation of role attribute values

TB_ROLE_INPUT – table corresponds to a Collaborative Stage input.

TB_ROLE_HISTOINC – table is a histology inclusion table. Histology inclusion tables are used in AJCC 7 staging to determine if the schema should be staged.

TB_ROLE_HISTOEXC – table is a histology exclusion table. Histology exclusion tables are used in AJCC 6 staging to determine if the schema should be staged.

TB_ROLE_STAGE – table is a stage table.

TB_ROLE_EXTRA – table is an “extra” table. Extra tables are non-standard tables that are defined for some but not all schemas and are generally used in the calculation of intermediate values. Extra tables are always positioned after the last standard table.

Given a schema index number 1-S and table index number 1-T: get the number of rows of data in the table, not counting the row for column-headers, if present.

CSTAGE_API int CStage_get_number_of_rows(const int schema_number, const int table_number);

This function returns the size of the specified table. It may be useful in preparing to iterate through a table in order to construct a choice list from its codes and descriptions.

If the schema number or table number is invalid, the function returns CSTAGE_ERROR.

Code retrieval and validation, descriptions, and column headers

Given a schema index number 1-S, table index number 1-T, row index number 1-R, and code column index number 1-C (C determined by examination of the pattern string): get the code string in the specified cell.

CSTAGE_API const char *CStage_get_code_string(const int schema_number, const int table_number, const int row_number, const int code_column_number);

This function returns the contents of the code cell at the specified row and column (excluding description columns) of the specified schema table. Note that column headers are not considered code cells– to fetch the contents of a header for a code column, use CStage_get_code_col_header().
If the schema number, table number, row number, or code column number is invalid, the function returns NULL.

Given a schema index number 1-S, table index number 1-T, code column index number 1-C (C determined by examination of the pattern string), and input code: determine if the input code is valid for the table and column.

CSTAGE_API int CStage_code_is_valid(const int schema_number, const int table_number, const int input_column, const char *code);

This function is used for validating codes in input tables. The function returns 1 if the input code is present in the designated code column of an input table, and 0 otherwise.
If the schema number, table number, or code column number is invalid, or the code is too short relative to the specified table column, the function returns 0.
Note: the behavior of this function is undefined when applied to tables that are not input tables or columns that do not contain input codes. The value of table_number should not map to a non-input table, and the value of input_column should always be set to 1.

The function is capable of validating a code within a range of codes. For example, if column 1 contains a cell with a value of “000-100”, the following call returns 1:

CStage_code_is_valid(some_schema_num, some_table_num, 1, “070”) == 1

By definition, this function does not validate descriptions.

Given a schema index number 1-S, table index number 1-T, and row index number 1-R: get the description for the specified row.

CSTAGE_API const char *CStage_get_description_string(const int schema_number, const int table_number, const int row_number);

This function returns the contents of the description cell at the specified row of the specified schema table. Note that column headers are not considered description cells- to fetch the contents of a header for a description column, use CStage_get_descrip_col_header().

If the schema number, table number, or row number is invalid, or the specified table does not have a description column, the function returns NULL.

Given a schema index number 1-S, table index number 1-T, and code column index number 1-C: get the column header for the specified code column.

CSTAGE_API const char *CStage_get_code_col_header(const int schema_number, const int table_number, const int code_col_number);
This function returns the contents of the column header of the specified code column of the specified schema table.
If the schema number, table number, or code column number is invalid, the function returns NULL.
Given a schema index number 1-S and table index number 1-T: get the column header for the description column of the table.

CSTAGE_API const char *CStage_get_descrip_col_header(const int schema_number, const int table_number);

This function returns the contents of the column header of the description column of the specified schema table.
If the schema number or table number is invalid, or if the table has no description column, the function returns NULL.
Miscellaneous
Get the timestamp of the current version of the CS library.

CSTAGE_API const char *CStage_get_timestamp(void);

This function returns a string denoting the timestamp of when the CS library was last built.

