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A New Method for Detennining Allowable Daily Intakes. CRUMP, K. S. (1984). Fundam. 
Appl. Toxieol. 4, 854-871. The usual method for establishing allowable daily intake (ADl) for 
a chemical involves detennining a no-observed-effect level (NOEL) and applying a safety factor. 
Even though this method has been used for many years, there appear to be no general guidelines 
or rules for defining a NOEL. The detennination of a NOEL is particularly uncertain for lesions 
which occur naturally in untreated ~imals. NOELs also have shortcomings in that smaller 
experiments tend to give larger values (this should be reversed because larger experiments can 
provide greater evidence of safety) and that the steepness of the dose response in the dose range 
where effects occur plays little or no role in the detennination of a NOEL. This paper proposes 
and illustrates the use of a "benchmark dose" (BD) as an alternative to a NOEL. A BD is a 
statistical lower confidence limit to a dose producing some predetennined increase in response 
rate such as 0.0 I or 0.1. The DD is calculated using a mathematical dose-response model. This 
approach makes appropriate use of sample size and the shape of the dose-response curve. The 
DD nonnally will not depend strongly upon the mathematical model used because the method 
does not involve extrapolation far below the experimental range. Thus the method sidesteps 
much of the model dependency often associated with extrapolation of carcinogenicity data to 
low doses. The method can be applied to either "quantal" data in which only the presence or 
absence of an effect is recorded, or "continuous" data in which the severity of the effect is 
also noted. © 1984 Society of Toxicoiosy. 

I. INTRODUCTION (ACGIH, 1976). The term "daily 
(DIL) has also been employed. In 

A common approach to quantifying permis we win refer to ADIs as a matter 
sible human exposure to a toxic agent is to nience, although the discussion will 
establish a no-effect level using experimental all such estimates. The calculation 
animal data and then to apply a safety factor by applying a safety factor to a 
or uncertainty factor, as it is sometimes will be referred to as a NOEL-SF 
called-to arrive at a permissible exposure In recent years, ADIs for car'ClIlIQg~eJI 
level for humans. Allowable daily intakes for sometimes been calculated by 
chemicals (ADIs), such as were employed by matical models to experimental 
EPA in calculating water quality criteria (EPA, data. These models are used to 
1980), furnish one example of such calcula dose corresponding to some sJ)eljfie 
tions. Threshold limit values (TLVs), which amount of additional risk. EPA (1 
are provided by the American Conftlrence of this approach to set water quality 
Government and Industrial Hygienists (AC carcinogens, and used a NOEL-SF 
GIH) for many chemicals to which workers for noncarcinogens. This dichotomy 
are exposed, are calculated in a similar fashion upon the supposition that car'cinlQglm 

likely to have a threshold; 
NOEL-SF approach would be 

t Prepared for U.S. Environmental Protection Agency, 
because it assumes the existence ofaEnvironmental Criteria Assessment Office, Contract 68

03-3111, Work Assignment 15. The object of this paper is to 
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UlilU....... and statistical approaches to 
ADIs for effects other than cancer. 
section some potential shortcom

NOEL-SF approach are discussed. 
WU'WllJlJ; section describes some math-

models and related statistical meth
methods have two features that are 
novel. First, some of the models 

the possibility of thresholds below 
effect will occur. Second, methods 

for application to "severity" or 
, data rather than just on inci

In the next section, a recommen
made for replacing the NOEL in the 

approach with a "benchmark 
benchmark represents a statistical 

limit on the dose corre
to a small increase in effect over the 

level. The amount of increase in 
to define the benchmark is small 

that the estimate ofthe benchmark 
reflect the shape ofthe dose-response 

it is large enough so that the lower 
limit will not depend critically 

mathematical model used in its cal
A number ofexamples are presented 

the calculation ofbenchmark doses 
them with NOELS. 

