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Risk assessment methodologies are being updated to allow the
inclusion of numerical values for variance in pharmacokinetic (PK)
measures and pharmacodynamic (PD) processes related to toxic-
ity. The key PK measures and PD processes are identified from the
results of carefully conducted and adequately reported studies. In
some instances, studies with humans are not possible, and so the
development of data useful for human PK evaluations and on PD
processes in vitro or in silico represent an alternative. These re-
sults can be integrated under physiologic, anatomic, and biochem-
ical constraints of the intact body through physiologically based
pharmacokinetic (PBPK) modeling. This manuscript presents the
rational for and key considerations related to the inclusion of quan-
titative PK and PD data in assessing chemical risks.
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The establishment of health-protective short-term and long-
term exposure limits depends upon an adequate characterization
and assessment of the likelihood of an adverse event follow-
ing human exposure to the chemical. In research animals and
humans, the expression of toxicity is dependent upon contact
between the biologically-active form of the chemical and the ul-
timate receptor, as well as the response elicited by that contact.
These two events broadly represent the areas of pharmacoki-
netics (PK—how and in what form a chemical travels through
the body) and pharmacodynamics (PD—how the chemical pro-
duces its biological response). The extrapolation of risk from the
results of animal toxicity studies to humans involves an ini-
tial animal-to-human extrapolation and an extrapolation within
the human species to cover those who may be more sensitive
than others. As practiced by the U. S. Environmental Protection
Agency (U.S. EPA), these two steps are addressed in non-cancer
risk assessment and their respective uncertainty factors are re-
ferred to as UF-A and UF-H, respectively. Recently, these un-
certainty factors have sometimes been further divided into their
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respective PK and PD components. Occasionally, PK data in
animals and humans allows risk assessors to argue for the reduc-
tion of the PK default uncertainty value to a value represented by
quantified animal-to-human differences in the risk-relevant PK
outcome (also called the dose metric). Data of this type may also
argue for a value above the default value. However, no Agency-
endorsed guidance exists to inform a fully systematic approach
to this process at present’ ‘

Increased generation of relevant data and an understanding of
the mode of action provide opportunity to use chemical-specific
PK and PD data in humans and relevant mammalian test species
to better inform risk assessment. As illustrated in this paper,
research is being conducted in a number of areas related to ap-
proaches for incorporating pharmacokinetic and pharmacody-
namic data into risk assessments. Much of this work is being
framed by an international effort led by the International Pro-
gramme on Chemical Safety (IPCS) to develop guidance for the
adequacy of chemical-specific data for replacing default uncer-
tainty factors (IPCS 2001), as described in further detail below.
This guidance is being used (Meek et al. 1999, 2001) in the devel-
opment of chemical-specific adjustment factors (CSAFs), and
suggests new avenues of research and improved experimental
protocols for evaluating interspecies and intraspecies variability.

Several common themes were evident in the analyses summa-
rized in the rest of this paper. First identification of the chemical’s
mode of toxic action, including identification of the active form
of the chemical, is essential for quantitative incorporation of
pharmacokinetic data in risk assessment. Second, it is important
to consider physiological limits when considering total variabil-
ity. For example, when metabolism of a chemical is limited by
blood flow to the liver, variability in tissue dose is determined
primarily by variability in tissue flow, rather than variability in
metabolic capacity (unless the administered dose is very high).
This suggests the third point—that variation in tissue dose result-
ing from a given administered amount is often less than might be
expected from naive consideration of variation in individual fac-
tors infiuencing tissue dose. This principle results both because
variability in one parameter may not drive the overall variability,
and because it is unlikely for one individual to be at the extreme
of variability for multiple unrelated parameters. Finally, PBPK
modeling is a useful approach for evaluating how variability
in parameters affects overall variability. PBPK modeling is a
particularly useful tool, because a sensitivity analysis of its pa-
rameters and constants can determine which of these biologic,
anatomic, physiologic or biochemical factors are most impor-

1 An intermediate approach that takes into account some aspects of PK dif-
ferences between animals and humans, is used in EPA’s approach for developing
reference concentrations (RfCs) [U.S. EPA 1994]. This approach uses a particle
deposition model to compare tissue doses for animals and humans following
inhalation exposure to particles; species differences in clearance from the res-
piratory tract are not taken into account in this model. The U.S. EPA [1994]
approach also calculates differences in tissue dose between experimental ani-
mals and humans for gas effects in various regions of the respiratory tract and
systemic effects of gases, When the particle or gas dosimetric adjustments are
used, practice is to use a reduced factor of 3 for animal to human extrapolation.
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tant in determining tissue dose, and this information can be used
in combination with Monte Carlo modeling to simultaneously
evaluate variability in multiple parameters, and for predictive
if/then exercises to evaluate a potential basis for susceptibility.

CHEMICAL SPECIFIC ADJUSTMENT FACTORS (CSAF)
IN DOSE/CONCENTRATION RESPONSE
ASSESSMENT—GUIDANCE FOR ADEQUACY OF DATA
This brief overview addresses guidance for the consideration
of kinetic and dynamic data as a basis for replacement of de-
fault values for interspecies differences and human variability
in dose-response analyses through the application of chemical
specific adjustment factors (CSAFs). CSAFs represent part of
a broader continuum of approaches which incorporate increas-
ing amounts of data to reduce uncertainty, ranging from de-
fault (“presumed protective”) to more “biologically-based pre-
dictive” (Meek 2001). This guidance has been developed in one
of the projects of the initiative of the International Programme on
Chemical Safety (IPCS) on Harmonisation of Approaches to the
Assessment of Risk from Exposure to Chemicals (IPCS, 2001).

Framework for Development of CSAFs

Renwick (1993) proposed a framework to address Kinetics
and dynamics separately in considering uncertainty related to
interspecies differences and interindividual variability in the de-
velopment of reference or tolerable concentrations/doses. Quan-
titation of this subdivision is supported by data on kinetic pa-
rameters and pharmacokinetic-pharmacodynamic (PKPD) mod-
eling for a range of pharmacological and therapeutic responses
to pharmaceutical agents (Renwick 1993; Renwick and Lazarus
1998). This framework allows the incorporation of quantitative
chemical-specific data, relating to either toxicokinetics or tox-
icodynamics, to replace part of the usual default uncertainty
factor for consideration of both interspecies differences and in-
terindividual variability, but collapses back to the usual 100-fold
default in the absence of appropriate information (Fig. 1).

