1. The 1996 National Health Interview Survey (NHIS) Access data file contains a variety of data items addressing access to health care services. These data items are identical to the 1995 Access data items.

As a result of a Federal government furlough, two weeks of data collection were omitted in January of 1996. In addition, in order to test the changing NHIS core questionnaire, for much of the year the sample was split between the old (paper) and the new (computerized) versions of the core questionnaire. This data file includes only data obtained from the paper version of the NHIS questionnaire. The sample size is considerably smaller than in the previous year $(63,402$ vs. 102,467). The weights have been adjusted for these factors to produce national estimates, however, there may be a minor seasonal effect which is not corrected by the weighting.
2. The 1996 Access supplement was administered for the full year (except as mentioned above) in all of the NHIS sample households interviewed with the old paper core using three-quarters of the sample households from January-June and one-half of the sample households from July-December. Information was collected from a household respondent about all family members who participated in the NHIS.

The 1996 Access file is structured in the following way:
a. The NHIS person record from the core questionnaire (locations 1-335)
b. The weight fields (locations 201-236)
c. Fields needed for calculating variances (locations 337-358)
d. Data from supplement (locations 401-439)

Note: All data from the Access supplement have been shifted to start in location 401 in order to accommodate a longer public use person record required by the new sample design in 1995.
3. In 1996, two types of item non-response were identified:
(1) "Not ascertained" (codes 8, 98, or 998) includes blanks when there should have been a response or when an impossible code appeared and;
(2) Responses of "don't know" or "refused" when the question was asked (codes 9, 99 and 999).
4. The overall response rate for the 1996 Access was 90.0 percent. This response rate was calculated as follows: Household response rate from core of 93.8 percent multiplied by 95.9 percent who responded to the Access section yields an overall response rate of 90.0 percent.

Dummy records were created for those with no response to the entire section (see file location 400).
5. Weights and variances:

Since the NHIS uses a multistage sample design to represent the civilian non-institutionalized population of the United States, weights must be used to make accurate estimates based on data from the National Health Interview Survey.

A set of weights are included on the 1996 file:
The first weight listed below (i.e. the Final Basic Weight) will be used in most analyses of the Access data.

The Final Basic Weight (location 219-227) is the equivalent of the Annual Final Basic Weight found on the NHIS Person Record of the Basic Health and Demographic component of the survey (i.e. the Core questionnaire). A national estimate of all person level variables can be made using this weight.

This weight will be used in conjunction with Access data items in file locations 401-439.

The Final Quarter Basic Weight before age-sex-race/ethnicity adjustment (loc. 172-177) is required by some software packages for variance estimation for surveys with complex sample designs. This weight is also included on the file.

As mentioned above, the sample design for the NHIS was changed for 1995. Data from 1995 and 1996 can be combined with data from previous years, however, variances for 1995 and 1996 must be calculated separately from variances of previous years. In addition, because of the smaller sample size in 1996, some of the design elements were combined for reasons of confidentiality. The exact changes are included in the explanation below.

There are a number of computer programs that yield variance estimates for data based on complex sample surveys. Some are based on replication approaches and others are based on Taylor
linearization approaches. In addition to the Final Quarter Basic Weight before age-sex-race/ethnicity adjustment (which is the weight prior to post-stratification), included on the Access file is the substratum for variance estimation (loc. 342-343), the secondary sampling unit (loc. 344-350), Panel 4 (loc. 352), the variance PSU for 1996 (loc. 358), the collapsed variance stratum for 1996 (loc. 354-357), and the NSR Status variable for 1996 (loc. 353) to permit the analyst the capability of using such variance estimation procedures. These variables and weights are necessary for directly calculating sampling variances.
6. Estimating annual numbers of events or conditions
a. To reduce respondent error, the recall period for questions about some events is limited to two weeks. These events are: bed days and other restricted activity days, work loss and school loss days, and doctor visits. The two-week variables are found in locations 98-107 and 120-121. Estimates of the total number of occurrences of these events in the population can be derived as follows:

Number of events x 26 (number of two-week periods in a year) x Final Basic Weight
$=$ Total number of events occurring in the population during the annual period, i.e. 1996.

Example: Number of bed days (Loc. 100-101) x 26 x Final Basic Weight (Loc. 219-227) = total number of bed days reported for the population in 1996.
b. The recall period for acute incidence conditions is also two weeks and a national estimate of the total number of acute incidence conditions is calculated using the same procedures as for two-week events for the annual period.

Number of acute incidence conditions x 26 x Final Basic Weight
$=$ Total number of acute incidence conditions occurring in the population during 1996.

Note: An acute incidence condition is an acute condition with onset during the two weeks preceding the date of interview.
c. The recall period for information on hospitalizations is 12 months. However, in calculating number of discharges (Locations 132-133, 137-138), only discharges occurring in the past 6 months are counted. Therefore, the weighted estimates must be calculated as follows:

Number of discharges $x 2$ x Final Basic Weight
$=$ Total number of discharges occurring in the population in 1996.
7. Calculation of rates for events and conditions:

The number of events or conditions estimated for the population, as described in item 6, above, can be used as the basis for calculating rates of occurrence of these events (or conditions) per person and per 100 persons for the total U.S. population and for various population subgroups.

Note: Only rates can be estimated from these data. The percent of the population experiencing a particular type of event during the data year cannot be estimated. (The percent of the population experiencing the event in the reporting period (i.e. two weeks or 6 months) can be estimated but is generally not meaningful.)
8. Data on hospital episodes and days, based on a 12-month recall are in locations 122-131. The Final Basic Weight is used for calculating estimates of these events in the same way it is used for all other person-based variables. These variables do permit estimating the percent of the population in this annual period experiencing a hospital episode in the past year and the percent of that population having a specified number of hospital days.
9. Guidelines for Citation of Data

With the goal of mutual benefit, the National Center for Health Statistics (NCHS) requests that recipients of data files cooperate in certain actions related to their use.

Any published material derived from the data should acknowledge NCHS as the original source. The suggested citation to appear at the bottom of all tables is as follows:

Source: National Center for Health Statistics (1996)
When cited in a bibliography, the suggested citation should read:

National Center for Health Statistics (1998). Data File Documentation, National Health Interview Survey of Access to Care, 1996 (machine readable data file and documentation), National Center for Health Statistics, Hyattsville, Maryland.

The published material should also include a disclaimer that credits any analyses, interpretations, or conclusions reached to the author (recipient of the data file) and not to NCHS, which is responsible only for the initial data. Consumers who wish to publish a technical description of the data should make a reasonable effort to insure that the description is not inconsistent with that published by NCHS.


```
    AC-2
1 9 9 6 ~ N H I S ~ A C C E S S ~ T O ~ C A R E ~ P U B L I C ~ U S E ~ F I L E ~
```


AC-3

1996 NHIS ACCESS TO CARE PUBLIC USE FILE

$\begin{gathered} \text { File } \\ \text { Locations } \end{gathered}$	Item No.	Frequency	Items and Codes
26	-		AGE IMPUTED FLAG
		$\begin{array}{r} 63,400 \\ 2 \end{array}$	0. Age known 1. Age unknown, imputed as 34
27-28	Person Column		AGE
		$\begin{array}{r} 976 \\ 62,241 \\ 185 \end{array}$	00. Under 1 year $01-89$. Number of years 90. $90+$ years old
29	Recode		AGE RECODE \#1
		$\begin{array}{r} 4,918 \\ 13,210 \\ 5,568 \\ 19,974 \\ 12,598 \\ 2,213 \\ 1,928 \\ 2,993 \end{array}$	1. Under 5 years 2. 5-17 years 3. 18-24 years 4. 25-44 years 5. 45-64 years 6. 65-69 years 7. 70-74 years 8. 75 years and over
30	Recode		AGE RECODE \#2
		$\begin{array}{r} 6,008 \\ 11,219 \\ 6,469 \\ 9,603 \\ 10,371 \\ 7,673 \\ 4,925 \\ 4,141 \\ 2,993 \end{array}$	1. Under 6 years 2. 6-16 years 3. 17-24 years 4. 25-34 years 5. 35-44 years 6. 45-54 years 7. 55-64 years 8. 65-74 years 9. 75 years and over
31-32	Recode		AGE RECODE \#3
		$\begin{array}{r} 2,905 \\ 60,497 \end{array}$	00-35. Months 36. Over 3 years old
33	-		MONTH OF BIRTH IMPUTED FLAG
		$\begin{array}{r} 60,272 \\ 3,090 \\ 40 \end{array}$	0. Month known 1. Month unknown, '8' impute 9. Date of birth unknown

AC-4
1996 NHIS ACCESS TO CARE PUBLIC USE FILE

File Locations	Item No. Frequency	Items and Codes
34-39	A-3	MONTH AND YEAR OF BIRTH
34-35		Month 01. January 08. August 02. February 09. September 03. March 10. October 04. April 11. November 05. May 12. December 06. June 99. Unknown 07. July
36-39	$\begin{array}{r} 168 \\ 63,194 \\ 40 \end{array}$	```Year of Birth 1905. 1905 and before 1906-1997. 1906-1997 9999. Unknown```
40	Recode $\begin{array}{r} 62,712 \\ 690 \end{array}$	HISPANIC ORIGIN IMPUTED FLAG 0. Hispanic origin known 1. Hispanic origin imputed from reference person
41-42	$\begin{array}{r} \text { A-6 } \\ \\ 46,996 \\ 9,027 \\ 482 \\ 325 \\ 455 \\ 987 \\ \\ \\ 3,797 \\ \\ 1,181 \end{array}$	MAIN RACIAL BACKGROUND* - Reported (see notation for locations 43-45) 01. White 02. Black/African American** 03. Indian (American) 06 . Chinese 07. Filipino 15. Other API (includes Hawaiian, Korean, Vietnamese, Japanese, Asian Indian, Samoan, and Guamanian) 16. Other race (includes Eskimo and Aleut) 17. Multiple race 99. Unknown
Some categories may be too small to analyze separately and therefore may produce unreliable estimates; in addition, counts may not agree with those produced by the Census Bureau.		
For convenience, the category 'Black/African American' will be shown as 'Black' in all observed race or race recode locations throughout the documentation.		