TIES WITH THE NOEL
FACTOR METHOD 

problem one faces with the NOEL 
one of definition: Just what con

NOEL? For effects which are un
because they do not occur in un

, .....u<U1). such as acute toxicity or the 
of rare tumors, determination of 

can be reasonably straight-forward; 
is seen in any animal a NOEL is 

a NOEL is not deter
less well-defined effects, such as 
cloudy swelling of the liver, de
of a NOEL requires the use of 

This problem is compounded when 

considering effects which have nonzero back
ground levels. Consider, for example, liver 
weight; all animals have nonz~ro background 
levels ofthis "effect." Liver weights constitute 
a continuous measure (as opposed to "inci
dence" or "quantal" data) which can be ob
tained for each animal. It might happen that 
the average liver weight in some, or even all, 
of the treated groups is above that of the con
trol group. Since this coul~ happen by chance, 
usually the NOEL is taken to be the largest 
dose for which the increase in liver weight is 
not statistically significant. However, such a 
decision can seem rather arbiqary when there 
is a smooth dose-response trend which over
laps the region where the inctease is not sta
tistically significant. 

A NOEL must be one of the experimental 
doses. 2 This constraint can appear unneces
sarily restrictive in some cases. Consider, for 
example, an experiment to detect liver effects 
which involves three dose levels. Suppose at 
the highest dose level there are very severe 
effects, at the middle there are barely discern
ible effects, and at the low dose no effects at 
all are seen. Then the low dO$e likely will be 
designated the no-effect level even if the dose
response from the middle to high dose indi
cates that a much higher dose (one slightly 
less than the middle dose) would have had no 
discernible effect. Furthermore, if the data at 
the lowest dose had not been available, this 
experiment could not be used at all to define 
a no-effect level. 

Effect of Sample Size 

It would be appropriate fOf larger studies 
to tend to produce larger ADls because they 

2 A NOEL is not an inherent property of the animal 
system but depends upon the expeJimentaJ design and 
outcome. Thus it represents, in statistical terms, a statistic 
or an estimate ofa "true no-effect levtl." This latter term 
refers to the highest dose which is absQlutely safe and thus 
is an inherent property of the animal system, or, in sta
tistical terms, a parameter. For an effect for which no 
threshold exists, the "true no-effect level" is zero. 
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involve less random variation. However, the 
NOEL approach has the opposite tendency. 
A larger study has a better chance of showing 
a statistically significant result and thus will, 
on average, produce a smaller ADI. As an 
illustration, suppose at the control and one 
treated dose in a study involving 100 rats per 
dose, the resulting mean liver fat per aqimal 
was 15.1 g in the control group and 18.4 g in 
the treatment group with a standard deviation 
of 10.0 g in each group. Then the t statistic 
for a difference between the two groups is 3.3, 
which is significant at the I % level. However, 
if the identical results came from a study in
volving only 25 rats per group, the t statistic 
is 1.14, which is not significant at the 10% 
level. Thus, a NOEL would possibly be esti
mated for the smaller study but not the larger. 

Therefore, rather than encouraging larger 
studies to demonstrate greater evidence of 
safety, the NOEL-SF instead penalized pro
ponents of chemicals for conducting large 
studies. This topsy-turvy state of affairs has 
made it necessary for regulatory agencies to 
set minimally acceptable sample sizes, Quite 

,I 	 naturally, many studies use these minimal 
values. 

Utilization ofDose Response 

A NOEL is determined solely by infor
mation relating to whether or not an effect 
was observed; the magnitude of positive effects 
and relationships among the effects at the var
ious doses (Le., the dose-response ttend) is 
largely ignored. Consider for example the hy
pothetical data in Fig. 1. Experiment A shows 
a sharply increasing dose response. Experi
ment B shows a much flatter dose response, 
which is, in fact, consistent with a linear re
sponse through the origin. It appears, because 
of the sharp decrease in response with de
creasing dose in Experiment A, as opposed to 
Experiment B, that the NOEL for A should 
be larger than the NOEL for B. However, be
cause the response at dose d2A was barely sig
nificant, the NOEL for Experiment' A is dlA 

x  r..ultl from experiment A 

0 resuHi from experiment B 

d2fj- NOEL from e.perimonl B 

.!! 

"E 

~ 

Dose 

FIG. I. Hypothetical responses with 95% 

limits for two experiments. 


which is less than the NOEL d2B for 
ment B. The dose-response methods 
discussed in later sections are capable 
utilization of dose-response trends. 

