Dosimetry Modeling of Inhaled Formaldehyde: Comparisons of Local Flux Predictions in the Rat, Monkey, and Human Nasal Passages

J. S. Kimbell,¹ R. P. Subramaniam,² E. A. Gross, P. M. Schlosser, and K. T. Morgan³

CIIT Centers for Health Research, P.O. Box 12137, 6 Davis Drive, Research Triangle Park, North Carolina 27709

Received March 26, 2001; accepted August 15, 2001

Formaldehyde-induced nasal squamous cell carcinomas in rats and squamous metaplasia in rats and rhesus monkeys occur in specific regions of the nose with species-specific distribution patterns. Experimental approaches addressing local differences in formaldehyde uptake patterns and dose are limited by the resolution of dissection techniques used to obtain tissue samples and the rapid metabolism of absorbed formaldehyde in the nasal mucosa. Anatomically accurate, 3-dimensional computational fluid dynamics models of F344 rat, rhesus monkey, and human nasal passages were used to estimate and compare regional inhaled formaldehyde uptake patterns predicted among these species. Maximum flux values, averaged over a breath, in nonsquamous epithelium were estimated to be 2620, 4492, and 2082 pmol/(mm²·h·ppm) in the rat, monkey, and human respectively. Flux values predicted in sites where cell proliferation rates were measured as similar in rats and monkeys were also similar, as were fluxes predicted in a region of high tumor incidence in the rat nose and the anterior portion of the human nose. Regional formaldehyde flux estimates are directly applicable to clonal growth modeling of formaldehyde carcinogenesis to help reduce uncertainty in human cancer risk estimates.

Key Words: formaldehyde; nasal uptake; computational fluid dynamics; F344 rat; rhesus monkey; human; nasal passages.

Inhaled formaldehyde induces squamous cell carcinomas in the nasal passages of rats and squamous metaplasia in rat and monkey nasal epithelium (Kerns et al., 1983; Monticello et al., 1989). These and other lesions occur in specific sites with species-specific patterns of lesion distribution (Monticello et al., 1989, 1996; Morgan et al., 1986b). Site-specificity of formaldehyde-induced lesions in rats and monkeys implicates regional tissue susceptibility and dose as factors potentially contributing to tissue damage. The observation that lesions occur only in areas normally lined by epithelial types other than the squamous type suggests that these regions may be more susceptible to damage from formaldehyde than areas normally lined by squamous epithelium. Species-specific patterns of lesions in rats and monkeys suggest that regional dose is a factor.

Regional dose is a function of the amount of formaldehyde delivered by inhaled air and the absorption characteristics of the nasal lining. The amount delivered by inhaled air depends on major airflow patterns, air-phase diffusion, and absorption at the air-lining interface. The dose of formaldehyde to cells depends on the amount absorbed at the air-lining interface, mucus-to-tissue phase diffusion, chemical interactions such as reactions and solubility, and clearance rates. Species differences in these factors are determinants of species-specific lesion distributions.

Experimental approaches to address regional differences in formaldehyde uptake patterns and tissue dose are limited by the resolution of dissection techniques used to obtain tissue samples from different sites in rat nasal epithelium and the labile nature of formaldehyde absorbed by these tissues (Heck et al., 1990). In the rat nose, no more than 2 or 3 dissection sites can typically be separated from each other and this procedure necessitates 3 to 5 min of careful dissection. In addition, there is a need to relate the amount of inhaled gas delivered to different sites in the nose to biomarkers of dose or effect such as formaldehyde-induced DNA–protein cross-links (DPX; Casanova et al., 1989, 1991, 1994) and regional cell proliferation rates (Monticello et al., 1989, 1991). If inhaled gas uptake could be predicted throughout the nasal passages, then relationships between gas uptake and rates of DPX formation and cell proliferation would allow DPX and cell proliferation data to be interpolated from measurement sites to the rest of the nasal passage. This information would be useful for estimating cell birth, death, and mutation rates in clonal growth models for carcinogenesis (Cohen and Ellwein, 1990; Moolgavkar and Venzon, 1979).