$$
A C-5
$$

1996 NHIS ACCESS TO CARE PUBLIC USE FILE


```
    AC-6
1 9 9 6 ~ N H I S ~ A C C E S S ~ T O ~ C A R E ~ P U B L I C ~ U S E ~ F I L E ~
```

	Item No. Frequency	Items and Codes
49	L-1	VETERAN STATUS
	$\begin{array}{r} 38,331 \\ 1,311 \\ 800 \\ 1,715 \\ 810 \\ 1,070 \\ 163 \\ 1,074 \\ 18,128 \end{array}$	1. Non-veteran 2. WW I and WW II 3. Korean War 4. Vietnam veteran 5. Post-Vietnam 6. Other service 7. Served in Armed Forces, 8. unknown if war veteran Unknown if served in Blank. Under Forces 18 years old
50	L-1	ACTIVE GUARD/RESERVE STATUS FOR PERSONS ON ACTIVE DUTY IN ARMED FORCES
	$\begin{array}{r} 38,331 \\ 363 \\ 740 \\ 36 \\ 4,159 \\ 1,645 \\ 18,128 \end{array}$	0. Non-veteran 1. All service in Guard/Reserve 2. Some service in Guard/Reserve 3. Unknown if all service in\quadGuard/Reserve 4. No active service in Guard/ 5eserve Blank.Unknown if ever active member in Guard/Reserve or served in Armed Forces Under 18 years old
51-52	L-2	EDUCATION OF INDIVIDUAL - COMPLETED YEARS
	$\begin{array}{r} 2,628 \\ 19,974 \\ 16,207 \end{array}$	```00. Never attended; kindergarten only 01-11. Grades 1-11 12. Grade 12```
		College:
	$\begin{aligned} & 3,321 \\ & 4,433 \\ & 1,602 \\ & 5,424 \\ & 1,039 \\ & 2,762 \\ & 1,094 \\ & 4,918 \end{aligned}$	13. 1 year 14. 2 years 15. 3 years 16. 4 years 17. 5 years 18. 6 years or more 19. Unknown Blank. Under 5 years old

```
    AC-7
1 9 9 6 ~ N H I S ~ A C C E S S ~ T O ~ C A R E ~ P U B L I C ~ U S E ~ F I L E ~
```


AC-8
1996 NHIS ACCESS TO CARE PUBLIC USE FILE

$\begin{gathered} \text { File } \\ \text { Locations } \end{gathered}$	Item No.	Frequency	Items	and Codes
57	L-8		FAMILY	INCOME \$20,000 OR LESS
		$\begin{array}{r} 18,637 \\ 42,177 \\ 2,588 \end{array}$	$\begin{array}{ll} 1 . & I \\ 2 . & \vdots \\ 3 . & 4 \end{array}$	Less than \$20,000 $\$ 20,000$ or more Unknown
58-59	L-8		FAMILY	INCOME
		243	00.1	Less than \$1,000
		366	$01 . \$$	\$ 1,000 - \$1,999
		319	02.	2,000 - 2,999
		356	03.	3,000 - 3,999
		433	04.	4,000 - 4,999
		694	05.	5,000-5,999
		695	06.	6,000-6,999
		699	07.	7,000 - 7,999
		701	08.	8,000-8,999
		941	09.	9,000 - 9,999
		1,132	10.	10,000 - 10,999
		705	11.	11,000 - 11,999
		1,304	12.	12,000 - 12,999
		838	13.	13,000 - 13,999
		828	14.	14,000-14,999
		1,100	15.	15,000 - 15,999
		777	16.	16,000 - 16,999
		810	17.	17,000-17,999
		1,042	18.	18,000 - 18,999
		1,216	19.	19,000 - 19,999
		4,786	20.	20,000-24,999
		4,130	21.	25,000-29,999
		4,150	22.	30,000-34,999
		3,179	23.	35,000-39,999
		3,180	24.	40,000-44,999
		2,824	25.	45,000-49,999
		15,137	26.	\$50,000 and over
		10,817	27. U	Unknown

$$
A C-9
$$

1996 NHIS ACCESS TO CARE PUBLIC USE FILE

AC-10
1996 NHIS ACCESS TO CARE PUBLIC USE FILE

AC-11
1996 NHIS ACCESS TO CARE PUBLIC USE FILE

[^0]AC-12
1996 NHIS ACCESS TO CARE PUBLIC USE FILE

AC-13
1996 NHIS ACCESS TO CARE PUBLIC USE FILE

$\begin{gathered} \text { File } \\ \text { Locations } \end{gathered}$	Item No.	Frequency	Items and Codes
75	D-1		EMPLOYMENT STATUS IN PAST 2 WEEKS (18+ years old)
			In the Labor Force: (1-7)
			Currently employed: (1-3)
		28,767	1. Worked in past 2 weeks
		494	2. Did not work, has job; not on lay-off and not looking for work
		28	3. Did not work, has job; looking for work
			Unemployed: (4-7)
		93	4. Did not work, has job; on lay-off
		6	5. Did not work, has job; on lay-off and looking for work
		200	6. Did not work, has job; unknown if looking or on lay-off
		960	7. Did not work, has no job; looking for work or on lay-off
		14,726	8. Not in Labor Force (18+ years old)
		18,128	Blank. Not applicable (under 18 years old)

```
        AC-14
1 9 9 6 ~ N H I S ~ A C C E S S ~ T O ~ C A R E ~ P U B L I C ~ U S E ~ F I L E ~
```

$\begin{gathered} \text { File } \\ \text { Locations } \end{gathered}$	Item No.	Frequency	Items and Codes
76	L-6		CLASS OF WORKER
		$\begin{array}{r} 14,726 \\ 21,596 \\ 756 \\ 1,388 \\ 2,369 \\ 789 \\ 2,615 \\ 29 \\ 35 \\ 971 \\ 18,128 \end{array}$	0. Not in labor force 1. Private company 2. Federal Government employee 3. State Government employee 4. Local Government employee 5. Incorporated business 6. Self-employed 7. Without pay 8. Never worked 9. Unknown Blank. Under 18 years old
77-79	-		BLANK
80-81	Recode	-	INDUSTRY RECODE 1 SEE APPENDIX B
82-83	Recode	-	INDUSTRY RECODE 2 SEE APPENDIX B
84-86	-		BLANK
87-88	Recode	-	OCCUPATION RECODE 1 SEE APPENDIX C
89-90	Recode	-	OCCUPATION RECODE 2 SEE APPENDIX C

$\begin{gathered} \text { File } \\ \text { Locations } \end{gathered}$	Item No.	Frequency	Items and Codes
91	L-R		RESPONDENT FOR CORE QUESTIONS
		$\begin{array}{r} 27,761 \\ 3,242 \\ 31,712 \\ 687 \end{array}$	1. Self (entirely) 2. Self (partly) 3. Proxy 4. Unknown
92	Recode		CONDITION LIST ASSIGNED AND ASKED
		$\begin{array}{r} 10,548 \\ 10,568 \\ 10,388 \\ 10,472 \\ 10,113 \\ 10,575 \\ 738 \end{array}$	1. Condition List 1, Skin and musculoskeletal 2. Condition List 2, Impairments 3. Condition List 3, Digestive 4. Condition List 4, Miscellaneou 5. Condition List 5, Circulatory 6. Condition List 6, Respiratory 7. Unknown
93-94	G-5		HEIGHT WITHOUT SHOES (18+ years old)
		$\begin{array}{r} 363 \\ 43,782 \\ 246 \\ 883 \\ 18,128 \end{array}$	58. 58 inches or less 59-76. Number of inches 77. 77 inches or more 99. Unknown Blank. Under 18 years old
95-97	G-5		WEIGHT WITHOUT SHOES (18+ years old)
		$\begin{array}{r} 288 \\ 42,919 \\ 320 \\ 1,747 \\ 18,128 \end{array}$	097. 97 pounds or less 098-289. Number of pounds 290. 290 pounds or more 999. Unknown Blank. Under 18 years old
98-99	Recode		TOTAL RESTRICTED ACTIVITY DAYS IN PAST TWO WEEKS
		$\begin{array}{r} 57,092 \\ 6,310 \end{array}$	00. None 01-14. Days
100-101	D-4		BED DAYS IN PAST TWO WEEKS
		$\begin{array}{r} 59,733 \\ 3,669 \end{array}$	00. None 01-14. Days

AC-16
1996 NHIS ACCESS TO CARE PUBLIC USE FILE


```
    AC-17
    1 9 9 6 ~ N H I S ~ A C C E S S ~ T O ~ C A R E ~ P U B L I C ~ U S E ~ F I L E ~
```

$\begin{gathered} \text { File } \\ \text { Locations } \end{gathered}$	Item No.	Frequency	Items and Codes
116-117	Generated	-	NUMBER OF CONDITIONS
118-119	Generated	-	NUMBER OF ACUTE INCIDENCE CONDITIONS
120-121	Generated	-	NUMBER OF TWO-WEEK DOCTOR VISITS
122-123	Generated	-	NUMBER OF SHORT-STAY HOSPITAL EPISODES IN PAST 12 MONTHS
124-126	Generated	-	SHORT-STAY HOSPITAL EPISODE DAYS IN PAST 12 MONTHS
127-128	Generated	-	NUMBER OF SHORT-STAY HOSPITAL EPISODES IN PAST 12 MONTHS EXCLUDING DELIVERY*
129-131	Generated	-	SHORT-STAY HOSPITAL EPISODE DAYS IN PAST 12 MONTHS EXCLUDING DELIVERY*
132-133	Generated	-	NUMBER OF SHORT-STAY HOSPITAL DISCHARGES IN PAST 6 MONTHS
134-136	Generated	-	NUMBER OF DAYS IN SHORT-STAY HOSPITAL IN PAST 12 MONTHS FOR DISCHARGES IN PAST 6 MONTHS
137-138	Generated	-	NUMBER OF SHORT-STAY HOSPITAL DISCHARGES IN PAST 6 MONTHS EXCLUDING DELIVERY*
139-141	Generated	-	NUMBER OF DAYS IN SHORT-STAY HOSPITAL IN PAST 12 MONTHS FOR DISCHARGES IN PAST 6 MONTHS EXCLUDING DELIVERY*

