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For noncancer effects, the degree of human interindividual variability plays a central role in de
termining the risk that can be expected at low exposures. This discussion reviews available data 
on observations of interindividual variability in (a) breathing rates, based on observations in British 
coal miners; (b) systemic pharmacokinetic parameters, based on studies of a number of drugs; (c) 
susceptibility to neurological effects from fetal exposure to methyl mercury, based on observations 
of the incidence of effects in relation to hair mercury levels; and (d) chronic lung function changes 
in relation to long-term exposure to cigarette smoke. The quantitative ranges of predictions that 
follow from uncertainties in estimates of interindividual variability in susceptibility are illustrated. 
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Monte Carlo simulation. 

1. INTRODUCTION 

By this time the NOEUsafety factor approach, 
which incorporates a IO-fold factor to account crudely 
for possible interindividual differences within the human 
population, has been hallowed by long use and has an 
almost unassailable position in the habits of many reg
ulatory toxicologists. Nevertheless, there are occasions 
where it is both feasible and desirable to develop pro
cedures for estimating noncancer risks more quantita
tively. Quantification of the incidence and intensity of 
noncancer effects could contribute to decision-making, 
in particular where actual or anticipated exposures are 
high enough to produce effects in a directly observable 
fraction of exposed people. Examples of this include the 
following. 

• 	 The design of improved protocols for the use of 
pharmaceuticals (where, ideally, the incidence of 
both beneficial and adverse biological effects for 
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different subpopulations of patients can be mod
eled based in part on direct observations).(I) 

• 	 Assessments of the effects of ubiquitous ambient 
air pollutants such as ozone, carbon monoxide, 
lead, and acid particulates.(2,3) 

• 	 Assessments of the effects on lung function of 
chronic lung-damaging agents such as smoking, 
occupational exposure to coal dust, silica, etc.(4-6) 

• 	 Assessments of reproductive and developmental 
effects, some of which appear likely to produce 
some excess risk extending to very low dos
ages.(7) 

• 	 Assessments of the incidence of high-dose mor
bidity and mortality that could be expected to 
result from large releases of acutely toxic agents, 
such as chlorine or hydrogen sulfide.(8) 

There is sometimes good reason to doubt the uni
versal expectation of population thresholds that is built 
into the NOEUUncertainty Factor schema. In particular 
cases there may be some finite fraction of individuals 
who, because of disease or other causes, are marginal 
for biological functions affected by the chemical and 
who may be pushed beyond a functional threshold for 
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Fig. 1. Fit of a lognormal distribution to the minute volumes of 62 
British coal miners--data of Jones et aL(0) 

an adverse effect by a small finite dose of the chemical. 
For example, for healthy workers there may indeed be 
a functional reserve capacity for oxygen delivery to the 
myocardium and, hence, a finite tolerance for a small 
impairment of oxygen delivering capacity for the blood 
due to carbon monoxide or agents that cause the con
version of hemoglogin to methemoglogin. However, for 
a worker who has just begun to experience a myocardial 
infarction, oxygen delivery to portions of the mycardium 
is known to be seriously compromised, and it is possible 
that a small difference in oxygen delivery capacity due 
to a modest blood carboxyhemoglobin or methemoglo
bin concentration could prove the difference between life 
and death for portions of the heart muscle that are sud
denly forced to rely on collateral arterial vessels for ox
ygen supply. 

In the discussion below, we illustrate (i) how we 
have attempted to use available data to give us some 
insight into the'magnitude of likely interindividual var
iability in susceptibility (heterogeneity) in the cases of a 
few specific noncancer risk assessments, (ii) how we 
have attempted to assess quantitatively the several un
certainties in our estimates of human heterogeneity, and 
(iii) the magnitude of the uncertainties in risk that flow 
from our uncertainties on the issue of human heteroge
neity. 

2. HETEROGENEITY AT VARIOUS STEPS IN 
THE PATHWAY TO ADVERSE EFFEcrS 

A few classes of heterogeneity/interindividual var
iability in susceptibility can be defined as components 
along the pathway from environmental exposure through 
the production of adverse effects. 
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• 	 Uptake: Individual differences in the environ
mental concentration needed to produce a given 
intake of toxicant into the body, e.g., due to dif
ferences in breathing rates, dietary habits, etc. 

• 	 Pharmacokinetic: Individual differences in the 
amount of uptake needed to produce a particular 
concentration-time product of active agent in the 
blood or at the site of action, e.g., due to differ
ences in metabolic activation or clearance. 

• 	 Response: Individual differences in the dose at 
the active site that produces a similar risk of re
sponse. 