To estimate regional uptake of inhaled gas in the nose, 3-dimensional, anatomically accurate computational fluid dynamics (CFD) models of rat, monkey, and human nasal airflow (Kepler et al., 1998; Kimbell et al., 1997a; Subramaniam et al., 1998) and inhaled gas uptake (Kepler et al., 1998; Kimbell et al., 1993, 1997b) were developed. To confirm formaldehyde...
uptake simulations, the rat and monkey CFD models were used in conjunction with physiologically based pharmacokinetic (PBPK) models to predict regional nasal DPX (Cohen Hubal et al., 1997; Conolly et al., 2000). In the approach used by Cohen Hubal and colleagues, PBPK model parameters were either fixed from actual measurements or estimated by fitting the rat PBPK model to DPX measured in nasal mucosa taken from the entire respiratory epithelial area of formaldehyde-exposed rats. Optimizations used a (non-CFD) formaldehyde flux value that was calculated from a nasal surface area estimate and nasal uptake that was experimentally measured for the entire rat nasal passages. The PBPK model was then used to predict DPX that would occur in a specific site within the respiratory epithelium (the high tumor region) using a formaldehyde flux value provided for that region by the rat CFD model described by Kimbell et al. (1993). Predictions were in good agreement with experimental measurements of DPX in the high tumor region of rats exposed to inhaled formaldehyde.

Conolly and coworkers extended these results to both high and low tumor regions in the rat using regional formaldehyde flux estimates from an improved rat CFD model described by Kimbell et al. (1997a). The PBPK model was able to predict low tumor DPX with parameters that were fitted to high tumor data alone. Parameters fitted to low tumor data alone were similar to those fitted to high tumor data alone. These results provided further support that site-specific estimates of formaldehyde flux from the CFD modeling approach were adequate for predicting site-specific DPX.

The CFD models provide a means for estimating the amount of inhaled gas reaching any site along nasal passage walls. Such estimates can be used to test hypotheses about mechanisms of toxicity as well as to supply information for risk assessment. For example, the CFD models were used to provide support for the hypothesis that the distribution of formaldehyde-induced squamous metaplasia in the rat nasal passages is related to the location of high-flux regions posterior to squamous epithelium (Kimbell et al., 1997b). Results from CFD modeling supported the hypothesis that interspecies differences in uptake patterns along airway walls, influenced by differing nasal airflow characteristics, account for differing distributions of formaldehyde-induced lesions in rats and primates (Kepler et al., 1998; Kimbell et al., 1993). The CFD models were also used to estimate the surface area and volume of specific anatomical features (Bogdanffy et al., 1998; Frederick et al., 1998), the allocation of inspired air to specific flow streams (Andersen et al., 1999; Bush et al., 1998; Frederick et al., 1998), and gas phase mass transfer coefficients (Frederick et al., 1998) for use in predicting human risks from inhaled gases.

The purpose of the present work was to (1) make predictions of formaldehyde flux in the entire nasal passages of rats, monkeys, and humans, (2) estimate flux in specific sites for correlation with formaldehyde-induced cell proliferation data, and (3) compare flux predictions among the 3 species. Flux patterns predicted using CFD models have been reported in the anterior rat nasal passages for ozone (Cohen Hubal et al., 1996) and reactive, water-soluble gases like formaldehyde (Cohen Hubal et al., 1997; Kimbell et al., 1993, 1997b). Predicted flux patterns were also described in the rhesus monkey nasal passages for a formaldehyde-like gas (Kepler et al., 1998). Formaldehyde flux predicted in sites where DPX were measured in formaldehyde-exposed rats and monkeys was reported by Conolly and colleagues (Conolly et al., 2000).

This paper describes predicted formaldehyde uptake in the entire rat, monkey, and human nasal passages using improved estimates of uptake conditions at the interface between air and tissue that differentiate between mucus-coated and nonmucus-coated tissue. Estimates of formaldehyde flux in sites where cell proliferation rates were measured in formaldehyde-exposed rats and monkeys are provided. Interspecies comparisons of predicted regional flux, such as maximum values and flux in lesion sites, are made.

