EMERGING ENVIRONMENTAL ISSUES
Contamination of Drinking Water

- Disinfection by-products
- Environmental contaminants (e.g., arsenic, radon)
- Animal-derived contaminants
 - Non-point source contamination
 - Concentrated animal feeding operations
- Human-derived contaminants
 - Wastewater and pathogens
 - Inorganics (e.g., heavy metals, nitrates)
 - Organics (volatile, non-volatile)
 - Pesticides, herbicides, solvents
 - Pharmaceuticals and personal care products
U.S. Drinking Water Systems

- Aging water and wastewater infrastructure
 - Plants, distribution systems long overdue for replacement
 - > 1 trillion estimate cost
 - Source water protection, water development

- Risk to public health
 - CSO’s, SSO’s
 - $\sim 250,000$ annual water main breaks
 - Leaks, breaks, low pressure events open systems to contamination and health effects
U.S. Drinking Water Systems

- Private wells, small water systems not under SDWA
- Serve ~45 million people (15.6 million households; ~12% of households)
- Prone to poor construction, operation, maintenance, water quality
 - WA 2003: most small systems had > 1 system deficiencies that posed a potential public health hazard
 - AL 2005: 40% of private wells failed bacteriologic testing
 - NJ 2002-8: 12.5% failed testing (2.2% fecal test positive, 2.7% nitrates)
Building Issues

- Building distribution systems—premise plumbing
 - Regulation, in practice, stops at the street
 - Biofilms everywhere
 - Pathogens exploiting human-made habitats
 - Niches for thermophiles
 - *Legionella*, *Mycobacterium avium* complex, *Acanthamoeba*, *Naegleria*
 - Aerosolization via shower heads, taps

- Cooling systems create hot water via heat exchange
 - Aerosolization of *Legionella*
Naegleria fowleri in tap water

- US Virgin Islands, 2012
- 47 year-old Muslim male from St. Thomas, USVI died
- The patient had no recreational water exposure and practiced ritual ablution including nasal rinsing
- Water sources
 - Home
 - Untreated groundwater from well
 - Untreated rainwater from cistern
 - Both connected to premise plumbing system
 - Mosque
 - Treated municipal water (desalinated and chlorinated)
N. fowleri, Louisiana 2013

- 4 year old boy died in southern Louisiana
 - No recreational water exposure reported; boy did not like to dunk his head in water
 - Likely water exposure was during long day of playing on a backyard “slip-n-slide” irrigated with public drinking water

- Environmental Investigation
 - N. fowleri cultured from
 - One soil sample
 - Both garden hoses
 - Hot water heater
 - Toilet tank
 - Outside hose bib [negative in 1 L, positive in 158-L ultrafiltration (UF) sample] (No chlorine residual detected in hose bib water)

- N. fowleri detected in other parts of distribution system---in areas with low residual disinfection
Louisiana: 2011

- Two cases in different areas
 - Both cases were regular users of neti pots for nasal irrigation
 - *Naegleria fowleri* found in premise plumbing at both residences
 - Hot water heaters set to low temperature settings

- Cases associated with different drinking water systems
 - St. Bernard Parish (near New Orleans) & DeSoto Parish (near Shreveport)
 - Both water utilities performed chloramination for 2° disinfection
 - 1-L samples from municipal water systems negative

Conclusions: *Naegleria fowleri* and Tap Water

- Geographic range shifting northwards as anticipated with water temperature increases
 - Also seen with other climate sensitive pathogens such as *Vibrio*, harmful algal blooms
- Moderate chlorine resistance is challenging for water treatment
- Ability to colonize premise plumbing and biofilms, similar to other thermophilic, environmental organisms (*Legionella, Pseudomonas, NTM/MAC*)

Other Uses of Water: Challenges

- **Food production**
 - Agriculture: production, irrigation, processing is one of the major uses of water in the world
 - Eat the food and drink the water from around the world
 - Water suspected in *Cyclospora* outbreaks 1995+
 - Spinach and *E.coli* O157:H7, CA 2007
 - Drawing from decreasing water resource that may be more prone to contamination

- **Increasing re-use of wastewater & graywater**
Recreational Water: Natural Waters

- EPA regulates
- EPA validating new fecal indicators
 - Critical issue is the lack of differentiation between animal and human fecal contamination
 - Many beaches likely closed due to bird contamination
 - Link to human illness is unclear compared to human sewage contamination
Climate Change and Water Impacts

- Increased water availability
 - Moist tropics and high latitudes
- Decreased water availability
 - Mid-latitudes, semi-arid low latitudes
- Water stress for hundreds of millions
- Extreme weather events
 - Droughts, floods, increased temperatures
- Water quantity as well as water quality becomes issue
Drought

- **Surface water**
 - Concentration of contaminants
 - Decreased dilution factor in outflows, runoff

- **Groundwater**
 - Increasing groundwater recharge
 - Surface water used to recharge
 - Changing soil/geology increases potential for contamination
 - Saltwater intrusion into groundwater as levels drop

- **Water re-use**
 - “Toilet-to-Tap”
 - ~10% of wastewater in US is “reused”
Floods

- Potential infrastructure failures of drinking/wastewater treatment
- Sewer overflows (combined and sanitary)
 - >1 trillion gal of sewage & storm water discharged annually during CSO’s
- Agricultural and livestock areas rinsed into surface water---”first flush”
- Water quality
 - Surface & ground water contamination w/pathogens, chemicals
Higher Temperatures

- Increasing water temperatures and/or nutrients
 - Movement of pathogens to more northern regions
 - *Vibrio paraheamolyticus* in Alaska
 - Enhanced growth of pathogens
 - *Naegleria, Vibrio*, harmful algal blooms, *Pseudomonas*
 - Recreational water climate change indicators
 - Increased water use resulting in increased infections, health effects
Summary

- Environmental issues
 - Premise plumbing/biofilm pathogens
 - Increases in recreational water assoc. outbreaks
 - Aging drinking water infrastructure
 - Increasing complexity of chemical contamination
 - New pathogens, changing epidemiology
 - Climate change: floods, drought, and re-use
 - Water used in food production

- Water jurisdictions generally spread across public health groups or separate agencies

- How can we prepare to meet these challenges?
THANK YOU
Conclusions: *Naegleria fowleri* and Tap Water

- Recent cases associated with tap water are challenging for water utilities
 - FLA in premise plumbing common (~79% of 467 households in OH study); *N. fowleri* occurrence largely unknown
 - Need for communication about not using tap water for nasal rinsing?
 - How to balance risk vs preparedness?

- Ecological and engineering knowledge gaps
 - How to develop predictive capacity? What kind of monitoring?
 - What are water quality risk factors? (e.g., temperature, disinfectant residual; HPC? Other indicators?)
 - What are water system risk factors? (e.g., chloramination? nitrification? water age? elevated storage tank stratification?)
 - What are premise plumbing risk factors? (hot water heater setting/maintenance? pipe material?)