The discussion below is organized around these major 
categories of heterogeneity. 

3. ILLUSTRATION OF EXPOSURE/UPTAKE 
HETEROGENEITY-INTERINDMDUAL 
DIFFERENCES IN BREATHING RATES IN 
BRITISH COAL MINERS 

Breathing rate is a good example of a parameter 
that directly affects a person's primary uptake of an air
borne toxicant. Other things being equal, a worker who 
breathes more air per unit time will take in more dust, 
etc., per unit time, for a given concentration of dust in 
air. One of the best data sets on workers' breathing rates 
that we have seen is in a report by Jones et al. (9) covering 
62 underground British coal miners. Breathing rates 
were measured over periods that were typically about 90 
min, and in most cases three replicate determinations 
were made. Data of this type allow us to illustrate three 
different problems in analyzing individual variability in 
this type of directly measurable parameter: 

• 	 How do we decide what statistical form to use 
for the population distribution of the parameter? 

• 	 How do we decide how much of the observed 
variation in a set of measurements is due to 
"true" interindividual variability and how much 
is due to measurement error? 

• 	 How do we determine the uncertainty in our es
timate of the population variation of the parame
ter? That is, if we calculate a standard deviation, 
or a geometric standard deviation from individual 
measurements, how often could we expect to be 
wrong by various amounts in relation to the stan
dard deviation we would calculate if we had 
measurements on an infinite number of people? 

c 
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Fig. 1.. Fit of a normal distribution to the minute volumes of 62 

British coal miners-data of Jones et al. (9J 


3.1. Analyses Using Alternative Statistical Forms 

Figure 1 shows a lognormal probability plot of dis
tributional data of this type.3 A true lognormal distri
bution would be expected to result from a situation in 
which many factors each contributed in small ways to 
variation in the measured parameter, and the factors all 
acted multiplicatively. In practice, many parameters tend 
to be reasonably well described by this type of plot. 
However, in this case, as can be seen in the comparison 
with Fig. 2, a normal distribution provides a slightly 
better description of the observed variability. Else
where(IO) we have made a tongue-in-cheeck proposal for 
"laws" of uncertainty/variability analysis. The first of 
these "laws" is, "Nearly all parameter distributions 

'To create this type of plot, the measurements are first arranged in 
order and given ranks i (1 through N). Then one calculates a "per· 
centage score" for each ordered value as 100*(i-0.S)/N. (This dif· 
fers from the usual definition of a "percentile" in which the highest 
observation is assigned a score of 100.) Finally, from tables of probits 
or areas under a cumulative normal distribution, one calculates the 
number of standard deviations above or below the median of a nor· 
mal distribution that would be expected to be associated with each 
"percentage score," if the distribution of values were in fact normal 
(Gaussian). In the regression line calculated from this type of plot, 
the intercept (Z=O) is an estimate of the median, and the slope is an 
estimate of the standard deviation. This procedure has the advantage 
of being able to accommodate truncated data (e.g., the presence of 
"nondetect" values)<>6J or, as in the figure above, data that were 
originally provided only in the form of a histogram of the numbers 
of children above specific cutoff values_ Where there are nondetect 
values, these contribute to the N used for calculation of percentage 
scores but such points are not plotted and therefore do not contribute 
directly to the fitted regression line. For further information see Ref. 
27. 

look lognormal, as long as you don't look too closely." 
Although phrased facetiously and deliberately over
stated, these laws do represent regularities we have com
monly observed in our practical experience. In this case, 
we mean to imply that where one does not have a strong 
mechanistic reason to prefer one type of distribution, it 
can help illuminate both the facts and the associated un
certainties to compare observations with expectations 
under a range of distributional forms. 