METHODS

Regional flux of formaldehyde from inhaled air to the air-lining interface was estimated from CFD simulations of airflow and formaldehyde uptake that were conducted using 3-dimensional, anatomically accurate reconstructions of the nasal passages of an adult male F344 rat, rhesus monkey, and human. The construction of the CFD models and the simulation of steady-state inspiratory nasal airflow were previously described in detail (Kepler et al., 1998; Kimbell et al., 1993, 1997a; Subramaniam et al., 1998).

Assumptions

Anatomical assumptions. Rat and monkey nasal cavities were assumed to be symmetrical so CFD models were constructed for 1 side of the nose for both of these species. Surface areas and volumes from the rat and monkey CFD models were doubled to account for both sides of the nasal passages. The human CFD model included both sides; a surface area adjustment was not needed for results from this model. The nasal passages of all 3 species were assumed to have a continuous mucus coating over all surfaces except specific areas in the nasal vestibule (see below; demonstrated for the rat by Morgan et al., 1984). Each CFD model was assumed to be anatomically representative for its species.

Airflow assumptions. The major patterns of inhaled airflow simulated at steady state were assumed to be similar to those occurring during resting breathing (based on calculation of the Strouhal number; see Subramaniam et al., 1998). The lack of flexible nasal walls, mucus movement, nasal hairs, and gain or loss of heat or humidity in the CFD models was assumed to contribute insignificantly to error in airflow simulations.

Formaldehyde uptake assumptions. Although formaldehyde uptake is probably affected by the presence of other inhaled species, by the presence of water vapor, and by normal, cyclic changes in nasal airway patency (the nasal cycle), these effects were not taken into account in the formaldehyde uptake simulations presented here. In particular, these simulations were assumed to represent average uptake over the nasal cycle. Throughout this article, flux values also represent an estimated average over the breathing cycle. Since formaldehyde is a highly water soluble and reactive gas, formaldehyde concentration in inspired air during exhalation was assumed to be negligible. Therefore flux into nasal passage walls during exhalation was assumed to be 0 for each breath. Inspiratory and expiratory phases of the breathing cycle were assumed to take equal amounts of time so that flux values were derived by halving estimates obtained from the steady-state inspiratory CFD models.
The air-phase diffusivity of formaldehyde ($D_{ab}$) was assumed to be constant throughout the nasal passages of all three species. A value of 0.15 cm$^2$/sec for $D_{ab}$ was estimated using the following formula referenced by Hobler (1966):

$$D_{ab} = \frac{0.602 T^{1/2}(1 + \sqrt{M_4 + M_3})}{P(v_A^{1/3} + v_B^{1/3})^2 \sqrt{M_5 M_6}} \text{ cm}^2/\text{sec}$$

where $T$ is the temperature in degrees Kelvin (298°), $M_i$ is the molecular weight of air in kg/kg-mole (28.8), $M_{byte}$ is the molecular weight of formaldehyde (30), $P$ is the total pressure in mm Hg (760), $v_A$ is the molar volume of air at the normal boiling point in cm$^3$/g-mole (29.9; Hobler, 1966), and $v_B$ is the molar volume of formaldehyde (estimated to be 29.6 from summing up the values of the atomic volumes as in Hobler, 1966).

The rate of formaldehyde transport into tissue was assumed to far exceed mucus velocity rates (Morgan et al., 1986a), so that mucus transport of formaldehyde was not included in the CFD models. The rate of formaldehyde absorption at air-lining interfaces was assumed to be proportional to the air-phase formaldehyde concentration adjacent to the nasal-lining layer. The value of the proportionality constant, or mass transfer coefficient, depended on whether or not the nasal lining was mucus-coated. In rats, monkeys, and humans, nonmucus-coated epithelium is located in the nasal vestibule and is of the squamous type. A mass transfer coefficient for nonmucus-coated squamous epithelium was estimated from measurements of formaldehyde absorption made for human epidermal tissue (see below). The rest of the nasal passages in all 3 species were assumed to be coated by mucus. A mass transfer coefficient for mucus-coated regions in the monkey and human was assumed to be the same as the value obtained for the rat by fitting overall formaldehyde uptake predictions in the rat to formaldehyde uptake data measured in the rat (Patterson et al., 1986).