Chemical-Specific Toxicokinetic Adjustment
Eactors——[AKAF, HKAF]

The chemical-specific adjustment factors for the toxicoki-
netic components of interspecies differences and interindividual
variability are ratios of measurable metrics for internal exposure
to the active compound such as Area under the Curve (AUQO),
Cmax or clearance. For interspecies differences, this is gener-
ally determined on the basis of comparison of the resuits of
in vivo kinetic studies with the active compound in animals and
a representative sample of the healthy human population.

For interindividual variability, while this adjustment factor
could potentially be addressed on the basis of in vivo kinetic
studies in a sufficiently broad range of subgroups of healthy
and potentially susceptible populations to adequately define the
population distribution, this may not be practicable or even
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Chemical specific data can be used to replace a
default uncertainty factor (UF) by an adjustment
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FIG. 1. The sub-divison of the 100-fold fold uncertainty factor to allow chemical-specific data to replace part of the default factor. Both the uncertainty factor
for animal to human extrapolation and the factor for extrapolation among humans is divided into PK and PD components. With appropriate information, the default
values for these four components can be replaced with quantitative measures of variability.

possible. More often, factors responsible for the clearance
mechanisms are identified (renal clearance, CYP-specific
metabolism, etc.) and a chemical-specific adjustment factor is
derived based on measured or PBPK modelled human variabil-
ity in the relevant physiological and biochemical parameters.
The population distribution for the relevant metric (e.g., AUC,
Cmax, renal clearance) for the active entity is analyzed and the
CSAF (HK zr) calculated as the difference between the central
values for the main group and given percentiles (such as 95th,
97.5th and 99th) for the whole population (Fig. 2). These dif-
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Ratio 95th/50th

Number of Individuals

50% 95%
PK Parameter

ferences are analyzed separately for any potentially susceptible
sub-group (Fig. 2).

Chemical-Specific Toxicodynamic Adjustment
Factors [ADAF, HDAF]

While information that informs the development of these
factors include kinetic-dynamic link models, the chemical-
specific adjustment factors for the toxicodynamic components
are most simply, ratios of the doses which induce the critical
toxic effect or a measurable related response in vitro in relevant
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FIG. 2. Development of CSAFs for interindividual variability. A key decision in the methodology is whether the sensitive subpopulation is a discrete group or

a fraction of the general population (Adapted from Naumann et al. 2001).
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tissues of animals and a representative sample of the healthy hu-
man population (interspecies differences) or in average versus
sensitive humans (interindividual variability). At its simplest,
then, replacement of the dynamic component of the default
factor for inter-species differences is the ratio of the effective
concentrations in critical tissues of animals versus humans
(e.g., EC10 animal/EC10 tuman) for interspecies differences and in
healthy human and susceptible subpopulations for interindivid-
ual Varlablhty (e-g-, the ECyo average/ECIO sensitive)-

Guidance for Development of CSAF

IPCS (2001) provides guidance on several aspects of the de-
velopment of CSAF, which are only briefly outlined here. For
example, data for application in the four components of the
framework must relate to the active form of the chemical. For the
components of the framework addressing toxicokinetics [AKar]
and [HK ar], choice of the appropriate metric is also an essen-
tial first step. The time-weighted concentration of biologically
active metabolite in kidney tissue might be such a metric among
species as well as between humans.

Choice of the appropriate endpoint is critical for the com-
ponents addressing toxicodynamics [ADag] and [HD4r]. The
selected measured endpoint must either be the critical effect
itself or intimately linked thereto (with similar concentration-
response and temporal relationships) based on an understanding
of mode of action.

In addition, the metric for toxicokinetics or the measure of ef-
fects for toxicodynamics as a basis for CSAF needs careful con-
sideration in relation to the delivery of the chemical to the target
organ. Measures of various endpoints in vivo may represent only
toxicokinetics, or toxicokinetics and part or all of the toxicody-
namic processes, as defined based on the subdivision of defaults.
This necessitates consideration of the impact of specific data to
replace the toxicokinetic and potentially a proportion or all of the
toxicodynamic components of the default uncertainty factors.

For data that serve as the basis for all components, relevance
of the population, the route of exposure, dose/concentration and
adequacy of numbers of subjects/samples must also be consid-
ered and the potential impact on the validity of the calculated
ratio addressed. For example, for in vitro studies which inform
primarily dynamic components [ADag] [HDAF], the quality of
the samples should be considered, and evidence provided that
they are representative of the target population, e.g. viability,
specific content or activity of marker enzymes.

Conclusions

Consideration of relevant data in the context of a framework
that addresses kinetic and dynamic aspects, explicitly, should
result in greater understanding of contributing components and
transparency in risk assessment. It is also hoped that consider-
ation in this context will lead to clearer delineation and better
common understanding of the nature of specific data required
which would permit development of more informative measures
of dose response.