3.2. Removing Estimated Measurement Error from 
Estimates or True Population Heterogeneity 

The second issue-measurement (and, implicitly, 
other short term) variability-arises because as risk as
sessors we are not simply interested in describing the 
distribution of a set of observations. We want to use the 
data to help make inferences about how much different 
the true delivered doses and risks might be facing dif
ferent people in the same environment. For this purpose, 
because an agent such as coal dust is expected to pose 
lung damaging hazards that depend primarily on doses 
delivered over an extended period (at least months, and 
more often years or decades), we need to estimate the 
distribution of long-term doses that are expected to result 
from differences in relatively stable characteristics of in
dividuals and their job requirements. The distribution of 
our observations (Fig. 1) represents the combined effect 
of variation that results both from the true long-term 
variability we are interested in and various short-term 
perturbations, including measurement errors. In the for
tunate special case where (i) both the true long-term var
iability and the measurement errors are normally 
distributed and (ii) the measurement error/short-term 
variability in our worker breathing rates can be calcu
lated from the spread of the three replicates for the in
dividual workers, then we can simply subtract the 
measurement variance from the total observed variance 
to obtain an estimate of true long-term variance. For the 
Jones et al.(9) data set our calculations indicate that about 
a third of the total variance represents likely measure
ment error and/or true short-term individual variability, 
leaving an estimate of the "true" long-term standard 
deviation of the individual breathing rates of about 3.84 
L/min, rather than the observed overall standard devia
tion of 4.72 (this corresponds approximately, but not ex
actly to the standard deviation inferred from the plot in 
Fig. 2: 4.698). Thus, from the standpoint of a regulator 
who wished to consider the 2.5-97.5 percentile range on 
the expected long-term dose of dust contained in the air 
breathed by individual coal miners, the expected range 
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would be about 13.1-28.4 Umin-still over a twofold 
range, but less than the 11.3-30.2 Umin range that 
would be calculated without the correction for likely 
measurement and short-term variability. 

3.3 Estimating Uncertainty in Estimates of 
Variability 

The final issue we would like to illustrate with these 
data is how confident we should be in the original cal
culation of the overall standard deviation of 4.72 Umin 
itself. If we were to repeat the measurements on a large 
number of groups of 62 miners, and calculate a standard 
deviation each time, what would be the standard devia
tion of those standard deviations? Vsing available Monte 
Carlo simulation software, it is relatively straightforward 
to perform such an experiment on a computer. Based on 
5093 trials in which the computer drew random normally 
distributed values for groups of 62 simulated miners, 
each of which had a true mean and standard deviation 
of 20.77 and 4.723 Umin, we found that the standard 
deviation of the simulated standard deviations was 0.42 
Umin-about 9% of the best-estimate standard devia
tion, and leading to a 95% confidence range on the stan
dard deviation of 3.88-5.56 Umin. In contrast, we know 
the mean breathing rate (20.77 Umin) to a much greater 
degree of precision. The standard error of this mean is 
about 0.60 Umin-only about 3% of the mean itself. 
This leads to our second tongue-in-cheek "law" of un
certainty analysis: "Any estimate of the variability of a 
parameter value will always itself be more uncertain 
than the estimate of the parameter value." Clearly, if a 
regulator wished to be very confident that he or she was 
protecting the miners with 98th or 99th percentile 
breathing rates, he or she would need to consider a much 
broader range of values than those we arrived at in the 
previous paragraph, based only on the best estimate of 
the standard deviation of long-term average breathing 
rates. 

4. INTERINDIVIDUAL VARIABILITY IN 
SYSTEMIC PHARMACOKINETIC 
PARAMETERS 

In our initial work for systemic pharamacokinetic 
parameters,(ll) we sought to assemble data from studies 
of normal healthy adults on the variability in three par
ticular types of pharmacokinetic parameters in humans, 
based primarily on studies of drugs. 
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• 	 Elimination half-lives (T1(2) are defined as the 
time required for a twofold reduction in the con
centration of the substance in some compartment 
(usually blood) after absorption is complete. The 
longer the elimination half-life, the higher the 
concentrations that will be attained in the body 
if exposure is continuous or repeated at a fre
quency that is short relative to the half-life. 
Therefore, elimination half-lives are likely to be 
key determinants of susceptibility to toxicity 
from chronic continuous exposures. 

• 	 Area under the curve (AVC) is a plot of the 
plasma concentration versus time after exposure. 
The AVC integrates variability in the efficiency 
of absorption as well as metabolism and elimi
nation. It is likely to be a good predictor of phar
macokinetic variability in susceptibility for 
effects that are linearly related to the amount of 
slowly accumulating products of reaction be
tween the toxicant and resident macromolecules. 

• 	 Peak concentration (emu) in blood represents an 
effective dose in cases of acute toxicity from an 
isolated single exposure to a substance. Like 
AVC, it also integrates information about ab
sorption; in this case, both the efficiency and the 
dynamics of absorption. 

4.1. Observed Variability in Groups of Normal 
Healthy Adults 

Table I summarizes our results. It can be seen that 
in this case we have used geometric standard deviations 
to characterize the interindividual variability results. 
This is because we found that much more often than 
could be expected by chance, the data were positively 
skewed-showing a long tail of relatively high values. 
Additionally, a difficulty in applying a normal distribu
tion to these data (or to the breathing rate data analyzed 
previously) is that inherently normal distributions must 
at some point take on negative values, which have no 
meaning for these parameters. Still, we have not defin
itively tested the performance of the lognormal distri
bution against other positively skewed distributions 
using these data. 