**Computational meshes and airflow simulations.**

The rat and monkey CFD models were constructed from tracings of airway outlines of the right nasal passages from the nostril to the nasopharynx from serial-step sections of embedded tissue specimens as described by Kimbell et al. (1993) and Kepler et al. (1995). The human model was constructed from airway tracings of both sides of the nasal passages from the nostril through the nasopharynx from magnetic resonance image scans as described by Subramaniam et al. (1998).

The CFD models were created using in-house software (Godo et al., 1995) and the finite element mesh preprocessor of the computational fluid dynamics software package FIDAP ( Fluent Inc., Lebanon, NH). Resulting meshes were designed to have elements as uniform in shape and size as anatomy allowed.

The location and extent of nonmucus-coated regions in the nasal vestibules of each species were estimated from descriptions by Morgan and colleagues (Morgan et al., 1984), Harkema and colleagues (Harkema, 1992; Harkema et al., 1987), and Mygind and colleagues (Mygind et al., 1982). The location of squamous epithelium in the rat and monkey nasal vestibule was determined by light microscopy and was approximated in the human from the description by Mygind and colleagues (1982). The approximate locations of squamous and mucus- and nonmucus-coated epithelia were mapped onto the reconstructed nasal geometry of the CFD models. In all 3 species, the mucus- and nonmucus-coated regions taken together comprised the entire surface area of the nasal passages.

In the rat and monkey, the locations of areas in which cell proliferation rates were measured (Monticello et al., 1989, 1996) were also mapped into the CFD models. In the rat, these areas were the anterior lateral meatus, the posterior lateral meatus, the anterior mid-septum, the anterior dorsal septum, and the medial maxilloptinate. In the monkey, these areas were cross sections corresponding to Levels A, B, C, D, and E as described by Monticello et al. (1989).

**Uptake Simulations**

**Boundary conditions.** Two pieces of information were needed to conduct simulations of regional uptake of formaldehyde by nasal walls in each species: (1) airflow velocities, supplied by the simulations described above, and (2) boundary conditions for transport of inhaled formaldehyde at airway walls. The latter refer to conditions imposed a priori on the concentration of formaldehyde at the nostril surface and on the transport rate (flux) of formaldehyde at the interface between air and the airway lining. Formaldehyde uptake simulations were run for an inhaled concentration of 1 ppm in each species. Predictions for other inhaled concentrations can be obtained by multiplying the results presented here by the desired concentration in ppm. Constants of proportionality between formaldehyde flux and the air phase concentration of formaldehyde near the wall were determined separately for nonmucus-coated squamous epithelium located in the nasal vestibule and for the rest of the nose in each species as follows.

**Mass transfer coefficient for nonmucus-coated epithelium.** Uptake of inhaled formaldehyde by the nonmucus-coated squamous epithelium located in the nasal vestibule of all 3 species was assumed to be similar to uptake determined by Lodén (1986) in experiments measuring formaldehyde transport through human epidermal tissue. In this work, Lodén mounted pieces of full-thickness skin in a diffusion flow-cell, with medium containing formaldehyde on 1 side of the cell and receptor media continuously pumped through the other side of the cell (keeping formaldehyde concentration close to 0 on the receptor side). Mean values for the total amount of formaldehyde resorbed (taken up by the receptor medium) from a 10% formalin solution are shown in Figure 1. A subset of these data in the steady-state portion of the curve was selected visually (filled circles in Fig. 1), and linear regression was used to fit a line through these points to estimate formaldehyde resorbed per h at steady state (see below).