J. C. LIPSCOMB ET AL.

IN SILICO APPROACHES FOR PBPK MODELING
AND ESTIMATION OF INTERINDIVIDUAL VARIANCE
The development of physiologically-based pharmacokinetic
(PBPK) models requires the knowledge of several physiolog-
ical (tissue volumes, blood flow rates, cardiac output, alveo-
Jar ventilation rate), physicochemical (blood:air partition coef-
ficients [PC], tissue:blood partition coefficients, absorption rate
constants, permeability coefficients), and biochemical (maximal
velocity, Michaelis affinity constant) parameters (Krishnan and
Andersen 2001). The PBPK models, once developed, can be
used for assessing the impact of inter-individual variability in
input parameters on the appropriate dose surrogate (e.g., parent
chemical concentration in target tissue, amount of metabolites
formed) (Gentry et al. 2002; Lipscomb et al. 2003a). PBPK
modeling approaches to assess inter-individual variability on
tissue dose continue to evolve and may prove useful in quantify-
ing variance in the risk-relevant PK outcome between individu-
als at the mean of the general population and those individuals
in whom the value of the PK outcome predisposes risk. Fun-
damentally, PBPK models can be constructed using individual-
specific parameter values and then simulations of dose surrogate
in each individual may be performed (Fig. 3). Alternatively, dis-
tributions of input parameter values representing the nature of
their variability in the population can be specified in conduct-
ing PBPK simulations of dose surrogates. The knowledge of
individual-specific or population-specific PBPK parameter val-
ues (in the context of this presentation, partition coefficients and
metabolic constants) is often the limiting factor for conducting
simulations of individual differences in pharmacokinetics. The
challenge of estimating metabolic constants and partition coef-
ficients for human populations may be dealt with, by using in
silico approaches. There are at least two in silico approaches
that are useful in this context: (i) quantitative structure-property
relationship (QSPR) approach and (ii) biologically-based algo-
rithms. The conceptual basis, equations and examples of param-
eter estimation using these two in silico approaches are provided
in the following paragraphs.

QSPRs

QSPRs involve the use of available data for various PBPK
parameters in order to develop equations that associate charac-
teristics of chemicals to the magnitude of the parameters. There
are a number of QSPR algorithms in the literature, which have
been specifically developed with human data. These approaches
relate the magnitude of the human PBPK model parameters to
properties of chemicals. Table 1 presents several QSPRs for es-
timating human blood:air partition coefficients, muscle:air par-
tition coefficients, liver:air partition coefficients and metabolic
constants. The use of these QSPRs is often limited by the class
and type of chemicals used in developing them. An alternative
in silico approach, which continues to evolve, is the development
of biologically-based algorithms, which relate certain biological
and chemical determinants to PBPK model parameters.
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FIG. 3. Application of PBPX Modeling to assess the impact of subject-specific parameters on pharmacokinetic outcomes in humans. The PBPK model structure is
determined and populated with basal parameters and data; subject-specific input parameters like PC values and metabolic rate constants are derived and incorporated
into the simulation software; and the model is exercised to develop subject-specific predictions of the risk-relevant PK outcome.

Biologically-Based Algorithms for Chemical Partitioning

Biologically-based algorithms either predict individual-
specific parameter values as a function of the individual-specific
values of biological determinants, or provide estimates of the
lower and upper bounds of parameters based on knowledge of
such values for biological determinants.

The following (Equation 1) is the biologically-based algo-
rithm developed by Poulin and Krishnan (1996) for predicting
tissue:air partition coefficients (P,) of volatile organic chemi-
cals (VOCs):

Pio = [PowPua(Vae + 0.3Vp)] + [Pua(Vee + 0.7Vp)] - [1]

where P,.,, = n-octanol:water partition coefficient, Py., = wa-
ter:air partition coefficent, V,,; = volume fraction of neutral lipid
in tissue, V; = volume fraction of phospholipid in tissue, and
V.t = volume fraction of water in tissue.

In order to solve equation (1), Py (also written as Ko.w) and
P,... can be estimated directly from molecular structure informa-
tion of chemicals (i.e., by the freeware, KOWwin and HENRY-
win, respectively; US EPA 2003) whereas the other parameters
(neutral lipid, phospholipid, and water content of tissues) can
be set to reflect the individual-specific or population-specific
values.

Similarly, Poulin and Krishnan (1996) proposed the follow-
ing algorithm (Equation 2} for predicting blood:air partition co-
efficients (Py..) of VOCs:

Py:a = [Po:wPw:a(Vio + 03Vpb)] + [Pw:a(Vop + O7Vpb)] (2]

where V,, = volume fraction of neutral lipid in blood, Vy, =
volume fraction of phospholipid in blood, and Vy, = volume
fraction of water in blood.

The tissue:blood partition coefficients (input parameters for
PBPK models) can be computed (Equation 3) by dividing the
above two equations, yielding the following algorithm:

P, — Po:w(Vae +0.3Vp) + (Var + 0.7Vp0) ;3]
= P (Voo + 0.3Vgo) + (Vap + 0.7V o)

Using individual-specific values of blood and tissue levels of
lipids and water in the above equation, the interindividual vari-
ability in tissue:blood and blood:air partition coefficients can be
assessed. Table 2 presents some data on lipid and water content in
human tissues obtained from reference literature. Similar ranges
for lipid and water content were used by Pelekis et al. (1999)
to assess the lower and upper limits of partition coefficients for
specification in human PBPK models (Table 3).

Metabolism

Chemical metabolism, in contrast to tissue partitioning, is
an active process, and itself relies on both active and passive
processes. Since the liver is the primary site of metabolism
for ingested chemicals, the following discussion focuses on
metabolism by the liver. Substrate is delivered to the liver via
the blood. The rate at which substrate becomes available for
metabolism in the liver depends on the rate of hepatic blood
flow and the ability of the chemical to partition from blood into
the liver. Once the chemical is delivered to the liver, enzyme
activity depends on cofactor levels, and maintenance of cofac-
tors depends on many variables, not the least of which is the
maintenance of cellular redox potentials—an energy-requiring
process.

Unlike partition coefficients, for which in silico approaches
can provide useful estimates, in silico approaches are not
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TABLE 1
Some examples of structure property relationships derived to estimate tissue:air PC values, blood:tissue PC values and metabolic
parameters in humans

Structure property relationship

Chemical class®

References

Blood:Air
PC values®?