It can be seen from the data in Table I that there 
are important differences among different chemicals/ 
drugs in the degree of interindividual variability in these 
systemic pharmacokinetic parameters. In the usual case, 
where a regulator/risk analyst is considering a chemical 
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Table I. Variability in Human Systemic Pharmacokinetic Parameters Seen for Different Chemicals (Mostly Drugs) in Groups of at Least Five 

Healthy VolunteerS" (Adapted from Ref. 11) 


Human interindividual variability in pharmacokinetic parameters 

Elim. half-life AVC C....
Range of Corresponding 
geometric SO' probit slopes' No.obs. Cum. % No.obs. Cum. % No.obs. Cum. % 

1.778-3.16 2-4 2" 5 3 20 1 8 
1.468-1. 778 4-6 5 16 3 40 2 25 
1.334-1.468 6-8 13 45 2 53 
1.212-1.334 8-12 10 68 5 87 5 67 
1.155-1.212 12-16 8 86 93 2 83 
1.000-1.155 16+ 6 100 100 2 100 

Total 44 15 12 
Median geometric SD 1.291 1.386 1.285 
95% range of observations' 1.109-1.858 1.117-2.748 1.072-2.506 

• Each of these observations represents a single chemical. Where there were multiple observations of interindividual variability for a partticular 
chemical, a combined geometric standard deviation was calculated by pooling the variances within the different experiments. 

• This is the reciprocal of the log of the geometric standard deviation. Thus a log GSD of 0.5 corresponds to a log probit slope of 2. 
'Assuming that the log(geometric standard deviation) values for the different chemicals are themselves distributed lognormally. 

Un repaired 
Oamage 

Time of Continuous Dosing 

Fig. 3. Theoretical framework of slowly accumulating reversible 
damage. 

for which there are no analyzable human data on phar
macokinetic variability, one essentially faces at least' the 
range of uncertainty represented by the 95% confidence 
limits given in the bottom line of the table. In the next 
section, we show how we used the upper end of the 95% 
confidence range for AUe to provide an indication of 
the likely uncertainty in projections we made for the 
chronic toxic risks of acrylamide.<12.!3) 

• We say "at least" because it should be stressed that the data in Table 
I were derived from studies in normal healthy adults and are, there
fore, likely to understate the actual degree of variability that would 
be seen in a diverse general population, including elderly people, 
infants, people with various diseases, etc. On the other hand, the 
results in Table I reflect total observed variability; we did not attempt 
to make the kinds of corrections for measurement error that we il
lustrated in the previous section. 

4.2. Implications of the Observed Distribution of 
Apparent Interindividual Variation in 
Pharmacokinetic Parameters-Use in a Risk 
Assessment for Acrylamide Neurotoxicity 

For our acrylamide modeling work we analyzed 
some of the most classical studies of acrylamide neu
rotoxicity in animal systems(14-16) in which effects were 
seen to be produced at a lower cumulative dose if the 
acrylamide was administered at a higher dose rate. This 
implied some rate of repair of the incipient damage, 
whose buildup is illustrated in Fig. 3. From these data 
we calculated the apparent rate of repair of the incipient 
damage and the daily dose rate that would just barely 
be able to produce the various effects if the dosing were 
continued for the lifetime of the animals (baboons or 
rats; other data, collected in monkeys, were in somewhat 
different form but were analyzed similarly). 

Because the results indicated no discernible pattern 
of change in calculated repair rates or long-term doses 
required to produce effects in different species, the doses 
of acrylamide that would be expected to produce differ
ent effects in average humans were projected directly 
from available primate data on a milligram per kilogram 
basis. The "best" (least unlikely) estimates of the doses 
expected to produce effects in smaller proportions of ex
posed people were calculated by assuming that humans 
will show a lognormal distribution of susceptibilities for 
specific effects with the same spread as was observed in 
the corresponding baboon and monkey experiments (Ta
ble II). (The long-term dose rates associated with risk 
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Table ll. "Best" (Least Unlikely) Estimates of Interindividual 
Variability for Neurotoxic Effects of Acrylamide Derived from 
Limited StudieS" in Primates 

Interindividual variability 

in the long-term dose rate required 


to cause a specific effect 

Species and parameter (Geometric SD) 

Baboon 
Hindlimb weakness 1.230 
Forelimb weakness 1.401 

Monkey 
40-Hz vibration, 

10% threshold increase 3.715' 
ISO-Hz vibration, 

10% threshold increase 1.349 
Pickup test, 

10% performance loss 1.995 

• The experimental results reflected data from only 	six baboons and 
four monkeys. 