$\begin{gathered} \text { File } \\ \text { Locations } \end{gathered}$	Item No. Frequency	Items and Codes
142-143	-	BLANK
144	L-9b $\begin{array}{r} 1,766 \\ 5,762 \\ 6,429 \\ 5,243 \\ 32,468 \\ 3,051 \\ 8,683 \end{array}$	YEARS LIVED IN STATE OF PRESENT RESIDENCE 1. Less than 1 year 2. 1 yr., less than 5 yrs. 3. 5 yrs., less than 10 yrs. 4. 10 yrs., less than 15 yrs. 5. 15 years or more 9. DK refused Blank. Not applicable (foreign born)
145	$\mathrm{L}-9 \mathrm{C}$ $\begin{array}{r} 274 \\ 1,339 \\ 1,667 \\ 1,144 \\ 3,997 \\ 262 \\ 54,719 \end{array}$	YEARS LIVED IN UNITED STATES 1. Less than 1 year 2. 1 yr., less than 5 yrs. 3. 5 yrs., less than 10 yrs. 4. 10 yrs., less than 15 yrs. 5. 15 years or more 9. DK refused Blank. Not applicable (U.S. born)
146-171	- -	BLANK

$\begin{gathered} \text { File } \\ \text { Locations } \end{gathered}$	Item No. Frequency	Items and Codes
172-177	- -	FINAL QUARTER BASIC WEIGHT BEFORE AGE-SEX-RACE/ETHNICITY ADJUSTMENT (has one implied decimal)
178		SAMPLING QUARTER
	$\begin{aligned} & 16,902 \\ & 19,814 \\ & 13,470 \\ & 13,216 \end{aligned}$	1. Quarter 1 2. Quarter 2 3. Quarter 3 4. Quarter 4
179-181	- -	BLANK
182	```Unit Control File 12,500```	REGION 1. Northeast 2. Midwest 3. South 4. West
183	Unit Control File	GEOGRAPHIC DISTRIBUTION
	$\begin{array}{r} 8,007 \\ 7,914 \\ 15,124 \\ 6,747 \\ 7,811 \\ 4,520 \\ 810 \\ 12,469 \end{array}$	1. $5,000,000$ or more 2. $2,500,000-4,999,999$ 3. $1,000,000-2,499,999$ 4. $500,000-999,999$ 5. $250,000-499,999$ 6. $100,000-249,999$ 7. Under 100,000 Blank. Non-MSA
184-185	- -	BLANK
186	```Unit Control File 20,826```	MSA - NON-MSA RESIDENCE 1. In MSA; in Central City 2. In MSA; not in Central City 3. Not in MSA
187-189	-	BLANK

AC-20
1996 NHIS ACCESS TO CARE PUBLIC USE FILE

$\begin{gathered} \text { File } \\ \text { Locations } \end{gathered}$	Item No.	Frequency	Items and Codes
190-200	-	-	CHRONIC CONDITION PREVALENCE AND INCIDENCE FACTOR (XX.XXXXXXXXX) character format with implied decimal
			FINAL BASIC WEIGHT
201-209	-	-	QUARTER
210-218	-	-	SEMI-ANNUAL (QUARTER/2)
219-227	-	-	ANNUAL (QUARTER/4)

AC-21

1996 NHIS ACCESS TO CARE PUBLIC USE FILE

File			
Locations	Item No. Frequency	Items and Codes	
228-236	-		

```
    AC-22
    1 9 9 6 ~ N H I S ~ A C C E S S ~ T O ~ C A R E ~ P U B L I C ~ U S E ~ F I L E ~
```

$\begin{gathered} \text { File } \\ \text { Locations } \end{gathered}$	Item No. Frequency	Items and Codes
336	- -	BLANK
337-340	Recode	STRATUM FOR VARIANCE ESTIMATION
341	Recode	PSU FOR VARIANCE ESTIMATION
342-343	Recode	SUBSTRATUM FOR VARIANCE ESTIMATIO
344-350	Generated	SECONDARY SAMPLING UNIT
351	```Unit Control File 41,421```	TYPE OF PSU 1. Self representing 2. Non self representing
352	Unit Control File $63,402$	PANEL 4 1-4. Code used to identify nationally representative subsamples
353	-	NSR STATUS VARIABLE
354-357	-	COLLAPSED VARIANCE STRATUM
358	-	VARIANCE PSU
359-399	-	BLANK

AC-23
1996 NHIS ACCESS TO CARE PUBLIC USE FILE

AC-24
1996 NHIS ACCESS TO CARE PUBLIC USE FILE

$\begin{gathered} \text { File } \\ \text { Locations } \end{gathered}$	Item No.	Frequency	Items and Codes
405	3 a		ONE PLACE MOST OFTEN (Q $1 \mathrm{a}=2$ and $\mathrm{Q} 2=01$)
		$\begin{array}{r} 97 \\ 74 \\ 68 \\ 3 \\ 63,160 \end{array}$	1. Yes 2. No 8. Not ascertained 9. DK or refused Blank. NA
406	3 b		PLACE FOR PREVENTIVE CARE (Q $1 \mathrm{a}=2$ and $\mathrm{Q} 2=01$ and Q 3 a NE 1)
		$\begin{array}{r} 81 \\ 84 \\ 22 \\ 5 \\ 63,210 \end{array}$	1. Yes 2. No 3. Not ascertained 4. DK or refused Blank. NA
407	4 a		GO ANY PLACE IN PAST 12 MONTHS FOR MEDICAL CARE
		$\begin{array}{r} 2,728 \\ 4,464 \\ 2,912 \\ 152 \\ 53,146 \end{array}$	```1. Yes \\ 2. No \\ 8. Not ascertained \\ 9. DK or refused \\ Blank. NA - Has a usual source of care```
408-409	4b		KIND OF PLACE
		$\begin{array}{r} 355 \\ 210 \\ 1,118 \\ 479 \\ 164 \\ 139 \\ 84 \\ 39 \\ 92 \\ 23 \\ 25 \\ 60,674 \end{array}$	01. Hospital emergency room 02. Urgent care/walk-in clinic 03. Doctor's office 04. Clinic 05. Health center 06 . Hospital outpatient clinic 07. HMO/Prepaid group 08. Military or VA health care facility 09. Some other place 98. Not ascertained 99. DK or refused Blank. NA

$$
\mathrm{AC}-25
$$

1996 NHIS ACCESS TO CARE PUBLIC USE FILE

AC-26
1996 NHIS ACCESS TO CARE PUBLIC USE FILE

$\begin{gathered} \text { File } \\ \text { Locations } \end{gathered}$	Item No.	Frequency	Items	and Codes
413	Recode		REGULAR	SOURCE OF MEDICAL CARE
		$\begin{array}{r} 52,922 \\ 224 \\ 204 \end{array}$	$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \end{aligned}$	Single regular source Multiple regular sources, but sees one most often Multiple regular sources, but no one source seen most often
		2,524	$4 .$	No current regular source but had a regular source sometime in the past year
		4,358	$5 .$	No current regular source of care and none in past year
		229	$6 .$	No current regular source and unknown if any in past year
		$\begin{array}{r} 2,722 \\ 219 \end{array}$	$8 \text {. }$ $9 .$	Not ascertained DK or refused
414-415	5 a		KIND OF	PLACE
		759	01.	Hospital emergency room
		712	02.	Urgent care/walk-in clinic
		35,675	03.	Doctor's office
		7,430	04.	Clinic
		1,815	05.	Health center
		1,381	06.	Hospital outpatient clinic
		3,713	07.	HMO/prepaid group
		763	08.	Military or VA health care facility
		268	09.	Some other place
		516	98.	Not ascertained
		114	99.	DK or refused
		10,256	Blank.	NA - Does not have/DK if have a usual source of care

AC-27
1996 NHIS ACCESS TO CARE PUBLIC USE FILE

$\begin{gathered} \text { File } \\ \text { Locations } \end{gathered}$	Item No.	Frequency	Items and Codes
416	5b		IS THERE PARTICULAR PERSON USUALLY SEEN
		$\begin{array}{r} 44,452 \\ 6,290 \\ 587 \\ 346 \\ 11,727 \end{array}$	```1. Yes \\ 2. No \\ 8. Not ascertained \\ 9. DK or refused \\ Blank. NA - Does not have/DK if have a usual source of care```
417	6 a		TYPE OF HEALTH PROFESSIONAL (Usually sees a particular person when goes to usual source of care Q 5b = 1)
		$\begin{array}{r} 43,371 \\ 79 \\ 222 \\ 180 \\ 43 \\ 43 \\ 500 \\ 14 \\ 18,950 \end{array}$	```1. Doctor \\ 2. Nurse \\ 3. Nurse practitioner \\ 4. Physician's assistant \\ 5. Chiropractor \\ 6. Some other professional \\ 8. Not ascertained \\ 9. DK or refused \\ Blank. NA```
418	6 b		TYPE OF DOCTOR (Usually sees a particular doctor when goes to usual source of care Q $6 \mathrm{a}=1$)
		40,294 1,047 1,434 451 145 031	1. Family doctor/GP/ internist/pediatrician 2. Obstetrician/gynecologist 3. Other specialist 8. Not ascertained 9. DK or refused Blank. NA

