New Technologies and Vaccine Development

Margaret A. Liu, M.D.

Courtesy of T Sharrar, Smithsonian Institution

Need for New Vaccines

	(Million)	(Million)
Disease	Annual New Cases	Annual Deaths
Diarrheal Diseases	1,300	2.5-4
Acute Respiratory Diseases		3.7
Tuberculosis	7-8	2-3
HIV	5.8	3
Malaria	500	1.5-3

Issues for Live Attenuated Virus Vaccines

- Natural infection may not induce immunity or optimal immune responses
- Some viruses cause deleterious immune responses
- Potential reversion to virulence
 - Concern for HIV
- Decreased efficacy due to pre-existing antibodies
 - Influenza
- Decoy antigens on the virus

Comparison of Vaccine Technologies

- Live attenuated viruses
 - Highly effective
 - Potential risk
 - Manufacturing challenge
- Recombinant proteins
 - Potent antibody response
 - Non-native forms
 - Not induce CTL
- Viral vectors
 - Risk
 - Resistance / pre-existing antibody
 - Inflammation

- DNA vaccines
 - Need for increased potency
 - Designer immune response e.g., Type of T_H
 - Specificity: avoid deleterious or diversional antigens
 - Stability
 - Safety
 - Generic manufacturing
 - Cost

HIV Clade (Strain) Diversity

HIV and the Pathogenesis of AIDS, ASM Press Levv

Heterogeneity of HIV Strains

Exogenous Protein Results in Generation of T Cell Help But Not CTL

DNA Vaccine

Generation of CTL by DNA Vaccines

1918 Flu Pandemic

20 Million Deaths

Courtesy of T Sharrar, Smithsonian Institution

Initial Demonstration of Efficacy of DNA Vaccines

- Generation of CTL by DNA vaccine
- Protection by DNA vaccine against infectious challenge
- Cross-strain protection

Ulmer JB, Donnelly JJ...Liu MA, Science 259: 1745 (1993)

DNA Vaccine Protects Against Cross-Strain Influenza Challenge

Fu T-M...Liu MA and Donnelly JJ, J Virol 71:2715 (1997)

Addition of Irrelevant Plasmid DNA Increases Antigen-Specific Immune Responses

Donnelly JJ...Liu MA, Ann Rev Imm 15:627 (1997)

Immune Responses of DNA Vaccines

Results from:

- Specific immunity against encoded antigen
- Non-specific immune effects of plasmid backbone

Modified from Krieg, AM, Current Op Imm <u>12</u>: 35 (2000)

Plasmid Non-Specific Stimulation

Due to:

PuPuCGPyPy sequences

– "CpG motifs"

 Potential means to increase / decrease / or change nature of immunogenicity of DNA Vaccines

Krieg AM...Klinman DM, Nature <u>374</u>:546 (1995) Sato Y...Carson DA and Raz E, Science <u>273:352 (1996)</u> Klinman DM...Krieg AM, PNAS <u>93</u>:2879 (1996) Klinman DM...Ishijatsubo Y, JI <u>158</u>:3635 (1997)

HIV Envelope

Different Forms of HIV Envelope Used for Immunizations

Clinical Trials of DNA Vaccines

- HIV
 - Therapeutic and prophylactic
 - Multiple vaccines / multiple trials
- Influenza
- Malaria
 - Multiple vaccines / multiple trials
 - Antigen + cytokine genes
- Hepatitis B
- Cancer
- (Gene Therapy)

Second Generation DNA Vaccines

Increased potency

• "Designer" immune response

Oral delivery

Area of Mucosal Surfaces: 1¹/₂ Basketball Courts

Encapsulated DNA: Microparticles

DNA Vaccine Replicons Rapidly Produce More Protein Antigen

"Designer Gene Vaccines"

Sequential Immunization with DNA then Protein Generates Optimal Antibody Responses

Prime	Boost	Percent seroconversion		
DNA		90%		
DNA	DNA	100%		
DNA	PROTEIN	100%		
PROTEIN		0%		
PROTEIN	PROTEIN	50%		
PROTEIN	DNA	90%		
		0 1000 2000 3000 4000 5000 6000		
		Anti-Gag Ab titers		

Protection of BALB/c mice after immunization with plasmid DNA and/or recombinant MVA

Immunization 1	Immunization 2	% Protection*	
DNA	DNA	0	
MVA	MVA	20	
DNA	MVA	100	
MVA	DNA	0	

*5 animals/group Antigens used: PbCSP + PbTRAP J. Schneider, ..., A.V.S. Hill, *Nature Medicine* 4:397-402

DNA Vaccines: Tool for Functional Genomics/Proteomics

Characteristic of DNA Vaccines

- Able to generate CTL, antibodies, T_H
 - Cross-strain protective CTL
 - Advantages of antigen structure for antibodies
 - Transmembrane protein
 - Native glycosylation
 - T_H intrinsically T_H 1
 - Can co-deliver cytokines to augment or alter T_H phenotypes
 - Mechanisms for CTL and T_H generation elucidated
 - Ability to stimulate desired immune responses not induced by wild-type disease
 - Avoid certain limitations/concerns of viral vectors

Characteristics of DNA Vaccines

- Second generation DNA Vaccines
 - Increased potency
 - Oral/Mucosal delivery
 - Facile manipulation of immune responses
- Potential advantages for clinical usage
 - Ability to generate T cell immunity: critical for many unconquered diseases
 - Key characteristics relevant to globally-needed vaccines
 - Generic technology
 - Stability
 - Manufacturing ease
 - Cost
 - Potential duration of immune response

Disease Models in Which DNA Vaccines Have Demonstrated Efficacy

Infectious Diseases

Viruses

- HIV
- Influenza
- Rabies
- Hepatitis B,C,D
- Ebola
- Herpes Simplex
- Papilloma
- CMV
- Rota
- Measles
- LCMV
- St. Louis Enceph

Bacteria

- B. Burgdorferi
- C. tetani
- M. Tb
- S. typhi

Parasites/Protozoa

- Malaria
- Mycoplasma
- Leishmania
- Schistosoma
- Taenia ovis
- Toxo. gondii

Cancer

- Breast (Her2/neu)
- Colon
- Prostate
- Myeloma
- Lymphoma
- E7-Induced
- Fibrosarcoma

Allergy

- House Dust Mite
- Peanut
- Experimental Airway Hyperresponsiveness

Autoimmune Disease

- Diabetes
- EAE (MS model)