• The large interindividual variability calculated here represents pri
marily the influence of one of the four available values. 

levels of 10-4 and 10-6 were calculated as 3.72 and 4.75 
geometric standard deviations below the estimated 
threshold dose for the median person.) To represent the 
uncertainties on this point, similar projections were also 
made assuming a higher degree of human interindividual 
variability-a geometric standard deviation of 2.748
based on the upper 95% confidence limit of measure
ments of interindividual variability for (AUe) from Ta
ble I. 

The results are given in Table III. (It should be 
stressed that in all cases, the projections depended on an 
assumption that susceptibilities are lognormally distrib
uted-for which there is no specific evidence.) It can be 
seen that the degree of human interindividual variability 
assumed has a dramatic effect in changing the doses that 
are expected to be associated with effect incidences of 
10-4 and 10-6• The "best-estimate" column in Table III 
shows that whereas the doses associated with a median 
risk for the different effects show a range of only about 
4-fold, the 10-4 and 10-6 risk levels are associated with 
dose rate spreads of 200- and 700-fold, respectively, 
among the effects. The "plausible lower limit" projec
tions (final column in Table III) serve to emphasize that 
if the interindividual variability in human susceptibility 
for acrylamide's more serious reversible effects is much 
larger than the best-estimate projections indicate (but 
within the range that has been observed for the varia
bility of some pharmacokinetic parameters in humans, 
for a few percent of the chemicals studied), the risks of 
even the more serious forms of acrylamide peripheral 
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Table Ill. "Best" (Least Unlikely) and "Plausible Lower Limit" 
Projections of Exposures Potentially Associated with Acrylamide 
Toxicity in Different Proportions of Workers (Adapted from Ref. 13) 

Long-term air concentrations 
(mglm') needed for toxicity" 

Data source, effect, and 
proportion of population Plausible 
expected to be affected Best estimateb lower limit< 

Baboon(") 
Hindlimb 

Proportion affected 
0.5 81 41 
1 X 10~' 38 1.18 
1 X 1O~' 30 0.41 

Forelimb 

Proportion affected 


0.5 66 25 
1 X 10-' 8.9 0.90 
1 X 10-' 5.1 0.31 

Monkey(l7) 	10% increase in baseline threshold 
40·Hz vibration 

Proportion affected 
0.5 20 4.8 
1 X 10-< 0.16 0.041 
1 X 10-' 0.044 0.011 

150-Hz vibration 

Proportion affected 


0.5 33 8.4 
1 X 1O~' 11 0.41 
1 X 1O~' 8.0 0.14 

Pickup 

Proportion affected 


0.5 43 11 
1 X 10 .... 3.3 0.45 
1 X 10.... 1.6 0.16 

• On an occupational exposure schedule (5 days/week, 8 blday). 
b 	Based on the degree of interindividual variability observed in the 

corresponding primate data, an assumed breathing rate of 7.3 m' per 
8·h work day, and a lognormal distribution of individual thresholds 
for effect. 

'Based 	on the combined effects of uncertainties in the appropriate 
estimate of the degree of human interindividual variability and the 
repair rates observed in animals, a breathing rate of 10 m' per 8-h 
work day, and a lognormal distribution of individual thresholds for 
effect. 

neurotoxicity (limb weakness) might approach 1 in 1 
million at the then-current occupational standard (0.3 
mglm3). The most modest effects on perceptual threshold 
and related motor functions indicated by the "pickup" 
test would be expected to be less rare. Clearly, it would 
lessen our uncertainty in popUlation dose reponse con
siderably if we had some actual measurements of inter
individual variability in humans. 
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Fig. 4. Log probit dose-response relationship for talking after 24 
months in relation to matemal hair mercury-data of Marsh et al.(I9) 

Source: Institute of Medicine, Seafood Safety, Reproduced with per
mission. 

5. VARIABILITY IN EFFECT PARAMETERS 

Effect parameters come in two broad types--quan
tal (yes/no; present/absent) and continuous (e.g., meas
urements of a functional parameter that can take on any 
value within some continuous range). These are explored 
in turn in the two subsections below. 

5.1. Observations of Apparent Interindividual 
Variability in a Quantal Effect Parameter
Incidence of Fetal Effects After Dietary Methyl 
Mercury Exposure 

The strategy in using quantal data is generally to 
assume that an observable response is produced when 
some underlying continuous parameter (e.g., internal 
dose or damage) exceeds some critical threshold, as was 
done in the previous section for acrylamide. Changes in 
the frequency of quantal responses as a function of dose 
are therefore interpreted as changes in the fraction of the 
population whose individual thresholds have been ex
ceeded. An unusual analysis of human data of this type 
was included in a report on Seafood Safety by the Insti
tute of Medicine.(18) This addresses a key issue of 
whether (and if so by how much) interindividual varia
bility in susceptibility for fetal/developmental effects 
differs from interindividual variability in susceptibility 
for effects in adults. 