The NOEL-SF Approach Can Entail 

essary Restrictions and Expense 


Consider the following scenario: A 
wishing to market a new product' 
a thorough toxicological testing 
required by the regulatory agency 
Included in this program is a 2-year 
toxicity and carcinogenesis bioassay, 
two-generation reproduction and 
study. Each study involves three trelUm,eJ 

one control group with doses and 
approved by the agency. The reprooluctlO1 
teratology study is negative. In fact, the 
animals reproduce better than the 
imals. This is apparently related to 
that the control animals are obese. The 
study likewise shows no effects of 
except for a dose-related weight 
which is apparently due to the fact 
animals were fed the chemical in 
concentrations that their food was 
As illustrated in Fig. 2, this weight loss 
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s'udy 

Dose 
Hypothetical average weights with 95% conti· 

from two studies (see text for description). 

'oose-·respolnse trend and the effect is 
significant at the lowest dose tested. 
rules that a no-effect level has not 

and thus there is no basis 
'...........,,'l". a ADI. The company is then 

to conduct another 2-year study. This 
uses three treatment levels, the 

coincides with the lowest used 
1I'e'l'lOllS study. A dose-response trend 
v"'....uu,"" in the follow-up study as il

in Fig. 2. The data at the highest 
almost exactly the results in 

study at that dose level. The weight 
middle dose in the follow-up study 

significant and the average weight 
dose is comparable to that of the 

The agency rules that the low 
. the follow-up study is a NOEL; an 

calculated by applying a safety 
the company is finally allowed to 
product. 

2 shows that the follow-up study was 
and only verified the dose-re
of the initial study. If dose-re

had been used for determining 
extra expense ofthe follow-up study 

delay could have been avoided. 

Arbitrariness ofSafety Factor 

The NAS Safe Drinking Water Committee 
made the following recommendations for un
certainty factors (safety factors): 

I. Valid experimental results from studies on 
prolonged ingestion by man with no indication 
of carcinogenicity. 

Uncertainty Factor = O. 

2. Experimental results of studies of human 
ingestion not available or scanty (e.g., acute ex
posure only). Valid results of long-term feeding 
studies on experimental anim~s or in the ab
sence ofhuman studies, valid animal studies on 
one or more species. No indication of carci· 
nogenicity. 

Uncertainty Factor 100. 

3. No long·term or acute human data. Scanty 
results on experimental animals. No indication 
of carcinogenicity. 

Uncertainty Factor = 1000. 

These uncertainty factors are used in every 
case as a divisor of the highest reported long· 
term dose which is observed not to produce any 
adverse effect. (NAS, 1977) 

The application of a lOO-fold safety factor to 
results from long-term animal studies is a long
standing practice. It has been interpreted as 
resulting from the product of two IO-fold 
safety factors: one factor to acCount for animal
to-animal variation, and another to translate 
results from animal to man (Weil, 1972). 
However, the use of the lOO..fold safety factor 
probably developed simply because some op
erational basis for setting allowable exposures 
was needed and a factor of 100 seemed "rea
sonable" or "prudent." The fact that humans 
have 10 fingers undoubtedly played a role in 
the specific factor selected. 

When a safety factor is applied it is im
plicitly assumed that a threshold exists and 
the resulting ADI is below the threshold and 
hence safe. However, wheth~r a threshold ex
ists for a specific effect and, if so, whether the 
ADI is below that threshold are open to ques
tion. Also, as economic CO$ts of regulations 
become more critical, there is increasing need 
for balancing the level ofsatety provided with 
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the costs involved. The NOEL-SF approach 
does not lend itself to cost-benefit analyses. 

III. FITTING DOSE RESPONSE 
MODELS TO TOXICOLOGICAL DATA 

Quantitative toxicological data are basically 
of two types: quantal and continuous. Quantal 
or incidence data specify the number of an
imals affected, but not the degree of harm. 
The numbers ofanimals with tumors or some 
genetic anomaly are examples ofquantal data. 
On the other hand, with continuous data the 
level of harm is specified for each animal. Or
gan weights, triglyceride levels in liver, and 
serum measurements are examples of effects 
that are usually recorded as continuolls data. 