AC-28
1996 NHIS ACCESS TO CARE PUBLIC USE FILE

	Item No.	Frequency	Items and Codes
419	7		LAST TIME WENT TO USUAL PLACE (Has a usual place for medical care)
		$\begin{array}{r} 1,322 \\ 20,540 \\ 9,747 \\ 9,693 \\ 6,342 \\ \\ 4,098 \\ 518 \\ 886 \\ 10,256 \end{array}$	0. Hasn't been there yet/never 1. Less than 3 months ago 2. At least 3 months, less than 6 months ago 3. At least 6 months, less than 1 year ago 4. At least 1 year, less than 2 years ago 5. Two or more years ago 8. Not ascertained 9. DK or refused Blank. NA
420	8		SAME PLACE FOR ROUTINE CARE (Has a usual place for medical care)
		$\begin{array}{r} 50,176 \\ 1,793 \\ 914 \\ 263 \\ 10,256 \end{array}$	1. Yes 2. No 8. Not ascertained 9. DK or refused Blank. NA

$$
A C-29
$$


```
    AC-30
1 9 9 6 ~ N H I S ~ A C C E S S ~ T O ~ C A R E ~ P U B L I C ~ U S E ~ F I L E ~
```


	Item No.	Frequency	Items and Codes
427-428	11d		MAIN REASON DIDN'T GET CARE
		801	01. Could not afford it
		278	02. No insurance
		32	03. Doctor did not accept Medicaid/ insurance plan
		50	04. Insurance didn't cover
		30	05. Not serious enough
		34	06. Wait too long in clinic/office
		141	07. Difficulty getting an appointment
		19	08. Doesn't like/trust/ believe in doctors
		33	09. No doctor available
		8	10. Didn't know where to go
		14	11. No way to get there
		7	12. Hours not convenient
		0	13. Speak a different language
		1	14. Health of another family member interfered
		9	15. Clinic/office not accessible
		135	16. Other reason
		106	98. Not ascertained
		5	99. DK or refused
		61,699	Blank. NA - Obtained medical
			care when needed during the past 12 months

AC-32

1996 NHIS ACCESS TO CARE PUBLIC USE FILE

$\begin{gathered} \text { File } \\ \text { Locations } \end{gathered}$	Item No.	Frequency	Items and Codes
429	11e		LACK OF INSURANCE OR MONEY A REASON
		$\begin{array}{r} 121 \\ 316 \\ 102 \\ 3 \\ 62,860 \end{array}$	1. Yes 2. No 3. Not ascertained 9. DK or refused Blank. NA - Obtained medical care when needed during the 12 months or already mentioned that money or lack of insurance was a reason
430	12b		DELAYED SEEKING MEDICAL CARE BECAUSE OF COST
		$\begin{array}{r} 4,507 \\ 55,972 \\ 2,812 \\ 111 \end{array}$	1. Yes 2. No 8. Not ascertained 9. DK or refused
431	13b		NEEDED DENTAL CARE BUT COULD NOT GET IT
		$\begin{array}{r} 4,800 \\ 55,603 \\ 2,833 \\ 166 \end{array}$	1. Yes 2. No 8. Not ascertained 9. DK or refused
432	14b		NEEDED PRESCRIPTION MEDICINES BUT COULD NOT GET THEM
		$\begin{array}{r} 1,504 \\ 58,945 \\ 2,781 \\ 172 \end{array}$	1. Yes 2. No 8. Not ascertained 9. DK or refused
433	15b		NEEDED EYEGLASSES BUT COULD NOT GET THEM
		$\begin{array}{r} 1,874 \\ 58,379 \\ 2,947 \\ 202 \end{array}$	1. Yes 2. No 8. Not ascertained 9. DK or refused

AC-33
1996 NHIS ACCESS TO CARE PUBLIC USE FILE

APPENDIX A

There is no Appendix for this document

[^1]APPENDIX B
INDUSTRY RECODES OUTLINE Revised in 1995
Recodes

No. 1 No. 2
Chrs. Chrs. Industry Title SIC Code*
80-81 82-83

$\begin{array}{r} (30-34, \\ 40-46) \end{array}$	(04)	MANUFACTURING: - continued	
(40-46)		DURABLE GOODS	
40	04	Furniture, lumber and wood	241-245,249,25
41	04	Primary metal industries	$\begin{aligned} & 331-332,334,3331, \\ & 3334,3339,3351, \\ & 3353-3357,3363- \\ & 3366,3369,339 \end{aligned}$
42	04	Fabricated metal industries, including ordnance	341-349
43	04	Machinery, except electrical	351-359
44	04	Electrical machinery, equipment and supplies	361-367,369
45	04	Transportation equipment	371-376,379
46	04	Other and not specified durable goods	$\begin{aligned} & 321-329,381-382, \\ & 384-387,39 \end{aligned}$

[^2]| | | B-3 | |
| :---: | :---: | :---: | :---: |
| | | APPENDIX B | |
| Recodes | | | |
| No. 1
 Chrs. $80-81$ | No. 2 Chrs. 82-83 | Industry Title | SIC Code* |
| (50-54) | (05) | TRANSPORTATION, COMMUNICATIONS AND OTHER PUBLIC UTILITIES | |
| 50 | 05 | Railroads | 40 |
| 51 | 05 | Trucking service and warehousing | 421-423 |
| 52 | 05 | Other transportation | 41,43-47 |
| 53 | 05 | Communications | 481-484,489 |
| 54 | 05 | Utilities and sanitary | 491-497 |
| 60 | 06 | WHOLESALE TRADE | 501-509,511-519 |

*Standard Industrial Classification

APPENDIX B
INDUSTRY RECODES OUTLINE Revised in 1995

Recodes			
No. 1 Chrs. 80-81	No. 2 Chrs. 82-83	Industry Title	SIC Code*
(61-65)	(07)	RETAIL TRADE	
61	07	General merchandise stores	531,533,539
62	07	```Food, bakery and dairy``` stores	541-546,549
63	07	Automotive dealers and gasoline stations	551-557,559
64	07	Eating and drinking places	58
65	07	Other and not specified retail trade	$\begin{aligned} & 521,523,525-527,56, \\ & 571-572,5731,5734- \\ & 5736,591-594,5961- \\ & 5963,598,5992-5995, \\ & 5999 \end{aligned}$
(70-71)	(08)	FINANCE, INSURANCE, AND REA ESTATE	
70	08	Banking and credit agencies	60-61
71	08	Insurance, real estate, and other finance	62-65,67

*Standard Industrial Classification

APPENDIX B

Recodes			
No. 1 Chrs. 80-81	No. 2 Chrs. 82-83	Industry Title	SIC Code*
(75-85)	(09-12)	SERVICES:	
(75-76)	(09)	BUSINESS AND REPAIR SERVICES	
75	09	Business services	$\begin{aligned} & 731-738,751,752, \\ & 7542 \end{aligned}$
76	09	Repair services	$\begin{aligned} & 753,7549,762-764, \\ & 7692,7694,7699 \end{aligned}$
(77-78)	(10)	PERSONAL SERVICES	
77	10	Private households	88
78	10	Other personal services	701-704,721-726,729
79	11	ENTERTAINMENT AND RECREATION SERVICES	781-784,791-794,799
(80-85)	(12)	pROFESSIONAL AND RELATED SERVICES	
80	12	Hospitals	806
81	12	Health services, except hospitals	$\begin{aligned} & 801-803,8041-8043, \\ & 8049,805,807-809 \end{aligned}$
82	12	Elementary and secondary schools and colleges	821-822
83	12	Other educational services	823-824,829
84	12	Social services, religious and membership organizations	$\begin{aligned} & 832-833,835-836, \\ & 839,84,861-866,869 \end{aligned}$
85	12	Legal, engineering and other professional services	81,871-874,899

[^3]

[^4]APPENDIX B
INDUSTRY RECODE TITLES

Code	Titles	$\begin{aligned} & \text { Recode No. } 1 \\ & \text { Inclusions } \end{aligned}$
01	AGRICULTURE, FORESTRY AND FISHERIES	01,02
02	MINING	10
03	CONSTRUCTION	20
04	MANUFACTURING	30-34, 40-46
05	TRANSPORTATION, COMMUNICATIONS AND OTHER PUBLIC UTILITIES	50-54
06	WHOLESALE TRADE	60
07	RETAIL TRADE	61-65
08	FINANCE, INSURANCE, AND REAL ESTATE	70-71
09	BUSINESS AND REPAIR SERVICES	75-76
10	PERSONAL SERVICES	77-78
11	ENTERTAINMENT AND RECREATION SERVICES	79
12	PROFESSIONAL AND RELATED SERVICES	80-85
13	PUBLIC ADMINISTRATION	90
14	UNKNOWN (includes never worked, refused, classified, etc.)	95-96
15	NOT IN LABOR FORCE	97
16	ARMED FORCES	98

		C-1	
		APPENDIX C	
		OCCUPATION RECODE OUTLINE	Revised in 1995
Recodes			
Chrs. 87-88	Chrs. 89-90	Occupation Title	SOC Code*
(01-03)	(01)	EXECUTIVE, ADMINISTRATIVE, AND MANAGERIAL OCCUPATIONS	-
01	01	Officials and administrators, public administration	111-113
02	01	Managers and administrators, except public administration	$\begin{aligned} & 121-128,131- \\ & 1344,1351- \\ & 1354,1359, \\ & 136-139 \end{aligned}$
03	01	Management related occupations	$\begin{aligned} & 1412,1414-1415, \\ & 1419,142-143, \\ & 1442-1443,1449, \\ & 145,1472- \\ & 1473,149 \end{aligned}$

		C-2	
		APPENDIX C	
		OCCUPATION RECODE OUTLINE	Revised in 1995
Recodes			
No. 1 Chrs. $87-88$	No. 2 Chrs. 89-90	Occupation Title	SOC Code*
(04-11)	(02)	PROFESSIONAL SPECIALTY OCCUPATIONS	-
04	02	Engineers	$\begin{aligned} & 1622-1628,1632- \\ & 1637,1639 \end{aligned}$
05	02	Architects and surveyors	161,164
06	02	Natural mathematical and computer scientists	$\begin{aligned} & 171-172,1732- \\ & 1733,1739, \\ & 1842-1843, \\ & 1845-1847,1849, \\ & 1852-1855 \end{aligned}$
07	02	Health diagnosing occupations	$\begin{aligned} & 261-262,27,281, \\ & 283,289 \end{aligned}$
08	02	Health assessment and treating occupations	$\begin{aligned} & 29,301-302, \\ & 3031-3034,3039, \\ & 304 \end{aligned}$
09	02	Teachers, librarians and Counselors	$\begin{aligned} & 2212-2218, \\ & 2222-2228, \\ & 2231-2238, \\ & 2242-2247, \\ & 2249,231-233, \\ & 235,236,239,24, \\ & 251,252 \end{aligned}$
10	02	Writers, artists, entertainers and athletes	$\begin{aligned} & 34,321-329, \\ & 331-333,398 \end{aligned}$
11	02	Other professional specialty occupations	$\begin{aligned} & 1912-1916, \\ & 1919,192, \\ & 2032-2033, \\ & 2042,2049, \\ & 211-212 \end{aligned}$