Pp;a = 0.89Py,., + 0.011

Pb'a — 0‘08e0.0308TB
LogPy.. = —0.003LogPy.. + 1.47

Esters; alcohols

Aliphatic hydrocarbons
VOCs

Kaneko et al. 1994

Perbellini et al. 1985
Laass 1987

LogPa = Pu:a*{ VPO LMWVOCs Connell et al. 1993
+Vprb(86-2/P0:w + 370) =+ Vwb}

LogPy., = 1,269 + 0.612R; + 0.9167; + 3.614a, + Inert gases; LMWVOCs ~ Abraham and
3.3818; + 0.362LogPhe.a Weathersby 1994

LogPy., = 0.48LogS. + 0.75Logl1000/P + VOCs Laass 1987
1.67LogV, — 2.77

LogPy., = 1.21LogV, — 0.17 VOCs Laass 1987

LogPy., = 8.90LogV,, — 33.40 VOCs Laass 1987

LogPy., = —3.922 + 1.369Rg Inert gases; LMWVOCs ~ Abraham et al. 1985

Tissue:Blood  Pppy = [(ViPAL + Vi) / (VP52 + V)] + B LMWVOCs DeJongh et al. 1997
PC values®
LogPyp, = 0.39LogPo.w + 0.68 Drugs, hormones Seydel and Schaper 1982
LogPy.p, = 0.476 + 0.541LogPo.w — 0.00794MW H>-R antagonists Kalizan and
Markuszewski 1996
LogPy:, = 0.054G° + 0.43 H,-R antagonists; Lombardo et al. 1996
LMWVOCs

Py = [(Vth":}N + Vi) / (VP22 + V)] + B LMWVOCs DeJongh et al. 1997

Py, = [(ViPLL + Vo)/(VibPAZ + Vo)1 + B LMWVOCs DeJongh et al. 1997

Psp = 1.9988 — 0.5004UNS + 0.1793NPL + PCBs Parham et al. 1997
0.05931DIFF?

Metabolic Log Ky = —0.42LogPy; + 0.14pK, — 2.89 Sulfonamides Seydel and Schaper 1982
parameters®

Log 1/xm = 0.46LogPq. + 0.630~ + 2.62 X-C6H4N(CH3)2 Hansch and Leo 1995

Log 1/km = 0.92LogP,., — 1.48MRy — 0.64MR; + Phenols Hansch and Leo 1995
1.04MR;, + 0.670~ +4.01
Log 1/km = 2.93F; + 1.167; + 09173 + 0.82MR; — Phenols Hansch and Leo 1995

0.591g0u + 1.291gT + 2.59

ap,., = blood:air partition coefficient; Py, = brain:blood partition coefficient; P,,., = water:air partition coefficient; Py, = liver:blood partition
coefficient; Py, = fat:blood partition coefficient; Po.w = octanol:water partition coefficient; Py, = hexadecane: air partition coefficient; Py; =
n-octanol:water partition coefficient for the nonionized form;

P = vapour pressure; Vi, = volume fraction of lipids in blood; Vi, = volume of farction of proteins in blood; V, = volume fraction of
water in plasma; Vw = heat released due to evaporation of the substance at boiling temperature; V, = surface tension; Sy = solubility in
water; TB = boinling point, R2 = excess molar refraction; Rg = parameters relative to the solvent; 7, = dipolarity/polarizability; o, = overall
hydrogen-bond acidity; 8, = overall hydrogen-bond basicity.

*VOC = volatile organic coumpound; LMW VOC = low molecular weight VOC; PCB = polychlorobiphenyls.

4A1, A2 = Collander-type coefficient; B = correction factor; Vi, = volume fraction of lipids in tissue; Vi, = volume fraction of water in
tissue; G° = Gibbs free energy related to the solvation of the substance in water; UNS = variable dependant on the number of atoms in the
molecule that are not chlorides: NPL = variable dependant on the number of chloride atoms in the molecule in ortho position; DIFF = variable
dependant on the number of chloride atoms in the molecule in the aromatic cycle; MW = molecular weight;

*Km = Michealis-Menten affinity constant; pK, = log dissociation constant of an acid in water; o — = Hamelet constant; MR; 3 4 = molar
refractory indices; 7, 75, T3 = molecular hydrophobicity constants; Ison+ = variable dependant on the number of 8 OH groups in the molecule;
Igr+ = variable dependant on the family of the substance.

metabolism are the same in vivo as in vitro, and are less difficult
to measure in vitro. Metabolism in PBPK models is represented
using Vmax and Km values, or alternatively using clearance,
which is the product of the organ extraction ratio (E) and tissue

available for estimating metabolism constants. Instead, in vitro
approaches probably represent the best possible way of assess-
ing the interindividual differences in affinity and velocity of
metabolism of xenobiotics. The kinetic constraints on chemical



QUANTIFYING VARIABILITY FOR RISK ASSESSMENT

TABLE 2
Water and lipid content of human tissues, from reference man
(ICRP, 1975)

Water content Lipid content

Tissue Age  percent wet weight percent wet weight
Blood Newborn 78.9 - 80.8° NR
Adult 80.5-80.8 0.65°
Liver Newborn 73-80 3.6
Adult 63.6-73.9 6.9
Kidney  Newborn NR 2.73
Adult 76 5
(range 70.6-81)
Skeletal Newborn 80.4 2
muscle
(range 79.3-81.2)  (range 0.67-2.2)°
Adult 79 2.2 male; 2.9 female
(range 68.9-80.3)  (range 2.2-9.4)°
Adipose Newborn 47.5¢ 35.5°
tissue
Adult 15 (range 10.9-21) 62-91°
?Reported for children.

bReported as fat content.
°During the first year of life.
NR = not reported.

blood perfusion (Qt). For the liver, tissue blood perfusion be-
comes the liver blood perfusion (Ql) a known quantity. Because
of the metabolic enzyme specificity of compounds and the com-
plexity of the mechanisms behind metabolism, QSARs relating
metabolic parameters and structure are few and have mainly
focused on selected families of chemicals, mostly pharmaceu-
tical agents (Table 1). These empirical QSARs do not permit
the evaluation or prediction of interindividual differences in the
metabolic constants. To date, there are no mechanistic algo-
rithms either, to facilitate the prediction of metabolism rates of
chemicals. However, it is possible to use the physiological limits
of clearance in order to estimate the range of blood (or tissue)
concentration possible in an individual (or population). For ex-
ample, in the case of chemicals metabolized in the liver, the rate
of amount metabolized (RAM) can be calculated by equation

TABLE 3
Bounds of human tissue composition data used for
assessing the upper and lower limits of partition
coefficients of dichloromethane in an adult population
(Pelekis et al. 1995)

Neutral lipid Water
Tissue Low . High Low High
Liver 0.02 0.10 0.67 0.83
Muscle 0.03 0.08 0.70 0.82
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FIG. 4. Physiological limits of hepatic clearance and pharmacokinetics of
volatile organic chemicals in humans. This figure demonstrates the constraints
of a pharmacokinetic outcome introduced by the biological limits of hepatic
blood flow. The symbols represent actual data, the upper line represents mode!
predictions of the concentration of agent in blood when hepatic extraction ratio
is set to zero and the lower line represents the same when a hepatic extraction
ratio value of 1.0 is employed.