One of the best available (although still quite lim
ited) human data sets for reproductive effects has been 
published by Marsh et ai.<19) For 81 mother-infant pairs, 
these authors provide detailed information on the ind

dence of a variety of fetal methyl mercury effects in 
relation to the maximal levels of mercury found in the 
hair of the mothers during gestation. The observations 
come from an Iraqi mass poisoning incident which re
sulted from the distribution of methyl mercury-treated 
Green Revolution seed grain. Observations of the chil
dren were made some years after birth. Maximum mer
cury concentrations were assessed by a series of 
sequential measurements along the hair shafts during fe
tal development. Log probit dose-response fits to these 
data [e.g., by simple regression analysis in Fig. 4 and 
by the more elaborate maximum likelihood procedure of 
Finney(20) in Table IVA] indicate very large amounts of 
interindividual variability in response-probit slopes of 
about 1. Analogous, but unfortunately not completely 
comparable analyses of data for a variety of adult ef
fects, based on measurements of methyl mercury in 
blood, suggest probit slopes in the range of 2-8 (Table 
IVB). A probit slope of 1 would imply that 95% of the 
population would have thresholds for effect spread out 
over a span of about 1O,000-fold in dosage-from 100
fold lower to 100-fold higher than the dose that would 
cause the effect in people of median susceptibility in an 
exposed population. Such a large amount of interindi
vidual variation would imply appreciable risks (of the 
order of 10-5 to 10-2) even at the much lower dosages 
that are present in the diets of people who consume rel
atively large amounts of fish with relatively large methyl 
mercury concentrations. A probit slope of 2 would sug
gest less, but still appreciable variability-with the 
thresholds of 95% of the population spread over a 100
fold range in dosage from lO-fold lower to lO-fold 
higher than the threshold for the median person. 

Unfortunately, in addition to statistical uncertainties 
in the determination of these slopes from limited data, 
there are important questions of biological interpretation. 
A conclusion that the relationships represented in Fig. 4 
and Table IVA represent true interindividual variability 
depends on an assumption that the biomarker of expo
sure used in this case-the maximum hair mercury 
found at any time during gestation-is the most appro
priate direct causal predictor of response that can be de
veloped. (Other possibilities might well include the 
concentration of mercury in maternal blood at a specific 
sensitive time during gestation or a weighted sum of 
concentrations X duration over a specific set of sensitive 
periods.) Any inaccuracy in the assessment of the rele
vant dose used for the least-squares regression analyses 
in Fig. 4 and Table IV would tend to cause a bias in the 
estimation of the probit slopes toward lower values (and 
hence higher estimates of interindividual variability and 
low-dose risks.) 
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Table IV•• Maximum-Likelihood Fits' of (A) of the Marsh et alY') Fetal and (B) the Iraqi Adult Methyl MercuryEffects Data Using the 

Method of Finney('O) 
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Background % Probit ED.., (ppb 

Effect response' slope Slope SE Intercept blood) EDso geom. SE Xl df" P' 


(A) FETAL EFFECI'S 
Late walking 0 1.21 0.30 2.19 205 1.49 6.093 3 0.11 
Late talking 7.3 1.76 0.71 0.81 244 1.38 0.689 0.41 
Mental symptoms 2.4 0.99 0.76 1.88 1429 4.75 0.351 1 0.55 
Seizures 0 1.10 0.53 1.54 1399 2.95 0.356 3 0.95 
Neurol. score >4 0 0.85 0.27 2.42 1047 2.54 0.874 3 0.83 

Average 1.18 Sum 8.363 11 0.68 

(8) ADULT EFFECI'S 
Paresthesias 7.5 2.17 0.63 -1.64 1145 1.24 1.155 2 0.76 
Ataxia's 2.5 3.92 0.76 -7.67 1687 1.11 4.95 3 0.18 
Visual changes 0 2.19 0.43 -2.24 2006 1.16 3.695 3 0.3 
Dysarthria 5 4.67 1.36 -11.2 2952 1.10 5.608 3 0.13 
Hearing defects 1.3 6.42 2.17 -18.05 3877 1.10 0.209 1 0.65 
Deaths 0 7.58 3.19 -23.05 5007 1.18 0.83 1 0.36 

Sum for adult effects 16.447 13 0.22 
Sum for fetal and adult effects 24.81 24 0.42 

• Source: Ref. 18 (reproduced with permission). 
• The equation 	fit is Probit of excess risk over background = Intercept + (slope) • log(blood Hg as ppb). A "probit" is 5 + the number of 

standard deviations above the median of the cumulative lognormal distribution of the underlying thresholds; 5 was originally added so that 
toxicologists would not have to deal with negative numbers. 