[^5]| | | C-3 | |
| :---: | :---: | :---: | :---: |
| | | APPENDIX C | |
| | | OCCUPATION RECODE OUTLINE | Revised in 1995 |
| Recodes | | | |
| No. 1 Chrs. 87-88 | No. 2 Chrs. 89-90 | Occupation Title | SOC Code* |
| (12-13) | (03) | TECHNICIANS AND RELATED SUPPORT OCCUPATIONS | - |
| 12 | 03 | Health technologists and technicians | 362-366,369 |
| 13 | 03 | Technologists, technicians except health | $\begin{aligned} & 3711-3713,3719, \\ & 372-373,382, \\ & 3831-3833, \\ & 384,389, \\ & 392-393,396, \\ & 3971-3972, \\ & 3974,399, \\ & 825 \end{aligned}$ |
| (14-16) | (04) | SALES OCCUPATIONS | - |
| 14 | 04 | Supervisors and proprietors | 40 |
| 15 | 04 | Sales representatives, commodities and finance | 4122-4124, 4152-4153, 421,423-424 |
| 16 | 04 | Other sales | $\begin{aligned} & 4342-4348,4351- \\ & 4354,4356,4359, \\ & 4362-4367,4369, \\ & 444-447,449 \end{aligned}$ |

		C-4	
		APPENDIX C	
		OCCUPATION RECODE OUTLINE	Revised in 1995
Recodes			
No. 1 Chrs. $87-88$	No. 2 Chrs. 89-90	Occupation Title	SOC Code*
(17-21)	(05)	ADMINISTRATIVE SUPPORT OCCUPATIONS, INCLUDING CLERICAL	-
17	05	Computer equipment operators	4612-4613
18	05	Secretaries, stenographers and typists	4622-4624
19	05	Financial records processing occupations	$\begin{aligned} & 4712-4713, \\ & 4715-4716, \\ & 4718 \end{aligned}$
20	05	Mail and message distributing	4742-4745
21	05	Other administrative support	$\begin{aligned} & 4511-4514,4516, \\ & 4519,4521-4529, \\ & 463,4642-4645, \\ & 4649,4662-4664, \\ & 4692,4694,4696, \\ & 4699,4722-4723, \\ & 4729,4732-4733, \\ & 4739,4751-4759, \\ & 4782-4784,4786- \\ & 4787,4791-4795, \\ & 4799 \end{aligned}$
22	06	Private household occupations	502-507,509

[^6]| | | C-5 | |
| :---: | :---: | :---: | :---: |
| | | APPENDIX C | |
| | | OCCUPATION RECODE OUTLINE | Revised in 1995 |
| Recodes | | | |
| Chrs.
 87-88 | No. 2 Chrs. 89-90 | Occupation Title | SOC Code* |
| (23-24) | (07) | PROTECTIVE SERVICE OCCUPATIONS | |
| 23 | 07 | Police and firefighters | $\begin{aligned} & 5111-5112, \\ & 5122-5123, \\ & 5132-5134 \end{aligned}$ |
| 24 | 07 | Other protective service occupations | $\begin{aligned} & 5113,5142,5144, \\ & 5149 \end{aligned}$ |
| (25-28) | (08) | SERVICE OCCUPATIONS, EXCEPT PROTECTIVE AND HOUSEHOLD | |
| 25 | 08 | Food service | 5211-5219 |
| 26 | 08 | Health service | 5232-5233,5236 |
| 27 | 08 | Cleaning and building service | $\begin{aligned} & 5241-5242, \\ & 5244-5246,5249 \end{aligned}$ |
| 28 | 08 | Personal service | $\begin{aligned} & 5251-5258,5262- \\ & 5264,5269 \end{aligned}$ |
| (29-31) | (09) | FARMING, FORESTRY AND FISHING OCCUPATIONS | |
| 29 | 09 | Farm operators and managers | $\begin{aligned} & 5512-5515,5522- \\ & 5525 \end{aligned}$ |
| 30 | 09 | Farm workers and other agricultural workers | $\begin{aligned} & 5611-5619, \\ & 5621-5622, \\ & 5624-5625,5627 \end{aligned}$ |
| 31 | 09 | Forestry and fishing occupations | $\begin{aligned} & 571-573,579, \\ & 583-584,8241 \text { (pt.) } \end{aligned}$ |

[^7]| | | C-6 | |
| :---: | :---: | :---: | :---: |
| | | APPENDIX C | |
| | | OCCUPATION RECODE OUTLINE | Revised in 1995 |
| Recodes | | | |
| No. 1 Chrs. $87-88$ | No. 2 Chrs. 89-90 | Occupation Title | SOC Code* |
| (32-34) | (10) | PRECISION PRODUCTION, CRAFT AND REPAIR OCCUPATIONS | |
| 32 | 10 | Mechanics and repairers | $\begin{aligned} & 60,6111-6118, \\ & 613-614,6151- \\ & 6159,616,6171- \\ & 6179 \end{aligned}$ |
| 33 | 10 | Construction and extractive trades | $\begin{aligned} & 6311-6316,6318, \\ & 632,6412- \\ & 6414(p t .), 6422, \\ & 6424,6432-6433, \\ & 6442-6444,645, \\ & 6462-6468,6472- \\ & 6476,6479,652- \\ & 654,656 \end{aligned}$ |
| 34 | 10 | Precision production occupations | $\begin{aligned} & 67,71, \\ & 6811-6814, \\ & 6816-6817, \\ & 6821-6824, \\ & 6829,6831-6832, \\ & 6835,6839,6844, \\ & 6852-6854,6856, \\ & 6859,6861-6862, \\ & 6864-6867,6869, \\ & 6871-6873,6879, \\ & 6881-6882,691- \\ & 696,7477(p t .), \\ & 7668,7677(p t .), \\ & 7752,828 \end{aligned}$ |

[^8]| Recodes | | | |
| :---: | :---: | :---: | :---: |
| No. 1 Chrs. 87-88 | No. 2 Chrs. 89-90 | Occupation Title | SOC Code* |
| | | OPERATORS, FABRICATORS AND LABORERS | |
| (35-36) | (11) | MACHINE OPERATORS, ASSEMBLERS AND INSPECTORS | |
| 35 | 11 | Machine operators and tenderers, except precision | $\begin{aligned} & 6841-6842,6849, \\ & 6855,6863,6868, \\ & 7312-7319,7322, \\ & 7324,7326,7329, \\ & 7339,7342-7344, \\ & 7349,7431-7435, \\ & 7439,7443-7444, \\ & 7449,7451-7452, \\ & 7459,7462-7463, \\ & 7467,7472,7474, \\ & 7476-7478,7479, \\ & 7512-7519,7522, \\ & 7529,7539,7542- \\ & 7544,7549,7631- \\ & 7636,7639,7642- \\ & 7644,7649,7651- \\ & 7652,7654-7659, \\ & 7661-7667,7669, \\ & 7671-7676, \\ & 7677(p t,), \\ & 7678-7679 \end{aligned}$ |
| 36 | 11 | Fabricators, assemblers, inspectors and samplers | $\begin{aligned} & 7332-7333,7532- \\ & 7533,7714,7717, \\ & 72,774,7753- \\ & 7759,782-785,787 \end{aligned}$ |

[^9]| | | C-8 | |
| :---: | :---: | :---: | :---: |
| | | APPENDIX C | |
| | | OCCUPATION RECODE OUTLINE | Revised in 1995 |
| Recodes | | | |
| No. 1 Chrs. $87-88$ | No. 2
 Chrs. 89-90 | Occupation Title | SOC Code* |
| (37-39) | (12) | TRANSPORTATION AND MATERIAL MOVING OCCUPATIONS | |
| 37 | 12 | Motor vehicle operators | $\begin{aligned} & 8111,8212-8216, \\ & 8218-8219,874 \end{aligned}$ |
| 38 | 12 | Other transportation, except motor vehicles | $\begin{aligned} & 8113,8232-8233, \\ & 8239,8241 \text { (pt.) } \\ & 8242-8245 \end{aligned}$ |
| 39 | 12 | Material moving equipment operators | 812,8312-8319 |
| $(40-41)$ | (13) | HANDLERS, EQUIPMENT CLEANERS, HELPERS AND LABORERS | |
| 40 | 13 | Construction laborers | 871 |
| 41 | 13 | Freight, stock and material handlers | $\begin{aligned} & 85,861-863, \\ & 8641-8646, \\ & 8648,865, \\ & 8722-8726,873, \\ & 875,8761,8769 \end{aligned}$ |

[^10]| | | C-9 | Revised i |
| :---: | :---: | :---: | :---: |
| | | APPENDIX C | |
| | | OCCUPATION RECODE OUTLINE | |
| Recodes | | | |
| No. 1 Chrs. 87-88 | No. 2 Chrs. 89-90 | Occupation Title | SOC Code* |
| 95 | 14 | UNKNOWN OCCUPATION (Includes never worked) | |
| 96 | 14 | REFUSED, CLASSIFIED, ETC. | |
| 97 | 15 | NOT IN LABOR FORCE - codes Blank and 8 in current activity recode (Loc. 75). (Under 18 or $18+$ and Not in Labor Force) | |
| 98 | 16 | MILITARY | |

[^11]APPENDIX C
OCCUPATION RECODE TITLES
$\left.\begin{array}{lll}\hline \text { Code } & & \begin{array}{c}\text { Recode No } \\ \text { Inclusion }\end{array} \\ \hline & \text { MANAGERIAL AND PROFESSIONAL SPECIALTY OCCUPATIONS }\end{array}\right]$

April 17, 1998
About this document:
This document provides basic design information about the 1995-2004 NHIS and presents methods to compute standard errors for each annually released personlevel database. This document focuses upon a full-sample NHIS Core survey that is anticipated for each data collection year. For some years the full-sample methods need to be modified to account for design changes. In particular, the 1996 NHIS has a sample design quite different from the 1995 NHIS. Also, Supplemental surveys may require modified methods. Some notes about these modifications appear at the end of this document.