(4) and would be equal to:
RAM = Ca*CLh (4]

where Ca = concentration of the chemical in arterial blood, and
CLh = hepatic clearance.

Because CLh = QI*E and E cannot be lower than 0 or higher
than 1, the envelope of possible concentrations is obtained by
setting CLh in the above equation to its physiological limits
(i.e., Ql or 0). This approach can provide a credible first-cut
estimate of the range of blood concentration profiles of chemi-
cals in a population, as a result of interindividual differences in
metabolism rates (Fig. 4).

Conclusions

Overall, in silico approaches to estimating PBPK model pa-
rameters have mainly centered on empirical, linear-free-energy
(LFE)-type QSPRs and mechanistically-based equations. While
LFE QSPRs have the advantage of being easily derived, they are
limited to the chemical class for which they were developed. Fur-
thermore, resulting parameter estimates cannot be extrapolated
across species or among individuals. There is also growing con-
cern regarding the mechanistic relevance of some of the struc-
tural descriptors used in these types of equations. The emerging
mechanistically-based approaches offer the advantage of being
relevant regardless of the chemical family, and being capable of
extrapolation across species and between individuals. The ap-
plicability of these approaches has been verified largely with
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inhaled VOCs, for the determination of partition coefficients, a
parameter determined largely by the water and lipid content of
the tissue. Even though these approaches are conceptually ap-
plicable to nonvolatile organics as well, it becomes more chal-
lenging to predict the other PBPK model parameters required
for modeling the kinetics of these chemicals (i.e., metabolic
constants, tissue diffusion coefficients, tissue binding associa-
tion constants, oral absorption rates, and dermal permeability
coefficients). However, bounding estimates of the extraction ra-
tio, together with standard toxicokinetic relationships can be
used to describe the physiological limits of hepatic clearance.
As our understanding of the mechanistic determinants of each
of these parameters improves, in silico approaches can be de-
veloped to provide a priori predictions of these parameters to
assess interindividual differences in pharmacokinetics for risk
assessment purposes.

IN VITRO TO IN VIVO EXTRAPOLATION
OF METABOLIC RATE CONSTANTS AND THEIR
USE IN PBPK MODELING

In Vitro Biotransformation Systems

In vitro systems offer a number of benefits for determination
of the kinetic parameters for xenobiotic biotransformation com-
pared to in vivo systems. In vitro systems allow isolation of the
critical aspects of the experimental question in a simpler setting
than the whole animal. Inhibitors can be used with specificity
in vitro whereas in vivo these agents often have diverse phar-
macological activities in addition to enzyme inhibition. Tissues
from both experimental animals and humans can be used to pre-
pare in vitro systems, avoiding the problems of human experi-
mentation and allowing direct comparison of human and animal
xenobiotic metabolism. However, the in vitro system used to
study xenobiotic biotransformation must reflect the appropriate
biochemistry and physiology to have relevance to the in vivo
situation.

In vitro tissue preparations can be used to determine the
organ-specific biotransformation of xenobiotics. Liver is the pre-
dominant biotransforming organ for xenobiotics but other organs
such as the kidney, intestine, lung, and nasal epithelium can be
important depending upon the nature of the substance under
study. For example, peptides predominantly undergo hydrolysis
in the gut while organic chemicals are frequently oxidized by
cytochromes P450 in the liver. While the liver is the predom-
inant eliminating organ for many toxicants, local bioactivation
of toxicants in target tissues is often a crucial event leading to
the expression of target organ toxicity.

There are a number of in vitro systems available for predic-
tion of xenobiotic metabolism and pharmacokinetics. Our dis-
cussion will focus on the liver, but the concepts are applicable
to other organs as well. Each in vitro system has distinct ad-
vantages and disadvantages and the choice of which system to
use depends upon the experimental question being asked. The
most physiologically integrated and complex in vitro system is
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the isolated perfused liver. However, this system is only prac-
tical for small experimental animals. Precision-cut liver slices
retain the architecture of the liver and the interactions between
different cell types, but problems with diffusion of substrates
and nutrients into the slices make in vivo extrapolation of the in
vitro data problematic (Ekins et al. 1995; Worboys et al. 1996).
Isolated hepatocytes have been shown to be the system of choice
for in vitro prediction of pharmacokinetics (Kedderis et al. 1993;
Houston 1994) since the cells maintain a biochemical homeosta-
sis of cofactors and enzymes similar to the intact liver. While
freshly isolated hepatocytes suspended in a nutritive medium
catalyze xenobiotic biotransformation reactions similarly to the
liver in vivo (Billings et al. 1977), hepatocytes in monolayer
culture rapidly differentiate and decrease xenobiotic metabolism
capabilities (Sirica and Pitot 1980). Similarly, immortalized liver
cell lines have low and variable xenobiotic metabolism capabili-
ties that depend upon the culture conditions and are not appropri-
ate model systems for predicting the disposition of xenobiotics
in vivo. Subcellular fractions such as hepatic microsomes have
been used successfully to predict pharmacokinetics (Houston
1994) and can be stored frozen for years with little loss of en-
zyme activity. With all of the in vitro systems, knowledge of the
actual substrate concentration in the incubations (as opposed to
the nominal concentration added) through partition coefficient
determination is crucial to the accurate determination of the ki-
netic parameters for biotransformation.