Get the version identifier of the current CS library.

CSTAGE_API const char *CStage_get_version(void);

This function returns the version number of the current release of the CS library. The version is a null-terminated six-digit numeric string. The first two digits indicate the major version, the next two digits indicate the minor version, and the last two digits indicate least significant changes. A calling application should store this identifier in the NAACCR fields CS Version Original, CS Version Input Current, and CS Version Derived as appropriate.

Given the storage code for a derived variable (an output value) and an integer indicating the identity of the variable: get the associated display code.

CSTAGE_API const char *CStage_get_display_code(const int list, const char *storage_code);

Collaborative Stage reports results with both storage codes and display codes. A storage code might be fetched from a saved record. This function returns the display code for the given storage code. list indicates which kind of display code is being fetched:

 1 – Derived AJCC-6 T

 2 – Derived AJCC-6 N

 3 – Derived AJCC-6 M

 4 – Derived AJCC-6 Stage Group

 5 – Derived SS1977

 6 – Derived SS2000

 7 – Derived AJCC T Descriptor

 8 – Derived AJCC N Descriptor

 9 – Derived AJCC M Descriptor
 10 – Derived AJCC-7 T

 11 – Derived AJCC-7 N

 12 – Derived AJCC-7 M

 13 – Derived AJCC-7 Stage Group

If the storage code is NULL or invalid, or the list number is invalid, the function returns NULL.

Validates a set of inputs for a schema and specifies which inputs were invalid.
CSTAGE_API int CStage_validate_inputs(const int schema_number, datacard *dc, unsigned long *input_flags, unsigned long *ssf_flags);

This function validates a set of inputs, stored in datacard dc, against the tables of the schema identified by schema_number.

The function performs validation in the same manner as CStage_calculate() except that the following fields are not validated: site, histology, year of diagnosis, CS Version Original. The user is assumed to have the schema identified by schema_number in mind.
The function returns 0 if schema_number is valid and CSTAGE_ERROR otherwise. When the function returns, the message buffer dc.messages contains text information about which inputs were invalid.
Information about which inputs are invalid is stored in the function’s two flags. These flags can be bitwise AND’ed with constants provided in collab.h to extract the invalid inputs. Since there are a large number of CS inputs, ssf_flags stores all error codes for the site-specific factors (SSFs) and input_flags stores error codes for the non-SSF inputs.
Initialize Collaborative Stage library for non-Windows DLL builds of Collaborative Stage.
CSTAGE_API void CStage_initialize();
This function must be called by non-Windows DLL builds of Collaborative Stage in order to initialize the Collaborative Stage library.

For Windows DLL builds, this function should not be called; Windows DLL builds of Collaborative Stage are automatically initialized during DLL loading.
Uninitialize Collaborative Stage library for non-Windows DLL builds of Collaborative Stage.

CSTAGE_API void CStage_uninitialize();

This function must be called by non-Windows DLL builds of Collaborative Stage in order to uninitialize the Collaborative Stage library after it is no longer needed.

For Windows DLL builds, this function should not be called; Windows DLL builds of Collaborative Stage are automatically uninitialized during DLL unloading;
Provides support for the Edit Engine. This function is not intended for external use.
CSTAGE_API int EditsInterface(char *func_name, long parm1, long parm2, long parm3, long parm4, long parm5);

EditsInterface() supports the following functions:

· CStage_get_number_of_schemas()

· CStage_get_schema_number()

· CStage_code_is_valid()

· CStage_get_code_string()

· CStage_get_schema_name()

· CStage_get_schema_revision_date()

· CStage_get_table_title()

· CStage_get_table_subtitle()

· CStage_get_table_revision_date()

· CStage_get_table_usage()

· CStage_get_table_currency()

· CStage_get_table_role()

· CStage_get_number_of_rows()

· CStage_get_version()

PAGE
	CS v02.04.40 Last revised 11/29/10
	Page 1
	

	
	
	