Contents
VARIANCE ESTIMATION FOR PERSON DATA USING THE NHIS PUBLIC USE PERSON DATA TAPE, 1995

Pages 2-11
Notes for the 1995 NHIS Year 2000 supplement
Page 12

Notes for the 1996 NHIS
Pages 13-16

```
VARIANCE ESTIMATION FOR PERSON DATA USING THE
NHIS PUBLIC USE PERSON DATA TAPE, 1995
```

Introduction: The data collected in the NHIS are obtained through a complex sample design involving stratification, clustering, and multistage sampling, and the final weights are subject to several adjustments. Any variance estimation methodology must involve numerous simplifying assumptions about the design and weighting. We provide some oversimplified conceptual NHIS design structures that should allow users of this Public Use Data Set to compute reasonably accurate standard errors.

There are several available software packages for analyzing complex samples. A comparison is beyond the scope of this document, but an Internet web page Summary of Survey Analysis Software currently located at
http://www.fas.harvard.edu/~stats/survey-soft/survey-soft.html provides references and discussion. At NCHS the software package SUDAAN has been used to produce standard errors. In this document SAS and SUDAAN computer code is provided, but without guarantees of any kind. The computer code and methods are subject to change without notification to the user. The entire risk as to the results and performance is assumed by the user. NCHS recommends that any analysis of NHIS data be done under the supervision of a statistician who understands the implications of complex-sample design surveys.

Conceptual NHIS design for 1995 The U.S. Bureau of the Census partitions the state counties or equivalents along with metropolitan areas into a universe of about 1900 Primary Sampling Units (PSUs) (note, PSUs may be combined counties) to provide the primary sampling areas for its many national surveys. For the NHIS these universe PSUs are partitioned into geographical strata at the state level. Some of the larger universe PSUs are selfrepresenting (SR), i.e., they are in the NHIS with certainty. The other PSUs are called non-self-representing (NSR) or non-certainty PSUs. Within each state the NSR PSUs are partitioned into strata based upon similarity of PSU characteristics. Within each NSR stratum 2 PSUs are selected using Durbin's probability proportional to size (PPS) sampling method using the population as a measure of size. (In some smaller states only 1 PSU is drawn PPS). The SR PSUs are equivalent to strata, but historically they have been referred to as PSUs. (PPS and Durbin sampling are discussed in Chapter 9A of Cochran (1977)).

Within a sampled NSR or SR PSU the geography is partitioned into smaller geographical clusters which are used to form the universe of secondary sampling units (SSUs). These SSUs are then partitioned into density strata based upon black and Hispanic population concentration as determined by the 1990 Decennial Census. An additional strata for new construction since the last Decennial Census is also created. Within each density stratum SSUs are sampled at different rates to meet different design objectives. Within each sample SSU, all households containing black or Hispanic persons are sampled, while all other households are subsampled. Supplemental NHIS surveys may require additional sampling at SSU, household, or family levels.

The fundamental sampling weights are created such that under ideal sampling conditions, unbiased estimators for each level of sampling are available. In practice, however, the final sampling weights are adjusted for nonresponse, and ratio adjusted. Furthermore, in 1995 a government shutdown resulted in three lost weeks of sample which resulted in further weighting adjustments. The most important adjustment is a quarterly poststratification to 90 age/sex/race/ethnicity Census control totals.

For variance estimation purposes, NCHS treats the NHIS as a two-stage sample. The PSU probabilities of selection are known, and the SSUs are treated as sampled with replacement within PSU density strata. Sampling weights are adjusted by postratification. With these assumptions the SUDAAN software is used to compute variances. Much of the design information, state, density strata, and Durbin probabilities can be used to identify the smaller geographical areas. NCHS forbids the disclosure of information which may compromise the confidentiality promised to survey respondents, so some design information is not provided with the Public Use Data. While all design information is not available to the public, variance estimation methods exist which provide similar results to the NCHS internally used methodology. Two methods are described below.

Design Information Available on the NHIS Public Use Databases.
CAUTION For 1996 databases, refer to the Notes at the end of this document.
The following variables are used to produce code for variance estimation. Field locations below are from the PERSON level database, but may change on other databases; the user should check the file documentation.

Variable Name	Tape Location	Field Label
STRAT_V	$337-340$	'STRATA FOR VARIANCE ESTIMATION'
PSU_V	341	'PSU FOR VARIANCE ESTIMATION'
SUB_V	$342-343$	'SUBSTRATUM FOR VARIANCE ESTIMATION'
SSU	$344-350$	'SECONDARY SAMPLING UNIT'
PANEL	352	'PANEL 4'
TYPE_PSU	351	'TYPE OF PSU'
WTF	$219-227$	'FINAL BASIC WEIGHT'

Two methods of variance estimation are provided.

Method 1 - 187 Strata containing 2 PSUs per stratum sampled with replacement
Here, the NHIS universe has been partitioned into 187 strata. Most of the original NHIS strata and PSUs retain their original sampling structure with two PSUs being sampled per stratum, but a few strata have been collapsed, and in the largest self-representing strata, two pseudo-PSUs have been created. All PSUs are treated as sampled with replacement within their respective strata. This method will provide somewhat conservative standard errors, and the standard error estimator itself has less stability than the standard error estimator described by Method 2 below. Method 1 should be applicable to many complex survey sample design computer programs which require exactly 2 sampled PSUs per stratum. This method is robust when analyzing subsetted data (See the section "Subsetted Data Analysis" below).

Coding required (SAS code provided):

```
STRATUM = STRAT_V;
PSU = PANEL;
IF (PSU_V = 5) THEN PSU = INT((PANEL + 1)/2);
IF(PSU_V = 8) THEN STRATUM = 553;
IF((TYPE_PSU = 1) AND (PSU_V IN (2,4))) THEN STRATUM =
(STRAT_V -1);
IF((STRAT_V = 921) AND (PSU_V = 3)) THEN STRATUM = 901;
```

As a check the user should observe 374 PSUs when using the full database.

For the above simplification of the NHIS sample design structure, the following SUDAAN design statements may be used. (Note, the input file must first be sorted by STRATUM and PSU variables.)

```
PROC ... DESIGN = WR;
NEST STRATUM PSU ;
WEIGHT WTF;
```

See the Section "Worked SUDAAN Examples" below for further discussion.
Method 2 - Multiple PSUs per Stratum design sampled with replacement
This method provides for more statistically efficient variance estimation than Method 1 , since it makes better use of the sampling design information. Its application is limited to software that can handle multiple PSUs per stratum, e.g., SUDAAN. For this method the original certainty PSUs are partitioned by aggregations of the original race-ethnic density strata used in sampling. The first randomly sampled unit is actually the SSU variable which is now treated as the PSU variable. (Note, a certainty PSU unit contributes nothing to the variance at the PSU sampling level.) Non-certainty-strata PSUs are treated as being sampled with replacement within their respective strata. Except for a few special cases, the non-certainty PSUs have exactly the same structure in both Methods 1 and 2.

```
Coding required, (SAS code provided ):
IF TYPE_PSU = 1 THEN DO; /* certainty strata PSUs */
    STRATUM = STRAT_V*1000 + SUB_V;
        PSU = SSU ;
        END;
ELSE DO ; /* non-certainty PSU */;
STRATUM = STRAT_V ;
```

As a check, the user should observe the following counts:

```
Certainty Strata PSUs 4079
Non-certainty Strata PSUs 259
Total PSUs 4338
```

For the Method 2 design structure, the following SUDAAN design statements may be used. (Note, the input file must first be sorted by STRATUM and PSU variables.)

PROC ...	DESIGN = WR;
NEST	STRATUM PSU;
WEIGHT	WTF;

See the Section "Worked SUDAAN Examples" for further discussion.

CAUTION. Method 2 should only be used on a full sample person data base. Using this method with subsetted data may lead to incorrectly computed standard errors. (See the section "Subsetted Data Analysis" below). If using a subsetted data set, the user should check the degree of agreement of the certainty and non-certainty counts with the values presented above.

CAUTION

A typically used rule-of-thumb for degrees of freedom to associate with a standard error is the quantity (number of PSUs - number of strata). This rule assumes that the PSUs are somewhat comparable in size. For Method 2 this rule may be grossly inaccurate since the concept of PSU is quite different for certainty and non-certainty strata. Certainty strata PSUs of Method 2 have small weighted values relative to those of non-certainty PSUs. The rule-of-thumb degrees of freedom for Method 1 is 187 , and Method 2 should have a "true" degrees of freedom exceeding that of Method 1. However, for practical purposes, any degrees of freedom exceeding 120 can be treated as infinite, i.e., one uses a normal Z-statistic instead of a t-statistic for testing. Note, that a one-tailed critical t0.025 at 120 degrees of freedom is 1.98 while at an infinite degrees of freedom (i.e., a z-value) is 1.96. If a variable of interest covers most of the NHIS PSUs, the limiting value would probably be adequate for analysis. The user should consult a mathematical statistician for discussion of degrees of freedom.