Basis for Extrapolation of In Vitro Data

Most of the enzymes involved in xenobiotic biotransforma-
tion follow Michaelis-Menten saturation kinetics according to
equation (5):

v = Vmax * [S]/Km + [S] [5]

where v is the initial velocity of an enzyme catalyzed reaction,
Vmax is the maximal velocity at infinite substrate concentration,
[S]is the substrate concentration, and Km is the Michaelis con-
stant, defined as the substrate concentration that yields one-half
Vmax (Kedderis 1997a). The Michaelis-Menten equation (5)
indicates that the initial velocity of the reaction will increase
hyperbolically as a function of substrate concentration (Fig. 5).
The Vmax is a horizontal tangent to the top (saturated) part of
the curve, while the tangent to the initial linear portion of the
hyperbolic curve is the initial rate of the reaction, V/K. The V/K
is the pseudo-first-order rate constant for the reaction at low
substrate concentrations. The point where these two tangents
intersect corresponds to the Km (Northrop 1983).

The basis for extrapolation of in vitro biotransformation data
to whole animals is that the overall rate of enzyme-catalyzed
reactions is directly proportional to the total amount of enzyme
present in the system (Kedderis 1997b). Therefore data gener-
ated with subcellular fractions such as microsomes or cytosols
can be extrapolated to in vivo based on protein content (Snawder
and Lipscomb 2000; Lipscomb et al. 2003a, b). Data from in-
tact cellular systems such as hepatocytes can be extrapolated to
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FIG. 5. Theinitial velocity (v) curve for an enzyme-catalyzed reaction follow-
ing Michaelis-Menten saturation kinetics as a function of substrate concentration
({S]). Adapted from Northrop (1983) and Kedderis (1997a).

in vivo systems based on cell number. There are approximately
130 x 106 hepatocytes per gram of mammalian liver (Arias et al.
1982). The liver is approximately 4% of rat body weight, 5.5%
of mouse body weight, and 2.6% of human body weight (Arms
and Travis 1988).

In order to extrapolate in vitro kinetic data to whole ani-
mals or humans, the overall enzyme kinetic mechanism must
be known (or assumed) and a compartmental pharmacokinetic
model of the organism must be used. The data-based pharma-
cokinetic models that are widely used in the analysis of clinical
pharmacokinetic data generally describe individual data sets and
cannot usually extrapolate between dose routes or species. This
type of analysis of in vivo or in vitro kinetic data is of limited
value in understanding species differences in the biotransfor-
mation of toxicants. In contrast, physiologically based models
are based on the physiology and anatomy of the organism and
can describe chemical pharmacokinetics in a wide variety of
exposure scenarios (Clewell and Andersen 1994). The goal of
physiologically based pharmacokinetic modeling is to describe
the behavior of a chemical in an animal, incorporating the neces-
sary degrees of mechanistic detail to ultimately define one set of
parameters to describe chemical behavior. Physiologically based
models contain physiological parameters from the literature and
chemical-specific parameters for tissue solubility, biotransfor-
mation, and protein binding (Clewell and Andersen 1994). Thus
physiologically based models can extrapolate across dose routes
and species. Several examples will illustrate the utility of in vitro
kinetic studies coupled with physiologically based pharmacoki-
netic models.

Examples of In Vitro to In Vivo Extrapolation

In vitro kinetic data from hepatocytes were used to develop
PBPK models for furan in rats (Kedderis et al. 1993), mice, and
humans (Kedderis and Held 1996). Simulation of inhalation ex-
posure to 10 ppm furan for 4 h indicated that the absorbed dose
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of furan (mg/kg; inhaled minus exhaled divided by body weight)
and the integrated exposure of the liver to the toxic metabolite
were approximately 3.5-fold and 10-fold greater inrats and mice,
respectively, than in humans. This is because the volatile toxicant
furan is metered into the blood stream via the breathing rate and
distributed throughout the organism at rates that are a function
of body size. These results clearly indicate that the inhalation ex-
posure concentration of a toxicant is not an appropriate measure
of the dose to the organism and internal dosimeters such as the
concentration of the toxic metabolite in the target tissue should
be used. The initial rates of furan oxidation for rats, mice, and
humans were approximately 13- to 37-fold higher than the rate
of furan delivery to the liver via blood flow (Kedderis and Held
1996), indicating that furan bioactivation is limited by hepatic
blood flow. One important consequence of the hepatic blood
flow limitation of bioactivation is that enzyme induction will
have little or no effect on the amount of the toxic metabolite
formed in the liver (Kedderis 1997b).

The contribution of variance in cytochrome P450 2E1 con-
tent and activity on the risk of hepatotoxic injury in human
adults from oxidative metabolites of trichloroethylene was in-
vestigated using 60 human liver samples (Lipscomb et al.
2003a). The increased availability of human liver tissue en-
abled the construction of a bank of frozen human liver sam-
ples that were analyzed for protein content, cytochrome P450
2E1 content (Lipscomb et al. 2000; Snawder and Lipscomb
2000; Lipscomb et al. 2003b), and oxidative activity toward
trichloroethylene (Lipscomb et al. 1997). The data were log-
normally distributed and the 5th and 95th percentiles of the dis-
tribution of trichloroethylene oxidized per min per gram liver dif-
fered by approximately 6-fold. The significance of the variability
was investigated using a human PBPK model for trichloroethy-
lene. Simulations of 8 hr inhalation exposure to 50 ppm (the
TLV) and oral exposure to 5 wug trichloroethylene/L. in 2L
drinking water (the MCL) using the human PBPK model showed
that the amount of trichloroethylene oxidized in the liver of
humans varied by 2% or less even though the distribution of
metabolic capacity (enzyme content or activity) varied 6-fold.
These results indicate that differences in cytochrome P450 2E1
expression among the central 90% of the adult human popula-
tion account for only approximately 2% of the variance in the
risk-relevant pharmacokinetic outcome for trichloroethylene-
mediated liver injury (amount oxidized in the liver) and that
physiological processes such as hepatic blood flow limit the full
impact of the differences in cytochrome P450 activity mediat-
ing the formation of toxic metabolites (Lipscomb et al. 2003a).
These results underscore the conclusion that the significance of
in vitro data must be evaluated in the context of the intact an-
imal. A framework describing this process has been recently
published (Lipscomb and Kedderis 2002).