'Estimated from data in the lowest one to three dose groups. 
J This is the number of dose groups available for analysis, less 2 for the number of parameters estimated from the data (the intercept and probit 

slope). 
'This is the probability that a deviation as large as that observed between the log probit model and the data would have been expected by chance, 

even if the log probit model were a perfect description of the underlying dose-response function. 
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Fig. 5. Theoretical effects of grouping and lognormally distributed measurement/estimation errors on observed probit slopes for an effect with a 
.. true" probit slope of 6. 

Figure 5 illustrates the effects of various degrees of for the "late-talking" dose-response relationship. For 
lognormally distributed uncertainty (expressed as geo this figure, we have assumed a "true" probit slope of 6 
metric standard deviations) in estimating the probit slope but then introduced the indicated amounts of measure-

t.. 



429 Interindividual Variability in Noncancer Risks 
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Fig. 6. Simulated distributions of FEV, residuals in groups of 2500 
people with normally distributed background variability and lognor
maUy distributed (gsd = 1.9) differences in susceptibility to FEV, loss 
from smoking. 

ment/estimating uncertainty in Monte Carlo simulations 
with 2000 trials for each line. The simulated dose and 
response data were then aggregated into the three ranges 
of estimated dose (2~80, 8~320, and 320+ ppm in 
hair) used in Fig. 4 for plotting. It can be seen in this 
case that (i) measurement/estimation inaccuracies as 
large as a geometric standard deviation of 3 would be 
needed to make a "true" probit slope 6 relationship ap
pear to have a probit slope as low as 1, and (ii) some 
appreciable reduction in the apparent probit slope (from 
the input of 6 to the 4.6 seen in the GSD 1 "no error" 
line) is produced just by grouping the data into three 
ranges, even before introducing the estimation error. 
Analyses in which the data are disaggregated into more, 
smaller ranges create less distortion in the estimation of 
dose and response within the dosage categories and, 
thereby, give probit slopes that are closer to the "true" 
input slope. A further implication of this analysis is that 
if we are able to measure or estimate our uncertainties 

in the individual "doses" estimated in epidemiological 
studies, we may be able to at least make an approximate 
reconstruction of the slopes of the underlying dose-re
sponse relationships. 

5.2. Overall Interindividual Variability in a 
Continuous Outcome Parameter-Variation in 
Smoking-Related FEV, Loss 

Continuous data, in contrast, present the analyst 
with a different kind of opportunity. The analyst can 
either (i) convert the data back into quantal form, by 
imposing one or more numerical cutoffs to define a "re
sponse" or responses of graded severity (this nearly al
ways sacrifices some information), or (ii) utilize the 
continuous data directly. In the latter case, if the param
eter measures some function, the baseline spread of the 
popUlation in the continuous parameter shows directly 
how many individuals are how far from various degrees 
of impairment in that function. In addition, however, to 
the extent that individuals differ in the amount of pa
rameter change per unit exposure to the agent, the an
alyst should see an increasing spread of the parameter 
values as the dosage increases to higher levels. This is 
illustrated with simulated data for the case of cigarette 
smoking and chronic changes in "FEVl residuals"s as 
a function of smoking dose in Fig. 6. Real data,(2l,22) as 
analyzed by Silver and HaUis,(4,23) are similar in appear
ance. 

In that analysis we made use of cross-sectional data 
from the Harvard University Six Cities Study(2l) and a 
smaller earlier study in Tucson(22) to draw inferences re
garding human interindividual variability in response to 
cigarette smoke. In the former study, lung function tests 
were performed on 8191 men and women 25 to 74 years 
of age who were randomly selected from the six partic
ipating communities. Information on current and lifetime 
cigarette smoking habits was gathererd by questionnaire. 
Using these data we asked, 

• 	 Is the degree of spreading of FEVl residuals with 
increasing cigarette dose greater than would be 
expected on the basis of (a) the "baseline" var
iability of FEVl residuals seen in never-smokers 
and (b) the likely variability in cigarette dose 
within dose categories? 