**FIG. 1.** Penetration of formaldehyde through skin ex vivo. Line fitted to filled circles. Data from Lodén (1986).
The density of formaldehyde is 0.815 g/ml, so the concentration in a 10% v/v solution is $C = 81.5$ mg/cm$^3$. The concentration of formaldehyde in the skin on the side in contact with this solution was assumed to be $C \cdot K_{sw}$, where $K_{sw}$ is the equilibrium partition coefficient for formaldehyde between skin and water ($[\text{HCHO}]_{\text{air}}/[\text{HCHO}]_{\text{water}}$ at equilibrium). Since the receptor side was kept flushed, the concentration in the skin on that side was assumed to be 0.

Measurements of $^4$C-formaldehyde activity in the skin at the end of the experiment showed a clear gradient from the exposed side to the receptor side, indicating that this was a good assumption. The driving force for diffusion across the skin is thus $F = (C - 0) \cdot K_{sw} = C \cdot K_{sw}$.

The resistance to diffusion, $R$, is the ratio between the thickness of the layer of skin and the diffusivity. Thus, $R = d_s/D_{\text{skin}}$, where $d_s$ is the skin thickness and $D_{\text{skin}}$ is the diffusivity in the skin. The skin used was 0.2 cm thick. Finally, the steady-state rate of diffusion through the skin was obtained as the slope of the line shown in Figure 1, which gave the amount of formaldehyde resorbed per h at steady state, $Q = 0.0166$ mg/cm$^2$/h. At steady-state:

$$Q = \frac{F}{R} = \frac{C \cdot K_{sw} \cdot D_{\text{skin}}}{d_s},$$

which was solved to obtain

$$K_{sw} \cdot D_{\text{skin}} = \frac{Q \cdot d_s}{C} = \frac{(0.0166 \text{ mg/cm}^2/\text{hr}) \cdot (0.2 \text{ cm})}{(81.5 \text{ mg/cm}^3) \cdot (3600 \text{ s/hr})} = 1.13 \times 10^{-7} \text{cm}^3/\text{s}.$$

For transport across the nonmucus-coated squamous epithelium in the nose, the squamous layer was assumed to be $d_s = 20 \mu$m = 0.002 cm thick. The diffusing entity was assumed to be HCHO, the hydrate of formaldehyde. From Olson and Hoffmann (1989), the water:air partition coefficient (Henry’s Law constant) at 25°C is

$$H^* = \frac{[\text{HCHO}]_{\text{aq}}}{[\text{HCHO}]_{\text{g}}} = 2.97 \times 10^3 \text{ M/atm}.$$

After converting this number to dimensionless units using the ideal gas law, the appropriate water:air partition coefficient was found to be

$$H = (2.97 \times 10^3 \text{ M/atm}) \cdot \left( \frac{1 \text{ atm}}{\text{mole} \cdot \text{mol}^{-1} \cdot \text{K}} \cdot 298 \text{ K} \right) = 7.26 \times 10^4.$$

The skin:air partition coefficient was expected to be $K_{sw} = K_{sv} \cdot H^*$. The flux into this region is

$$Q = \frac{C_{\text{air}} \cdot K_{sv} \cdot D_{\text{skin}}}{d_s},$$

so the mass transfer coefficient for uptake into the nonmucus-coated squamous region from the air was calculated as

$$k_{mn} = \frac{Q}{C_{\text{air}}} = \frac{K_{sw} \cdot D_{\text{skin}}}{d_s} = \frac{H^* \cdot K_{sv} \cdot D_{\text{skin}}}{d_s} = \frac{(7.26 \times 10^4) \cdot (1.13 \times 10^{-7} \text{ cm}^3/\text{s})}{0.002 \text{ cm}} = 0.41 \text{ cm/sec}.$$

**Mass transfer coefficient for mucus-coated epithelium.** A value for the mass transfer coefficient for mucus-coated regions, $k_{nm}$, was estimated by fitting simulated overall formaldehyde uptake by the rat nose to experimental uptake data. Patterson et al. (1986) exposed F344 rats to 2, 6, 15, or 50 ppm formaldehyde at a steady-state inspiratory flow rate of 135 ml/min (estimated minute volume). Overall uptake by the nasal passages was measured. The average of the experimental uptake values (Table 1) for all exposures up to and including 15 ppm was 97%. Formaldehyde uptake was simulated using the F344 rat model at the estimated minute volume flow rate of 288 ml/min with $k_{nm}$ set to 0.41 cm/s and $k_{mn}$ set to varying values until overall uptake by the rat nose was equal to 97%. This procedure gave a value for $k_{nm}$ of 4.7 cm/s. The values $k_{mn} = 0.41$ cm/s and $k_{nm} = 4.7$ cm/s were used for nonmucus- and mucus-coated regions, respectively, in all subsequent simulations of regional formaldehyde uptake in rat, monkey, and human noses.