Conclusions
In vitro systems are useful for the prediction of xenobiotic
biotransformation and pharmacokinetics. Isolated hepatocytes
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and hepatic microsomes have been shown to be the best systems
for prediction of pharmacokinetics from in vitro data (Houston
1994; Kedderis 1997b). In vivo extrapolation of in vitro data is
based on cell number or protein content, from the basic princi-
ple that the rate of enzyme catalyzed reactions is directly pro-
portional to the total enzyme in the system (Kedderis 1997b).
The overall enzyme kinetic mechanism for the biotransforma-
tion reaction must be known (or assumed) and a compartmental
pharmacokinetic model of the organism must be used. Phys-
iologically based pharmacokinetic models have the ability to
extrapolate among dose routes and species and have the pre-
dictive power needed in risk assessment. In vitro data need
to be interpreted in the context of physiology to understand
the significance of the data in vivo. This is important for en-
zyme expression data as well as kinetic data. The bioactivation
of rapidly metabolized substances can be limited by hepatic
blood flow delivery to the liver (Kedderis 1997b). The bepatic
blood flow limitation dampens or eliminates the effects of in-
terindividual differences in enzyme expression due to differ-
ences in genetics (polymorphisms) or enzyme induction. The
combined application of human in vitro systems and physio-
logically based pharmacokinetic analysis of the data can pro-
vide useful insights for the development of human health risk
assessments.

USE OF PBPK MODELING TO EVALUATE THE IMPACT
OF HUMAN VARIABILITY ON RISK

One of the more challenging issues that must be considered
in performing a human health risk assessment is the hetero-
geneity among humans. This heterogeneity is produced by inter-
individual variations in physiology, biochemistry, and molecular
biology, reflecting both genetic and environmental factors, and
results in differences among individuals in the biologically effec-
tive tissue dose associated with a given environmental exposure
(pharmacokinetics) as well as in the response to a given tissue
dose (pharmacodynamics). Because the parameters in a PBPK
model have a direct biological correspondence, they provide a
useful framework for determining the impact of observed varia-
tions in physiological and biochemical factors on the population
variability in dosimetry within the context of a risk assessment
for a particular chemical (Clewell and Andersen 1996).

It is useful to consider the total variability among humans in
terms of three contributing sources: (1) the variation across a
population of “normal” individuals at the same age (e.g., young
adults) (2) the variation across the population resulting from
their different ages, e.g., infants or the elderly; and (3) the vari-
ation resulting from the existence of subpopulations that differ
in some way from the “normal” population (e.g., due to genetic
polymorphisms). A fourth source of variability, health status,
should also be considered, although it is frequently disregarded
in environmental risk assessment. To the extent that the varia-
tion in physiological and biochemical parameters across these
population dimensions can be elucidated, PBPK models can be
used together with Monte Carlo methods to integrate their ef-
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fects on the in vivo kinetics of a chemical exposure and predict
the resulting impact on the distribution of risks (as represented
by target tissue doses) across the population.

Determinants of Impact

There has sometimes been a tendency in risk assessments
to use information on the variability of a specific parameter,
such as inhalation rate or the in vitro activity of a particular en-
zyme, as the basis for expectations regarding the variability in
dosimetry for in vivo exposures. However, whether or not the
variation in a particular physiological or biochemical parameter
will have a significant impact on in vivo dosimetry is a complex
function of interacting factors. In particular, the structures of
physiological and biochemical systems frequently involve par-
allel processes (e.g., blood flows, metabolic pathways, excretion
processes), leading to compensation for the variation in a single
factor. Moreover, physiological constraints may limit the in vivo
impact of variability observed in vitro. For instance, high affinity
intrinsic clearance can result in essentially complete metabolism
of all the chemical reaching the liver in the blood; under these
conditions, variability in amount metabolized in vivo would be
more a function of variability in liver blood flow than variability
in metabolism in vitro. Thus it is often true that the whole (the
in vivo variability in dosimetry) is less than the sum of its parts
(the variability in each of the pharmacokinetic factors).

The dosimetric impact of variations in physiological factors
also depends on the nature of the chemical causing the tox-
icity, including such physicochemical properties as reactivity,
lipophilicity, water solubility, and volatility. For example, vari-
ations in inhalation rate will tend to have more impact on the
uptake of a water soluble chemical such as isopropanol than on
a relatively water insoluble chemical such as vinyl chloride. In
addition, the impact of a particular factor on dosimetry also de-
pends on the mode of action of the chemical; that is, how the
chemical causes the effect of concern. Of particular importance
is whether the toxicity results from exposure to the chemical
itself, one of its stable, circulating metabolites, or a reactive
intermediate produced during its metabolism.

Another key issue is whether the toxicity results from direct
reaction with tissue constituents, from binding to a receptor, or
from physical (e.g., solvent) effects on the tissue. To illustrate
these considerations, one can contrast the acute neurotoxicity of
many solvents (a physical effect of the chemicals themselves)
with their chronic hepatotoxicity (produced by products of their
metabolism). The most important pharmacokinetic factor in the
acute toxicity of volatile solvents is the blood:air partition coef-
ficient, and increasing metabolic clearance typically decreases
toxicity. In contrast, the most important pharmacokinetic factors
in the chronic toxicity are liver blood flow and metabolism, and
increasing metabolic clearance typically increases toxicity.