Dose Response Methods for Quantal Data 

Quantal data from a toxicological experi
ment can be represented as a collection of 
triplets (Nj , Xi, di)-one triplet for e~h treat
ment or control group--where Ni is the num
ber of animals in the ith group, Xi is the num
ber of affected animals, and di is the dose. Let 
P(d) represent a dose-response model appli
cable to quantal data, where P(d) is the prob
ability that an effect will occur in an animal 
subject to a dose d. The parameters of the 
model can be estimated by fitting the model 
to quantal dose-response data using maxi
mum likelihood procedures. A number of 
dose-response models have been suggested for 
use with cancer data. Some of these, such as 
the one-hit, multistage, multihit, and Weibull 
models can be derived from detailed assump
tions about carcinogenic mechanisms. Other 
models, such as the probit or logit models, 
can be thought of as representing: the distri
bution of individual tolerances in a large pop
ulation (Krewski and Van Ryzin, 1981). 

In the next section some ways arl! suggested 
for applying mathematical modflls to non
cancer data. The toxic endpoints to which 

these methods could be applied are 
diverse mechanisms, most ofwhich 
understood. Therefore, it seems that 
not be fruitful to attempt to ue"p.I""" 
response models from detailed 
regarding these mechanisms. Instead 
pose the use of relatively simple ' 
els. For illustrative purposes we shall 
the following models: the quanta! 
regression (QLR) model 

P(d) = e + (l - e){ I - exp[-q,(d

= e for d < <1Q 

where 0 ~ e ~ I, <1Q "" 0, q) "" 0; the 
polynomial regression (QPR) model 

P(d) = e + (l - e){ I - exp[-q)(d 

- ••• - q'flJd - doiJ} 

= e for d < do 

where 0 ~ e ~ I, do "" 0, qi "" 0 
... , k; the quantal Weibull (QW) 

P(d) = e + (l - e)[l - exp( 

where 0 ~ e ~ I, a "" 0, and k "" I; 
log-normal (LN) model 

where 0 ~ e ~ I, b;;;. I and N is the 
normal distribution function. 

Readers familiar with the ""'.........'Vl 

dose-response literature will recognize 
(2) as slightly modified versions of, 
tively, the one-hit and multistage 
applied to carcinogenesis data 
Van Ryzin, 1981). Each has been 
here to include a threshold dose do; 
low this threshold produce no 
these models allow for the DO:ssit)illt 
thresholds could exist for some 
ever, the models could be applied 
threshold fixed to O. Although we 
done so, thresholds could also be . 
the Weibull and log-normal models. 



859 DETERMINING ALLOWABLE DAILY INTAKES 

that the restrictions k? I and b ? I 
for the Weibull and log-normal 

respectively. Some restrictions of this 
necessary with these models; oth
models can exhibit very extreme 

W1V'!)-l'""",u] implausible behavior. The re
k? 1 was selected for the Weibull 

because k < I corresponds to a su
curve shape which is implausible for 

effect(Crump, (984). Although 
lPl'-',.IVU b ? 1 for the slope parameter 
ino_l~nf'1M!:l1 model does not have a strong 

basis, it does have a precedent, as 
Itec()mrnen.aea by Mantel et al. (1975) 

1\.e-')I~V"'JC Methods/or Continuous Data 

!iV!:l~1!:lf1,nn about a nonzero value in the 
There has been little experience 

dose-response models to such 
possible to convert continuous data 
data by considering all animals with 
beyond a particular value as "af

all others as "unaffected." How-
procedure entails a considerable loss 

,-_" ____ as well as requiring the arbi
of a cut-off value. The following 

more complete use ofthe data. 
~"""IVU will be based upon the sup-

the responses in an animal group 
a dose d; are normally distributed 

m(d;) and variance a}. There is 
""n1'''''''~'' reason and a pragmatic rea
assuming the normal distribution. 
the Central Limit Theorem of prob

