Occupational exposure limits—at the crossroads
Malcolm R Sim

Occup Environ Med 2010 67: 801-802
doi: 10.1136/oem.2010.062752

Updated information and services can be found at:
http://oem.bmj.com/content/67/12/801.full.html

These include:

References
This article cites 4 articles
http://oem.bmj.com/content/67/12/801.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://journals.bmj.com/cgi/content/
Occupational exposure limits—at the crossroads

Malcolm R Sim

Setting occupational exposure limits (OELs) for hazards in the workplace has been an integral component of worker health protection programs for many decades. These OELs have been established by many authoritative bodies around the world, such as the Threshold Limit Value Committee (TLV) of the American Conference of Governmental Industrial Hygienists (ACGIH). The traditional approach has been to develop OELs by expert review of the available evidence, and set levels based primarily on health considerations. OELs, such as the TLVs, are usually used to guide occupational health practitioners in the assessment and control of workplace hazards, although some regulatory authorities use OELs as legal standards.

OELs have been criticised for not protecting all workers as, for example, the ACGIH states that TLVs represent conditions under which nearly all workers may be repeatedly exposed without adverse health effects. Another criticism is that OELs have only been set for a small fraction of the hazards to which workers can be exposed. A third criticism is that expert judgement is not a rigorous enough method for setting robust OELs and can quickly get out of date.1 Despite these criticisms, OELs have continued to be a major source of protection for setting the DNELs sitting side-by-side is likely to cause confusion. There is further concern that the OEL approach has come under some criticism as it may not always result in an adequate margin of safety, especially for dusts, and in situations where there is considerable inherent variability.5

Concern about the declining standing of OELs in workplace hazard assessment and control has prompted calls to ensure that OELs continue to be used and regularly updated.6 This is particularly important in newly industrialising countries, where alternative approaches are less well developed. One limitation of the OEL approach is that it does require considerable input by occupational health professionals and other stakeholders. This problem of the profusion of widely different occupational exposure recommendations and/or standards is highlighted by the current situation in the USA, where many different bodies have set their own OELs. Some of these are recommended, such as the NIOSH Recommended Exposure Limits (RELs) and the TLVs, while others are regulatory standards, such as the OSHA Permissible Exposure Limits (PELs). The different terminologies and values among these various OELs, some of which date back to the 1970s, can cause confusion about what is the most appropriate OEL to use. In the absence of clear direction and leadership regarding OELs, many larger companies in the US now set their own internal values.

What about the situation in newly industrialising countries? In many South American countries, TLVs are generally used, although keeping these up to date is a major challenge. In Brazil, for example, almost all of the 53 regulatory exposure standards are based on the 1976 TLVs. In the Asia Pacific region, it has been shown that there is considerable variability in both the approach to setting OELs and the numerical levels across different countries, often by more than an order of magnitude for carcinogens such as asbestos and silica.4

A further factor leading to reduced use of OELs is the increasing application of control banding, which has become popular, especially in the United Kingdom following the introduction of the Control of Substances Hazardous to Health (COSHH) Regulations and Workplace Exposure Limits (WELs), based on maximum exposure levels. Control banding advocates the application of a set of risk reduction measures for identifiable categories of exposure, rather than relying on exposure monitoring, and reference to OELs, to direct controls. Control banding has come under some criticism as it may not always result in an adequate margin of safety, especially for dusts, and in situations where there is considerable inherent variability.5

Concern about the declining standing of OELs in workplace hazard assessment and control has prompted calls to ensure that OELs continue to be used and regularly updated.6 This is particularly important in newly industrialising countries, where alternative approaches are less well developed. One limitation of the OEL approach is that it does require considerable input by experienced occupational health professionals to keep them up-to-date, but due to increasing demands on their time, there is a declining pool of the necessary people to undertake this role. As the date for the full implementation of the DNELs in Europe approaches, the success or otherwise of REACH is likely to be an important deciding factor in whether OELs are consigned to the historical archives of occupational health and safety practice. This would be an unfortunate development, as it would remove a well established, although not perfect, evidence-based tool from the armament of those committed to improving worker health.

Provenance and peer review Commissioned; not externally peer reviewed.
Occupational mortality studies: still relevant in the 21st century

Andrea ‘t Mannetje, Neil Pearce

In their article, Coggon and colleagues report on work-related mortality in England and Wales over the period 1979–2000. Occupational mortality studies are one of the oldest approaches in epidemiology, including the decennial reports on patterns of mortality for occupational groups in England and Wales that have been published since the 19th century. These studies have made use of routinely collected data (death certificates), to study cause-specific mortality patterns by occupation and socioeconomic status. Even today, few other study designs, if any, can provide such a wide range of information on the occupational health status of a population, for so little cost.

Nevertheless, occupational mortality studies are currently not held in high regard. This perhaps reflects the low status of descriptive epidemiology- and hypothesis-generating studies in general, but there are additional specific methodological concerns regarding occupational mortality studies. In particular, most occupational mortality studies have used census data to produce standardised mortality ratios (SMRs). Using such external denominator data risks the introduction of a numerator-denominator bias that occupational mortality studies using the SMR approach have been criticised for. Furthermore, it makes the approach even simpler and more accessible for the many countries that do not have any denominator data (ie, census data) available, including developing countries where occupational mortality studies have never been carried out.

Occupational mortality data can be used more creatively than has been done before. Historically, occupational mortality studies were mainly seen as a hypothesis-generating tool, producing lists of occupations that show an excess in mortality for certain causes. Coggon and colleagues instead aimed to quantify the number of deaths due to known occupational risk factors and studied this pattern over time. This showed a clear decline in excess mortality attributable to work, but it also indicated which occupations and which occupational diseases contributed most to this decline. This is an interesting alternative to the attributable fraction approach that is most often used to quantify the burden of work-related mortality of a certain population. The attributable fraction approach is, however, not as flexible in detecting changes over time and within specific occupations, and often relies on attributable fraction estimates derived from other populations than the one under study, making it less population-specific than the method used by Coggon and colleagues.

The fact that occupational mortality studies have only very crude occupational information is not necessarily a disadvantage. Certainly, the field of occupational epidemiology has been working hard to improve the exposure data used in its studies, but this important development should not imply that there is no longer a place for studies that are based on occupational data, particularly those using routinely collected data. The use of ‘occupation’ as unit of analysis has its own merits as illustrated by Coggon and colleagues. Their findings, for example,