• 	 What degree of interindividual variability is most 
compatible with the data (expressed as a geo
metric standard deviation for an assumed log

; An individual's FEV, is the amount of air that can be breathed out 
in 1 s-a common measure of lung function. 
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Fig. 7. Log likelihood distributions for Six CitieS(21) and Tucson(12) data 
sets, separately and combined. "Maximum-likelihood" estimates and 
95 % confidence limits (horizontal lines ) for each curve: Six Cities data 
set, 1.9 (1.78, 2.12); Tucson data set, 4.2 (3.00, 6.42); combined dala, 
2.1 (1.90, 2.24). 

normal distribution of individual rates of decline 
of FEV! per pack-year of cigarette smoking)? 
and 

• 	 What are the confidence limits around our esti
mates of interindividual variability in suscepti
bility to FEV! decline, considering each data set 
separately and combined? 

Figure 7 presents in capsule form the results of our 
analyses of the two data sets. The "p" values shown 
were calculated from X2 comparisons of observed vs. 
expected distributions of FEV! residuals, where the "ex
pected" distributions were calculated using a variety of 
different values for the geometric standard deviation of 
FEV! change per pack-year of smoking dose. The hor
izontal lines represent calculated 95% confidence range 
for each study separately and for a combined analysis 
of both studies. 

The results from analyzing each study indicated 
that a geometric standard deviation of 1 (no interindi
vidual variability) is incompatible with the data, but the 
estimates of gsd from are derived from our analyses of 
the two studies were unfortunately statistically incom
patible with each other. 

There are many challenges in analyses such as this. 
One must first do a very good job in estimating the re
lationships between the continuous variable under study 
(in this case FEVt) and various confounding factors. 
Moreover, in the unexposed group, it is crucial to be 
able to describe accurately the distribution of departures 
from the basic prediction equation for different individ
uals. (This is the "baseline variability" with which the 
spread of values in the exposed groups are later com
pared.) In the case of the FEVt residuals for lung func-

Hattis and Silver 

tion, we found it necessary to use a mixture of two 
normal distributions, rather than a single normal distri
bution, to describe adequately our baseline variabilities 
for each of the data sets. Even then, the analysis depends 
critically on the precise departures of the number of ob
servations at the tails of the fitted distributions from 
those expected. 

In the light of these uncertainties, we cautioned that 
our numerical results must be regarded as crude initial 
estimates. Our analysis is significant more for the ques
tion we raised, and the potential we show for using a 
commonly collected type of cross-sectional data for ad
dressing a central issue in the assessment of risk for 
noncancer effects, than for our final numbers. 

DISCUSSION 

We have illustrated both some of the problems and 
the un exploited opportunities for shedding light on dif
ferent human risks by assessing likely human interindi
vidual variability in parameters that contribute to 
susceptibility. Assessments of interindividual variability 
at various steps in the causal process from exposure to 
adverse effects are a vital component of risk assessments 
for noncancer effects. There is a considerable need to 
develop both more/better data and more sophisticated 
procedures for analysis in this area. 

One obstacle to such progress arises from a basic 
attitude that is common among researchers. To many 
experimentalists, interindividual variability in the sus
ceptibility of study subjects is an annoyance to be rid of 
to the greatest extent possible. Interindividual variability 
tends to increase the size of the sample of individuals 
that need to be studied to establish a causal connection 
between a particular exposure and a particular effect. 
Thus much toxicology is done on inbred strains of ani
mals, reared under carefully controlled conditions and 
subjected to exposures beginning at a defined age. 

Similarly, it is standard for at least the initial char
acterization of human pharmacokinetic parameters for 
drugs to be done in small groups of young adults, often 
of a single gender.(24) And it is fair to say that environ
mental epidemiologists as well, partly because of the dif
ficulty of utilizing human data for establishing 
relationships in the first place between exposures and 
adverse health effects, have rarely focused on the ques
tion of providing quantitative insights into the degree of 
interindividual variability in susceptibility to various 
hazards. 

Elsewhere we have pointed out that improved quan
titative understanding of interindividual variability in 

" 
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both beneficial and adverse effects of pharmaceuticals 
could make a substantial contribution to the better design 
of protocols for the practical use of drugs.(25) We have 
illustrated in this paper that uncertainties about the de
gree of interindividual variability make up an important 
part of our uncertainties in assessing risks for a wide 
variety of noncancer effects of environmental agents, 
and that, although the analysis of interindividual varia
bility poses substantial challenges both for the collector 
of data and for the analyst, it is feasible to extract some 
information on variability from available or obtainable 
human data. However, progress in these areas depends 
on turning interindividual variability from a complica
tion to be "controlled out" to the maximum extent fea
sible, to a primary object of study in its own right, as 
an important determinant of effects of possible social 
significance. 
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