SUBSETTED DATA ANALYSES
Frequently, studies of NHIS variables are restricted to select subdomains, e.g., persons aged 65 and older. To save on storage the user may delete all records outside of the domain of interest. This procedure of keeping only select records is called subsetting the data. With a subsetted data set one can produce correct point estimates, e.g., the subdomain means, but standard errors may be computed incorrectly when using a compromised design structure. For example, if a stratum of Method 2 contains 10 PSUs and 5 are lost because of subsetting, a SUDAAN run on the subsetted data will use an incorrect formula to compute stratum contributions to the variance. If the full data are run, SUDAAN correctly handles the 5 empty PSUs. Note, that SUDAAN has a SUBPOPN option that allows the targeting of a subdomain from a full design data base. (See the SUDAAN manual for details).

Subsetting methods with SUDAAN
Strategy 1. Use Method 1 above with the MISSUNIT option on the NEST
statement -
NEST STRATUM PSU/MISSUNIT ;
If a WR design has exactly 2 PSUs per stratum and some PSUs are removed from the database then the SUDAAN MISSUNIT option performs a fix-up which produces a standard error identical to that achieved when using a full data set and SUBPOPN statement. Note, other output like design effects, degrees of freedom, standardization may be computed differently. The user is responsible for checking that subsetted input leads to correct results.

Strategy 2. Use Method 1 or 2 above on a "fixed-up" subsetted data set. Basically, one needs to add some dummy records containing full design information to the subsetted data set. To do this follow these instructions:

1. Create a 2-variable file containing STRATUM and PSU for each record of the full person file (100,000+ records)
2. Sort this file by STRATUM and PSU within STRATUM.
3. Keep only 1 record for each PSU
add WTF $=10-10$ as a very small weight
add variable DUMMY $=0$ to designate dummy record
A file, called DESIGN containing 4 variables with
374 records (Method 1 used) or with
4338 records (Method 2 used) is created
4. Append DESIGN to the original subsetted database, called DATASET, to form a new set, called DATANEW.

Define DUMMY = 1 on the DATASET component.
On the DESIGN component records define all variables other than STRATUM, PSU, WTE, DUMMY as missing ".".
5. Sort DATANEW by STRATUM PSU
6. In SUDAAN use a "SUBPOPN DUMMY = 1;" line to direct SUDAAN to restrict estimation to the subdomain of interest.

With the above fix-up SUDAAN will correctly handle empty PSUs when computing the standard errors. SUDAAN output that needs the entire full sample database for correct computation, e.g., design effects, may or may not be appropriate. See the SUDAAN manual for computational forms or consult with a mathematical statistician for correct interpretation.

Other notes on Subsetting data:
If a subsetted database under Method 2 has only a few missing PSUs, the subsetted database can probably be run with SUDAAN without being fixed up. For example, a subsetting by SEX will most likely result in all PSUs still being in sample, but black males aged 65 and older would result in the loss of many PSUs. The impact of running SUDAAN on uncorrected subsetted data varies. Frequently, subsetted runs produce results consistent with those run on a full data set, but sometimes they do not.

Subsetting by aggregates of Strata does not need a fix-up.
The condition, doctor visit, and hospital record databases are actually subsetted files. To use with SUDAAN properly, the information should be linked back to the appropriate person on the person file. Some statistics, based upon aggregation of records, may be computed directly from this file along with the fix-up. Consult with a statistician for appropriate SUDAAN usage.

WORKED SUDAAN EXAMPLES
In the following runs the variables used are
LDR \quad proportion of persons without a doctor visit in the last 2 years
TDV_R = mean number of annual doctor visits (based upon 2 week recall)
HLT_FP = proportion of persons with self-reported fair or poor health status (omitting missing)

AGE2: 1 = aged less than 18
$2=$ aged 18 to 44
3 = aged 45 to 64
4 = aged 65 and older
The following SUDAAN code was executed for both Method 1 and Method 2:
Caution The output presented below is based upon a preliminary NHIS Public Use database. Your Public Use database may produce slightly different SUDAAN output.

```
PROC DESCRIPT DATA = HIS.infile FILETYPE=SAS DESIGN = WR;
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
NEST \\
WEIGHT
\end{tabular} & \multicolumn{4}{|c|}{STRATUM PSU ; WTF;} & \\
\hline VAR & LDR & & V_R & HLT_FP & \\
\hline SUBGROUP & & SEX & AG & & \\
\hline LEVELS & & 2 & 4; & & \\
\hline TABLES & & SEX & AGE2 & & \\
\hline
\end{tabular}
```

PRINT NSUM WSUM MEAN SEMEAN
/ WSUMFMT=F10.0 MEANFMT=F8.5 SEMEANFMT=F8.5 ;

Method 1: partial output:
S U D A A N
Software for the Statistical Analysis of Correlated Data Copyright Research Triangle Institute April 1996

Release 7.00
Number of observations read : 102467 Weighted count :261889548
Number of observations skipped : 0 (WEIGHT variable nonpositive) Denominator degrees of freedom : 187

Research Triangle Institute

The DESCRIPT Procedure
by: Variable, SEX.

Variable		SEX Total		
LDR	Sample Size Weighted Size Mean SE Mean	102467 261889549 0.13797 0.00178	48809 127570237 0.18013 0.00250	$\begin{array}{r} 53658 \\ 134319312 \\ 0.09793 \\ 0.00178 \end{array}$
TDV_R	Sample Size Weighted Size Mean SE Mean	102467 261889549 5.90759 0.09060	48809 127570237 4.90385 0.10039	$\begin{array}{r} 53658 \\ 134319312 \\ 6.86089 \\ 0.12407 \end{array}$
HLT_FP	Sample Size Weighted Size Mean SE Mean	101277 258963568 0.10126 0.00157	48266 126221708 0.09124 0.00188	53011 132741859 0.11079 0.00176

Method 1: partial output:
S U D A A N
Software for the Statistical Analysis of Correlated Data Copyright Research Triangle Institute April 1996

Release 7.00
Number of observations read : 102467 Weighted count :261889548
Number of observations skipped : 0
(WEIGHT variable nonpositive) Denominator degrees of freedom : 187

Research Triangle Institute
The DESCRIPT Procedure
by: Variable, AGE2.

Variable		AgE 2 Total		2
LDR	Sample Size Weighted Size Mean SE Mean	102467 261889549 0.13797 0.00178	29711 70670755 0.08894 0.00269	40801 108040689 0.18489 0.00268
TDV_R	Sample Size Weighted Size Mean SE Mean	102467 261889549 5.90759 0.09060	29711 70670755 4.29682 0.09797	40801 108040689 4.88589 0.12432
HLT_FP	Sample Size Weighted Size Mean SE Mean	101277 258963568 0.10126 0.00157	29183 69438212 0.02552 0.00129	40423 107054300 0.06610 0.00168

Variable		3	
LDR	Sample Size Weighted Size Mean SE Mean	20000 51713265 0.14461 0.00293	$\begin{array}{r} 11955 \\ 31464840 \\ 0.07606 \\ 0.00251 \end{array}$
TDV_R	Sample Size Weighted Size Mean SE Mean	$\begin{array}{r} 20000 \\ 51713265 \\ 7.08504 \\ 0.17859 \end{array}$	$\begin{array}{r} 11955 \\ 31464840 \\ 11.09843 \\ 0.30642 \end{array}$
HLT_FP	Sample Size Weighted Size Mean SE Mean	$\begin{array}{r} 19834 \\ 51315866 \\ 0.16651 \\ 0.00356 \end{array}$	$\begin{array}{r} 11837 \\ 31155190 \\ 0.28344 \\ 0.00519 \end{array}$

Method 2 Partial Output
S U D A A N
Software for the Statistical Analysis of Correlated Data Copyright Research Triangle Institute April 1996

Release 7.00
Number of observations read : 102467 Weighted count :261889548
Number of observations skipped : 0 (WEIGHT variable nonpositive) Denominator degrees of freedom : 4030

Research Triangle Institute
The DESCRIPT Procedure
by: Variable, SEX.

| Variable | | SEX Total | \|| 2 | |
| :---: | :---: | :---: | :---: | :---: |
| LDR | Sample Size Weighted Size Mean SE Mean | 102467 261889549 0.13797 0.00174 | 48809 127570237 0.18013 0.00231 | 53658 134319312 0.09793 0.00184 |
| TDV_R | Sample Size Weighted Size Mean | 102467 261889549 5.90759 | 48809 127570237 4.90385 | 53658 134319312 6.86089 |
| | SE Mean | 0.07704 | 0.08503 | 0.11403 |
| HLT_FP | Sample Size Weighted Size Mean SE Mean | 101277 258963568 0.10126 0.00152 | 48266 126221708 0.09124 0.00174 | 53011 132741859 0.11079 0.00182 |

Method 2 Partial Output
S U D A A N
Software for the Statistical Analysis of Correlated Data Copyright Research Triangle Institute April 1996

Release 7.00
Number of observations read : 102467 Weighted count :261889548
Number of observations skipped : 0
(WEIGHT variable nonpositive)
Denominator degrees of freedom : 4030
Research Triangle Institute
The DESCRIPT Procedure
by: Variable, AGE2.