**Uptake and flux calculations.** Overall uptake of formaldehyde was calculated as $100\times$ (mass entering nostril – mass exiting outlet)/(mass entering nostril), Mass balance errors for air ($100\times$ [(mass of air entering nostril – mass exiting outlet)/(mass entering nostril)]) and inhaled formaldehyde (100$\times$ [(mass entering nostril – mass absorbed by airway walls – mass exiting outlet)/(mass entering nostril)]) were calculated. Using the postprocessor module of FIDAP (FIPOST), flux was calculated as the rate of mass transport in the direction perpendicular to the nasal wall per mm$^2$ of the wall surface and thus had units of pmol/(mm$^2$·h·ppm). Formaldehyde flux was estimated for the rat, monkey, and human over the entire nasal surface and over the portion of the nasal surface that was lined by nonsquamous epithelium. Formaldehyde flux was also estimated for the rat and monkey over areas where cell proliferation measurements were made (Monticello et al., 1989, 1991) and over the anterior portion of the human nasal passages that is lined by nonsquamous epithelium.

Mass balance errors for inhaled formaldehyde were calculated (see above) by comparing estimates for the amount of formaldehyde absorbed by airway walls in 2 ways. The amount of formaldehyde absorbed was calculated as (mass flow at the nostril – mass flow at the outlet) and separately as the mass flow in the direction perpendicular to airway walls. The mass balance error was defined as the difference between these 2 quantities. Investigations into possible causes for mass balance errors revealed that most of this error occurred as mass lost when calculating formaldehyde mass flow in the direction perpendicular to airway walls on an element-by-element basis. Estimation methods used by FIPOST for mass flow evidently contributed error to flux calculations for each element of an airway wall region. This error was largest for element-by-element calculation of flux over complex surfaces such as airway walls, and smaller for flatter surfaces such as the nostrils and outlet. The calculation of overall nasal uptake was not significantly affected by these errors since flux through airway walls was not used in this calculation. Because CFD mesh elements were roughly uniform in shape and size, mass balance errors were accounted for by evenly distributing the lost mass over the entire nasal surface and adjusting all predicted flux values accordingly.

**RESULTS**

Three-dimensional computer reconstructions (CFD models) of the nasal passages of rat, monkey, and human (Fig. 2) were used to simulate regional airflow and formaldehyde uptake.

**TABLE 1**

<table>
<thead>
<tr>
<th>Animal number</th>
<th>Exposure (ppm)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>97.9</td>
<td>97.3</td>
<td>98.7</td>
<td>94.6</td>
<td>95.3</td>
<td>96.8</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>95.5</td>
<td>92.6</td>
<td>96.9</td>
<td>98.5</td>
<td>98.8</td>
<td>96.5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>97.6</td>
<td>99.0</td>
<td>96.7</td>
<td>98.6</td>
<td>97.4</td>
<td>97.9</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>

*Note.* Uptake of inhaled formaldehyde given as %; SD, standard deviation.
Each CFD model contained over 140,000 nodes or crosshairs on the nasal walls and throughout the interior air space at which simulated airflow speed and direction and formaldehyde gas concentration were obtained. Nasal passages were reconstructed from serial step sections (rat and monkey) or magnetic resonance imaging (human). Nostrils are to the right. Plots show views at correct relative size. Modified from Kimbell *et al.* (1997a), Kepler *et al.* (1998), Subramaniam *et al.* (1998), and Kimbell *et al.* (1997c).