(Loeve, 1963) the sample means 
...·~.""UJl..."'IJ normally distributed for 

regardless of the form of the 
distribution. Second, with the nor

""""'uV.lI. maximum likelihood meth
applied knowing only the doses 

dg, the numbers of animals at each 
.. , ng , and the corresponding sample 

means and standard errors (XI, Sl), (X2, S2), 
... , (xg , Sg). If a non-normal distribution 
were assumed, maximum li~elihood methods 
would require knowledge *f the individual 
animal responses, which usw4Iy are not readily 
available. The choice of tile normal distri
bution is not a critical deci$on as this distri
bution only determines the error structure, 
and not the dose response. The mean function 
m(d), which represents the average response 
at a dose d, determines the dose response. We 
do not require any assumptions regarding the 
variances (other than that they are finite); it 
is not necessary to assume, for example, that 
the variances in the different dose groups are 
all equal. 

For illustrative purposes, we will consider 
the following forms for m(d): the continuous 
linear regression (LCR) model 

m(d) = c + ql(d do) for d? do 

=c for d < do (5) 

where do ? 0, but c and ql are unrestricted; 
the continuous polynomial regression (CPR) 
model 

m(d) = c + ql(d - do) +... + q,Jd - dO)k 

for d? do 

c for d < do (6) 

where do ? 0 and the q;'s a~e restricted to be 
either all positive (increasirig dose response) 
or all negative (decreasing dQse response); and 
the continuous power (CP) :model 

m(d) = c + ql(d - dol. (7) 

These models are analogous to (I), (2), and 
(3), which were suggested for use with quantal 
data. 

With both quantal and continuous data, in 
addition to the selection of a dose-response 
model, the proper use ofsta~stical confidence 
limits is also of critical i~portance. Often, 
different confidence limit prQcedures yield dif
ferent results; this makes it ~mportant to use 
the same procedures when comparing dose
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response models. A standard method for 
computing confidence limits is to base them 
upon the asymptotic normal distribution of 
maximum likelihood estimates. However, 
these confidence limits have been shown to 
behave poorly in a low dose extrapolation set
ting (Crump and Masterman, 1979; K,rewski 
and Van Ryzin, 1981; Crump and Howe, 
1983); the upper and lower limits are often 
too close together to be believable. Further, 
these limits are not invariant under parameter 
transformations, and different transformations 
applied to the same model at low dOses can 
yield vastly different confidence bounds. Cox 
and Lindley (1974) noted these difficulties in 
a more general context, and argued tJilat con
fidence limits based upon the asymptptic dis
tribution of the likelihood ratio statistic "can 
be expected to behave much more sensibly" 
than those based upon the asymptotic nor
mality of maximum likelihood estimates. 
Crump and Howe (1983) reviewed confidence 
limit procedures for use in dose...Jresponse 
evaluations and recommended lim~ts based 
upon the distribution of the likelih(>Od ratio 
statistic as the method ofchoice. This method 
for constructing confidence limits is outlined 
in the Appendix and will be used exclusively 
throughout this paper. 

IV. THE BENCHMARK-SAFETY 

FACTOR METHOD FOR 


COMPUTING ADIs 


In this section we examine the implications 
of modifying the NOEL-SF metQod for cal
culating ADIs by replacing the NOEL by a 
"benchmark dose" (BD) calculated using the 
methods described in the last section. A BD 
is defined as a lower statistical con6dence limit 
for the dose corresponding to a llpecified in
crease in level of health effect over the back
ground level. The increased level ofeffect upon 
which the BD is based would be n~ the lower 
limit of the experimental range; j.e., near the 
lower limit of increases in health ¢ffects which 
can be measured with reasonable accuracy in 
toxicological studies. This valueis estimated 

to be something on the order ofa 10% 
from background at typical 
Benchmark doses calculated in this 
will have several advantages over 
They will reflect the dose-response 
a much greater degree than NOELs. 
also make more reasonable use of 
(larger experiments will tend to nrn<1."",,' 

BDs, which is not true of NOELs). It 
be necessary to define a NOEL in 
determine an ADI. Because these 
respond to risks in the experimental 
their value will not depend strongly 
particular dose-response model used 
calculation. 

For quantal data we define the BD 
dose d which corresponds to a speclb~e() 
for the extra risk 

[P(d) - P(O»)/[ I - P(O»). 