Variable		AGE2 Total		
LDR	Sample Size Weighted Size Mean SE Mean	102467 261889549 0.13797 0.00174	29711 70670755 0.08894 0.00271	$\begin{array}{r} 40801 \\ 108040689 \\ 0.18489 \\ 0.00254 \end{array}$
TDV_R	Sample Size Weighted Size Mean SE Mean	102467 261889549 5.90759 0.07704	29711 70670755 4.29682 0.09116	$\begin{array}{r} 40801 \\ 108040689 \\ 4.88589 \\ 0.11805 \end{array}$
HLT_FP	Sample Size Weighted Size Mean SE Mean	101277 258963568 0.10126 0.00152	$\begin{array}{r} 29183 \\ 69438212 \\ 0.02552 \\ 0.00118 \end{array}$	$\begin{array}{r} 40423 \\ 107054300 \\ 0.06610 \\ 0.00157 \end{array}$

| Variable | | 3 \|| 4 | |
| :---: | :---: | :---: | :---: |
| LDR | Sample Size Weighted Size Mean SE Mean | 20000 51713265 0.14461 0.00303 | 11955 31464840 0.07606 0.00269 |
| TDV_R | Sample Size Weighted Size Mean SE Mean | 20000 51713265 7.08504 0.16109 | $\begin{array}{r} 11955 \\ 31464840 \\ 11.09843 \\ 0.28387 \end{array}$ |
| HLT_FP | Sample Size Weighted Size Mean SE Mean | 19834 51315866 0.16651 0.00351 | $\begin{array}{r} 11837 \\ 31155190 \\ 0.28344 \\ 0.00501 \end{array}$ |

Best NHIS design using Durbin probabilities (not available to the public) and weights adjusted by post-stratification

| Variable | | SEX Total | 1 \|| 2 | |
| :---: | :---: | :---: | :---: | :---: |
| LDR | Sample Size Weighted Size Mean SE Mean | 102467 261889549 0.13784 0.00170 | 48809 127570237 0.17991 0.00221 | 53658 134319312 0.09789 0.00182 |
| TDV_R | Sample Size Weighted Size Mean SE Mean | 102467 261889549 5.90468 0.07511 | 48809 127570237 4.89733 0.08320 | 53658 134319312 6.86141 0.11217 |
| HLT_FP | Sample Size
 Weighted Size
 Mean
 SE Mean | 101277 258974266 0.10127 0.00137 | 48266 126232939 0.09125 0.00159 | 53011 132741328 0.11080 0.00165 |

Best NHIS design using Durbin probabilities (not available to the public) and weights adjusted by post-stratification

Post-stratified estimates
by: Variable, AGE2.

Variable		AGE2 Total		
LDR	Sample Size Weighted Size Mean SE Mean	102467 261889549 0.13784 0.00170	29711 70670755 0.08845 0.00258	40801 108040689 0.18484 0.00248
TDV_R	Sample Size Weighted Size Mean SE Mean	102467 261889549 5.90468 0.07511	29711 70670755 4.29787 0.09066	40801 108040689 4.87876 0.11858
HLT_FP	Sample Size Weighted Size Mean SE Mean	101277 258974266 0.10127 0.00137	29183 69441900 0.02555 0.00116	40423 107059972 0.06624 0.00153

| \|| Variable | | \|| 4 | |
| :---: | :---: | :---: | :---: |
| \| LDR | Sample Size Weighted Size Mean SE Mean | 20000 51713265 0.14484 0.00298 | 11955 31464840 0.07587 0.00268 |
| \| TDV_R | Sample Size Weighted Size Mean SE Mean | $\begin{array}{r} 20000 \\ 51713265 \\ 7.08472 \\ 0.16180 \end{array}$ | $\begin{array}{r} 11955 \\ 31464840 \\ 11.09687 \\ 0.27613 \end{array}$ |
| \| $\mathrm{HLT}^{\text {H }}$-FP | Sample Size Weighted Size Mean SE Mean | 19834 51315313 0.16633 0.00342 | $\begin{array}{r} 11837 \\ 31157082 \\ 0.28322 \\ 0.00487 \end{array}$ |

Remark on Examples
A comparison of the three SUDAAN examples shows that Method 2 performs quite well when compared to the "best" internal NCHS variance design for the NHIS. Based on limited preliminary evidence, it appears that for means, Method 2 typically provides standard errors in close agreement with, while slightly larger than, the standard errors produced by the NCHS "best" method. Method 1 tends to provide slightly larger standard errors than Method 2 does, although the sample output does include examples where the Method 1 standard error is smaller than the Method 2 standard error.

Reference:
(1977)

Cochran, W. G., Sampling techniques (3rd ed), John Wiley \& Sons

Notes for Year 2000 application (added 01/21/98)
The variance estimation methods of this document may be applied to the Year 2000 Objectives Public Use File. The following changes must be made:

The design information variables are all in the same file locations with the exception of "WTF".
Substitute:
WTF 207-212 'FINAL BASIC WEIGHT'
The PSU check for method 2 should now read:
As a check, the user should observe the following counts:

Certainty Strata PSUs	3804
Non-certainty Strata PSUs	259
Total PSUs	4063

Notes on the 1996 NHIS (added 04/17/98)
In 1996 the NHIS survey underwent a transition from a paper-and-pencil to a computer-assisted interview process. This transition resulted in roughly 5/8 of the available full sample being targeted for processing and public release. In 1997 the full sample was again implemented. For 1996 the reader should substitute the information on pages 3 and 4 and the top of page 5:

Design Information Available on the NHIS Public Use Databases.
Method 1 - 187 Strata containing 2 PSUs per stratum sampled with replacement
Method 2 - Multiple PSUs per Stratum design sampled with replacement
with the 1996 information on the following pages:

Design Information Available on the 1996 NHIS Public Use Databases.
The following variables are used to produce code for variance estimation. Field locations below are from the PERSON level database, but may change on other databases; the user should check the file documentation.

Variable Name	Location	Field Label
STRAT96*	$354-357$	'COLLAPSED VARIANCE STRATUM'
PSU96*	358	'VARIANCE PSU'
SUB_V	$342-343$	'SUBSTRATUM FOR VARIANCE ESTIMATION'
SSU	$344-350$	'SECONDARY SAMPLING UNIT'
PANEL	352	'PANEL 4'
NSR96*	353	'NSR STATUS VARIABLE'
WTF	$219-227$	'FINAL BASIC WEIGHT'
(*indicates modified design	variables added to the 1996 databases)	

Two methods of variance estimation are now provided.

Method 1.96-98 Strata containing 3 PSUs per stratum sampled with replacement
Here, the NHIS universe has been partitioned into 98 collapsed strata with 3 PSUs per stratum. All PSUs are treated as sampled with replacement within their respective strata. This method will provide somewhat conservative standard errors, and this standard error estimator itself has less stability than the standard error estimator described by Method 2.96 below.

Coding required, (SAS code provided):
STRATUM $=$ INT (STRAT96/10) * 10 ;
PSU = PANEL ;
Note, INT () is the Integer-value SAS function, e.g., INT(2.3) $=2$
As a check the user should observe $98 * 3=294$ PSUs when using the full database.

For the above simplification of the NHIS sample design structure, the following SUDAAN design statements may be used. (Note, the input file must first be sorted by STRATUM and PSU variables).

```
PROC ... DESIGN = WR;
NEST STRATUM PSU ;
WEIGHT WTF;
```

Method 2.96 - Multiple PSUs per Stratum design sampled with replacement
This method provides for more statistically efficient variance estimation than Method 1.96 , since it makes better use of the sampling design information. Its application is limited to software that can handle multiple PSUs per stratum, e.g., SUDAAN. For this method the original certainty PSUs are partitioned by aggregations of the original race-ethnic density strata used in sampling. The first randomly sampled unit is actually the SSU variable which is now treated as the PSU variable. (Note, a certainty PSU unit contributes nothing to the variance at the PSU sampling level). Non-certainty strata PSUs are treated as being sampled with replacement within their respective strata.

Coding required (SAS code provided):
IF NSR96 = 1 THEN DO; /*1996 certainty strata PSUs */
STRATUM $=$ STRAT96*100 + SUB_V;
PSU = SSU
END;
ELSE DO; /* 1996 non-certainty PSU */
STRATUM $=$ STRAT96;
PSU = PSU96 ;

END;
As a check, the user should observe the following counts:

Certainty Strata PSUs	1736
Non-certainty Strata PSUs	240
Total PSUs	1976

For the Method 2.96 design structure, the following SUDAAN design statements may be used. (Note, the input file must first be sorted by STRATUM and PSU variables.)

```
PROC ... DESIGN = WR;
NEST STRATUM PSU ;
WEIGHT WTF ;
```

Caution. Both Method 1.96 and Method 2.96 should only be used on a full sample person database. Using this method with subsetted data may lead to incorrectly computed standard errors. (See the section Subsetted Data Analysis in the 1995 section). If using a subsetted data set, the user should check the degree of agreement in the PSU counts with the values presented above for either of the two methods. Unlike Method 1 for 1995, Method 1.96 is not robust for analyzing subsetted survey data.

CAUTION
A typically used rule-of-thumb for degrees of freedom to associate with a standard error is the quantity (number of PSUs - number of strata). This rule assumes that the PSUs are somewhat comparable in size. For Method 2.96 this rule may be grossly inaccurate since the concept of PSU is quite different for certainty and non-certainty strata. Certainty strata PSUs of Method 2.96 have small weighted values relative to those of non-certainty PSUs. The rule-ofthumb degrees of freedom for Method 1.96 is 196 , and Method 2.96 should have a true degrees of freedom exceeding that of Method 1.96. However, for practical purposes, any degrees of freedom exceeding 120 can be treated as infinite, i.e., one uses a normal Z-statistic instead of a t-statistic for testing. Note, that a one-tailed critical t0.025 at 120 degrees of freedom is 1.98 while at an infinite degrees of freedom (i.e., a z-value) is 1.96. If a variable of interest covers most of the NHIS PSUs, the limiting value would probably be adequate for analysis. The user should consult a mathematical statistican for discussion of degrees of freedom.

The observant reader may notice that the 1996 method 1.96 has a larger rule of thumb degrees of freedom than the corresponding 1995 method 1 . The 1996 variance estimation design consists of collapsed strata that may introduce a much larger stratum-collapse bias than occurred in 1995, and furthermore, the PSUs within each 1996 collapsed stratum have greater PSU weight diversity than in 1995 which may reduce stability.

The section on SUBSETTED DATA ANALYSES in the 1995 section should be read considering the changes provided in this 1996 section.

[^0]: *This location is used to categorize persons with limitation of activity in the Current Estimates tables.

[^1]: *Standard Industrial Classification

[^2]: *Standard Industrial Classification

[^3]: *Standard Industrial Classification

[^4]: *Standard Industrial Classification

[^5]: *Standard Occupational Classification.

[^6]: *Standard Occupational Classification.

[^7]: *Standard Occupational Classification.

[^8]: *Standard Occupational Classification

[^9]: *Standard Occupational Classification

[^10]: * Standard Occupational Classification

[^11]: *Standard Occupational Classification