Nasal surface area lined by squamous epithelium was estimated to be 187 mm$^2$ in the rat, 1124 mm$^2$ in the monkey, and 3246 mm$^2$ in the human. The surface area of the nonmucus-coated region as approximated from the CFD models was 72 mm$^2$ (4% of the total nasal surface area) in the rat, 942 mm$^2$ (13% of the total nasal surface area) in the monkey, and 3246 mm$^2$ (13% of the total nasal surface area) in the human (Fig. 3).

Simulated streamlines of steady-state inspiratory airflow agreed with experimentally observed patterns of flow in the rat and monkey and measurements of axial flow speed in the human (Fig. 4). These comparisons were described in detail previously (Kepler *et al.*, 1998; Kimbell *et al.*, 1993, 1997a;...
Errors in the mass balance of air were less than 0.4% in all simulations.

Regional uptake of inhaled formaldehyde was simulated in each species at flows equal to twice the estimated minute volume rate (Fig. 5). Overall uptake of inhaled formaldehyde by the nasal passages of each species was predicted to be 90% in the rat, 67% in the monkey, and 76% in the human. Mass balance errors for inhaled formaldehyde were 14% or less in all simulations.

Estimates of regional formaldehyde wall mass flux, averaged over a breath, are given in Table 2 for various locations in the rat, monkey, and human nasal passages. Maximum flux estimates for the entire nasal passages were located in the mucus-coated squamous epithelium on the dorsal aspect of the dorsal medial meatus near the boundary between mucus- and nonmucus-coated squamous epithelium in the rat, at the anterior or rostral margin of the middle turbinate in the monkey, and in the nonsquamous epithelium on the proximal portion of the mid-septum near the boundary between squamous and nonsquamous epithelium in the human. When attention was restricted to nonsquamous-lined portions of the nose, the location of maximum flux estimates was unchanged in the monkey and human, but shifted posteriorly within the dorsal medial meatus to the nonsquamous epithelium near the boundary between squamous and nonsquamous epithelium in the rat. Flux predictions in cell proliferation sites in the rat (Monticello et al., 1996) and monkey (Monticello et al., 1989) were estimated to be

FIG. 3. Estimated locations of non-mucus-coated squamous epithelium (dark gray) in the noses of the F344 rat, rhesus monkey, and human. Nasal passages are shown in correct relative scale; arrows indicate position of nostrils (light gray in rat and monkey, not visible due to downward orientation in human).
within 4-fold of each other, and the rat-to-monkey ratio of the highest site-specific fluxes in the 2 species was 0.98.

In the rat, the incidence of formaldehyde-induced squamous cell carcinoma in chronically exposed animals was high in the anterior lateral meatus (Monticello et al., 1996). Flux predicted per ppm in this site and flux predicted near the anterior or proximal aspect of the inferior turbinate and adjacent lateral walls and septum in the human were similar, with a rat-value-to-human-value ratio of 0.84.

The maximum estimated wall mass flux of formaldehyde
averaged over the breathing cycle, for nonsquamous epithelium of each species was 2620 pmol/(mm$^2$-h-ppm) in the rat, 4492 pmol/(mm$^2$-h-ppm) in the monkey, and 2082 pmol/(mm$^2$-h-ppm) in the human.

**DISCUSSION**

Experimental determination of local formaldehyde uptake patterns is severely limited in the nasal passages. Low resolution of dissection techniques and the rapidity of formaldehyde metabolism and reactivity make direct assessment of formaldehyde uptake patterns very difficult, especially for comparison among different species. The CFD models described here allow researchers to predict local formaldehyde concentrations and fluxes throughout the nasal passages. These simulations can be used to test hypotheses about mechanisms of formaldehyde toxicity as well as to make comparisons of formaldehyde uptake patterns that capture species-specific differences among rats, monkeys, and humans for risk assessment purposes.