Example: Age-Dependent Variability
The following example illustrates the use of PBPK modeling
to investigate the impact of pharmacokinetic variability on risk
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FIG. 6. Blood concentrations of isopropanol (IPA) and its metabolite acetone
as a function of age for continuous inhalation exposure at 1 ppb.

for the case of age-dependent pharmacokinetics. Specifically, the
question being evaluated in this example is how normal changes
in pharmacokinetic parameters from birth, through childhood,
and across adulthood effect the dosimetry for environmental
exposures to chemicals. To this end, a previously developed
PBPK model for isopropanol and its metabolite acetone (Clewell
et al. 2001) was adapted to simulate the physiological and bio-
chemical changes in humans associated with growth and ag-
ing (Sarangapani et al. 2003; Clewell et al. 2004). In the age-
dependent model, all physiological and biochemical parameters
change with time based on data from the literature (Clewell et al.
2002).

Figure 6 shows the results of using this age-dependent model
to simulate continuous inhalation of isopropanol at 1 ppb, be-
ginning at birth and continuing for 75 years. The model predicts
that, for the same inhaled concentration, the blood concentra-
tions achieved during early life are significantly higher than
those achieved during adulthood. In the case of the metabo-
lite acetone, however, it should be noted that production from
isopropanol metabolism would be only a small fraction of en-
dogenous production from ketogenesis.

Quite a different behavior is predicted for daily ingestion of
perchloroethylene in drinking water. The exposure in this case is
assumed to be a constant intake of perchloroethylene at a rate of
1 ng/kg/day throughout life. The chemical-specific parameters
in the mode] are taken from Gearhart et al. (1993). As shown in
Figure 7, predicted concentrations of perchloroethylene and its
major metabolite, trichloroacetic acid, are much lower during
early life than during adulthood. It is also interesting to note that
for this lipophilic chemical, different behaviors are predicted in
males and females due to sex-dependent differences in body fat
content.
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FIG. 7. Blood concentrations of perchlorosthylene (PERC) and its primary
metabolite trichloroacetic acid (T'CA) as a function of age for continuous oral
exposure at 1 pg/kg/day.

Example: Genetic Polymorphism

The next example demonstrates the use of PBPK model-
ing, together with Monte Carlo techniques, to evaluate the im-
pact of a genetic polymorphism for metabolism. In the ex-
ample described here, the polymorphism of interest is for the
enzyme paraoxonase (Haber et al. 2002). The PBPK model
used in the analysis (Gearhart et al. 1994) describes expo-
sure to parathion, its metabolism to paraoxon, and the in-
hibition of acetylcholinesterase by paraoxon. Paraoxonase is
one of the enzymes responsible for the metabolic clearance of
paraoxon. In vitro data on the two human alleles of paraoxonase
(low and high activity) were used to develop distributions for
the metabolism parameters in the PBPK model (Gentry et al.
2002). Monte Carlo simulations were then performed to gener-
ate the resulting distribution of predicted blood concentrations of
paraoxon across a population, considering the variability in other
pharmacokinetic parameters. Figure 8 displays the predicted
distribution for the time-integrated (area under the curve) blood
concentrations of paraoxon (mg-h/L) across the total population
(dark bars), as compared to the “normal” population (light bars,
excluding individuals who are homozygous for the low activity
allele), following exposure to parathion at a dose of 0.033 mg/kg.
While the polymorphism does impact the distribution of blood
concentrations, particularly at the higher internal exposures, the
overall effect is relatively small when put in the perspective of
the variability in other physiological and biochemical factors
across the same population.

Conclusions

The overall pharmacokinetic variability across a population
is a function of many chemical-specific, genetic, and physio-
logical factors. Due to the complex interactions among these
factors, speculation regarding the extent of population variabil-
ity on the basis of the observed variation in a single factor can be
highly misleading. Analysis using PBPK modeling and Monte
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Carlo techniques provides a more reliable approach for esti-
mating population pharmacokinetic variability. Analyses such
as that described here for parathion can be used to develop
quantitative Chemical-Specific Adjustment Factors to replace
default uncertainty factors for human pharmacokinetic variabil-
ity (Gentry et al. 2002). PBPK modeling can also be useful in
a more qualitative sense, to determine whether there is reason
for concern regarding a particular age-group that might be more
sensitive due to pharmacokinetic differences, as illustrated by
the example using the age-dependent model. Similar analyses
can be performed to determine whether exposure during special
life stages, such as gestation or lactation, represents a signifi-
cant concern (Clewell and Gearhart 2002; Gentry et al. 2003).
PBPK modeling of this nature, coupled with parameter estima-
tion using quantitative structure activity relationship (QSAR)
techniques and mechanistic information from genomic arrays,
may prove particularly valuable in prioritizing testing require-
ments for new chemicals.

SUMMARY

Risk assessment methods are being modified to allow the
increasing incorporation of data on PK and PD data both in the
extrapolation from laboratory animals to humans and in the con-
sideration of human variability and sensitive subpopulations.
An international effort led by IPCS has developed guidance
for the adequacy of chemical-specific data for replacing defanlt
uncertainty factors (IPCS 2001). This guidance breaks the
interspecies and intraspecies uncertainty factors into adjustment
factors for kinetics and dynamics. The IPCS guidance has
framed much of the research and thinking on such applica-
tions, (http://www.ipcshannonize.org), but there is no formal,

quantitiative, technical guidance on this issue at US. EPA. A
key first step in doing such assessments is identification of the
chemical’s mode of toxic action, including identification of the
active form of the chemical. PBPK models (often combined
with Monte Carlo modeling) provide perhaps the best approach
to evaluating the implications of varying enzyme activity or
other aspects of physiology. In silico computational methods
can be used to estimate partition coefficients and metabolic
parameters used in PBPK models when laboratory data on the
chemical of interest are not available. In vitro systems, such
as isolated hepatocytes and hepatic subcellular fractions, are
useful for the prediction of xenobiotic biotransformation and
pharmacokinetics. Use of PBPK models and consideration of
physiological limits indicate that total variability is often less
than the variability in specific parameters. For example, this
occurs when an enzyme’s metabolic capacity is high, so that
metabolism is limited by hepatic blood flow, and large changes
in enzyme activity result in minimal changes in total metabolism
of the chemical. Thus, PBPK modeling can be used to both
address whether specific populations are more sensitive than
the general population, as well as to quantitate the population
variability in tissue dose resulting from a given exposure.
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