Extra risk can be interpreted as the 
ofan effect at dose d given that no 
have occurred in the absence of the 
interpretation is valid irrespective 
there is independent action between 
ground and the stimulus. Extra 
greater weight upon the same 1ncJr~;e.: 
for a common lesion than for a rare 
For example, it takes an increase of 
the background level for a lesion 
background rate to attain a 10% 
compared to only a 5% increase for 
with a 50% background rate. Because 
property, some may prefer using the 
risk P(d) - P(O) to extra risk. 

For continuous data we define the 
be a dose d which corresponds to a 
amount ofabsolute change in the 
relative to the mean value in the 
the dose-i.e., the dose d cOlresiPoI10lt 
specific value for the "extra response" • 

m(d) - m(O) 

m(O) 

Other terms, such as the standard 
responses in control group, could be 
the denominator in place of m(0) to 
this expression. 
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TABLE I 

QuANTAL DATA USED TO ILLUSTRATE QUANTITATIVE DosE-REsPONSE METIIQOOLOOY 

Fetal anomalies in rats 

0 5 to 20 
0/167 0/132 1/138 14/81 

(TCDD) (Khera and Ruddick, 1973) 
Intestinal anomalies in rat fetuses 

0 0.125 0.25 
0/24 0/38 1/33 

(TCDD) (Murray et al., 1979) 
Rats dead at birth 

0 0.001 
22/318 16/224 

14th rib anomaly in rat fetuses 

0 10 20 
0/80 4/19 8/91 

Type A (Food Research /r1St., Univ. of Wisconsin) (FSC, 1978) 
Death due to Botulinum 

.01 .015 
0/30 0/30 
.034 .037 
11/30 10/30 

of Benchmark Doses Calculated 
Data 

application of the benchmark 
quantal data, we have applied it 

ofquantal dose-response data, in
-...~.,....._" to ethylenethiourea (ETU); 
"ilCrUOf(>d.lbenz()-~l1oxm (TCDD) 
. sets); hexachlorobenzene (HCB); 

toxin-Type A (BT -A). The 
in Table 1. A summary of the 

four models to these data is given 
Graphs of the data, along with the 

.020 
0/30 
.040 
16/30 

.!: 

•.!!
;;
5 5 
t: 

" 

o 

.024 
0/30 
.045 

26/30 

40 
142/178 

0.5 
3/31 

40 
15/87 

.027 
0/30 
.050 

26/30 

00... (mlJ(klJ) 

861 

80 
24/24 

1.0 
3/10 

0.01 
17/100 

60 
25/96 

.030 
4/30 

QPR model (which was the only 
fit all five data sets adequately) are 

3-7. Doses corresponding to 
of extra risk are furnished in 

FIG. 3. Probability of fetal ano~a1y in rats (Khera et 
al., 1977) from exposure to ETU! with 90% confidence 
bars and best-fitting polynomial regression model. 
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TABLE 2 


SUMMARY OF FITS OF MODElS TO QUANTAL 

DATA IN TABLE I 


Data Model" x 2 df pvalue 

ETU QLR 
QPR 
QW 
LN 

17 
0.0 
1.3 
0.46 

3 
2 
2 
2 

0.0007 
1.0 
0;73 
0.93 

TCDD (Khera and 
Ruddick, 1973) 

QLR 
QPR 
QW 
LN 

0.17 
0.014 
0.32 
0.23 

2 
I 
3 
3 

0.92 
0.91 
0.85 
0.89 

TCDD (Murray 
et al., 1979) 

QLR 
QPR 
QW 
LN 

0 
0 
0 
0 

0 
0 
0 
0 

HCB QLR 
QPR 
QW 
LN 

0.11 
0.09 
0.11 
0.31 

2 
I 
2 
2 

0.95 
0.76 
0.95 
0.86 

Botulinum toxin QLR 
QPR 
QW 
LN 

7.0 
4.4 

162 
159 

8 
7 
8 
8 

0.54 
0.73 
0.00001 

.0.00001 

4 Code: QLR = quantal linear regressipn, QPR 
=quanta! polynomial regression, QW =quanuil Weibull, 
LN "" log-normal. 

The ETU data involve a sizable number of 
animals and are characterized by a NOEL at 
5 mg/kg followed by a steeply rising dose re
sponse that reaches 100% response a~ 80 ppm. 
Each of the models except the QLR model 
fits these data quite adequately. AIsb, except 
for the QLR model, MLEs and 10\fer confi
dence limits for doses corresponding ~o various 
levels of increased risk computed using the 
various models agree rather closely for extra 
risks of 0.1, 0.05, and 0.01. However, doses 
corresponding to extra risks of 10-6 differ by 
larger amounts. 