The development and use of CFD models for nasal formaldehyde uptake required a number of assumptions regarding anatomical, parameter estimation, and simulation issues. Fac-
Estimates of Formaldehyde Flux at Nasal Passage Walls

<table>
<thead>
<tr>
<th>Nasal region</th>
<th>Rat (pmol/mm²-h-ppm)</th>
<th>Monkey (pmol/mm²-h-ppm)</th>
<th>Human (pmol/mm²-h-ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole nose: average</td>
<td>336</td>
<td>508</td>
<td>568</td>
</tr>
<tr>
<td>Whole nose: maximum</td>
<td>3210</td>
<td>4492</td>
<td>2082</td>
</tr>
<tr>
<td>Nonsquamous: average</td>
<td>284</td>
<td>535</td>
<td>611</td>
</tr>
<tr>
<td>Nonsquamous: maximum</td>
<td>2620</td>
<td>4492</td>
<td>2082</td>
</tr>
<tr>
<td>Cell proliferation sites</td>
<td>AIT &amp; ALWS</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>ALM: 825</td>
<td>Level B: 845</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>PLM: 551</td>
<td>Level C: 544</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADS: 503</td>
<td>Level D: 197</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMT: 584</td>
<td>Level E: 249</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMS: 730</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PMS: 548</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note.** Rat: ALM, anterior lateral meatus; PLM, posterior lateral meatus; ADS, anterior dorsal septum; MMT, medial maxilloturbinate; AMS, anterior mid-septum; PMS, posterior mid-septum (Monticello et al., 1996). Monkey: as described by Monticello and colleagues (1989). NA, not applicable. AIT & ALWS, anterior aspect of the inferior turbinate and adjacent lateral walls and septum.

Formaldehyde uptake simulations using the human CFD model predicted that flux values in a region containing the anterior aspect of the inferior turbinate and adjacent lateral walls and septum were similar to fluxes predicted in rat and monkey cell proliferation measurement sites. This result suggests that similar cell proliferative and carcinogenic responses could be expected to occur in humans exposed to formaldehyde under conditions similar to those inducing these responses in rats and monkeys.

Clonal growth models for carcinogenesis require information on cell birth, death, and mutation rates (Cohen and Ell-
measurements or estimates of these rates can be made from cell proliferation and DPX data gathered from specific sites in the nasal passages. Variations in these data by site indicate that no single site-specific value can represent the entire tissue (Casanova et al., 1991, 1994; Monticello et al., 1989, 1996). If cell proliferation or DPX formation rates are linked to predictions of regional formaldehyde flux, however, flux predicted throughout the nasal passages via CFD modeling can be used to extrapolate data estimating cell birth, death, and mutation rates from measurement sites to the rest of the nasal passages. In addition, the use of CFD modeling based on anatomically realistic nasal geometry allows this extrapolation to incorporate species-specific variations in formaldehyde uptake patterns and hence local cell proliferation and DPX formation rates within the nasal passages. Species-specific patterns of nasal cell proliferation and DPX formation rates can be incorporated into clonal growth modeling by partitioning each species’ nasal passage into zones where cell proliferation and DPX formation rates are based on an average flux for that zone. A clonal growth model can then be run separately for each zone and predicted zonal cancer risks aggregated to provide an estimate of overall nasal cancer risk.

In summary, 3-dimensional, anatomically accurate, CFD models of airflow and inhaled formaldehyde gas uptake in the nasal passage of a rat, monkey, and human provide valuable insight into mechanisms of local nasal dosimetry for inhaled water-soluble gases. Estimates of regional nasal formaldehyde flux, including maximum flux, average flux, and flux in specific nasal regions, were compared among the 3 species. These results serve as input for risk modeling of formaldehyde carcinogenesis to help reduce uncertainty in human cancer risk estimates from formaldehyde exposure.

ACKNOWLEDGMENTS

The authors would like to thank CIIT company members and the American Chemistry Council for supporting this research, John Overton, Rory Conolly, Fred Miller, Julian Preston, Mel Andersen, Matt Godo, Grace Kepler, Elaine Cohen Hubal, and Anna Georgieva for research discussions, the Formaldehyde Peer Review Workshop Participants assembled by Health Canada in collaboration with the U.S. EPA, Regina Richardson and Donald Joyner for technical support, and Barbara Kuyper for editorial assistance.

REFERENCES