The Khera and Ruddick (1973) TCDD data 
on intestinal anomalies involve a dose-related 
increase in response for doses laller than a 
NOEL of 0.125 p.g/kg. However, I the confi
dence intervals on responses at the experi
mental doses are wider than those for the ETU 

CRUMP 

e 
.$ .. 

.!! 
c; 
E.3 

.. ~ 
i 
c; 

.. '" 
! 

o 

Doses (U9/kOI 

FIG. 4. Probability of intestinal anoml!ly in 
from exposure to TCDD (Khera et al., 1973), 
confidence bars and best-fitting polynomial 
model. 

data (Figs. 3 and 4). As a result, 
the models fit these data quite well 
Predictions of the four models 
closely down to extra risks of 0.0 I 
considerably at extra risks of 10-6• 

!!.. 

0:: 

o 

o ,001 

Doses (uo I kg/dayI 

FIG. 5. Probability of fetal death in rats from 
to TCDD (Murray et al., 1979), with 90% 
and best-fitting polynomial regression model. 
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TABLE 3 

DoSES CORRESPONDING TO GIVEN LEVELS OF EXTRA 


RlSK FOR QUANTAL ETU DATA a 


i 

Dose (mg/kg) 

95% 99% 
Model Extra risk MLE lower lower 

20 

Dolt. (mil/kill 

flU"""''''), of 14th rib anomaly from exposure 
1974), with 90% confidence bars and 

polllDolmai regression model. 

Murray et al. (1979) TeDD data 
survival and the Khera (1974) 

on rib anomalies are nearly linear 
well by all four of the mod

calculated from the models corre· 
extra risks of 0.1, 0.05, and 0.01 

close agreement. 
on probability of death after ex

Toxin (FSe, 1978) ex

.Or 015 02 .024 D21'.03 03403704 .045 .05 

008" (nol 

ofdeath from exposure to botulinum 
Research Inst., Univ. ofWisconsin, 

With 90% confidence bars and best·fitting 
model. 

QLR 
QPR 
QW 
LN 

QLR 
QPR 
QW 
LN 

QLR 
QPR 
QW 
LN 

QLR 
QPR 
QW 
LN 

0.1 

0.05 

0.01 

1 X 10-6 

12.2 
16.4 
17.9 
17.1 

11.0 
13.2 
14.5 
14.8 

10.1 
10.2 
8.9 

11.2 

9.9 
9.4 

5.9-1 
4.2 

11.8 
13.9 
15.7 
15.3 

10.6 
11.6 
12.2 
13.0 

9.7 
7.2 
7.0 
9.5 

9.5 
4.0-1 
2.9-1 

3.1 

11.6 
13.2 
14.7 
14.6 

10.4 
11.0 
11.3 
12.2 

9.5 
6.0 
6.2 
8.8 

9.2 
1.5-3 b 

2.1-1 
4.7 

a Source. Khera, 1977. 

b 1.5-3 means 1.5 X 10-3• 


TABLE 4 

DosES CORRESPONDING TO GIVEN J;,EVELS OF EXTRA 


RISK FOR QUANTAL TeDq DATA" 

i 

DoSe (mg/kg) 

95% 99% 
Model Extra risk MLE • lower lower 

QLR 
QPR 
QW 
LN 

0.1 4.6-1 b 

5.0-1 
5.2-1 
4.9-1 

3.2-1 
3.2-1 
3.6-1 
3.5-1 

2.8-1 
2.8-1 
3.0-1 
2.9-1 

QLR 
QPR 
QW 
LN 

0.05 3.1-1 
3.3-1 
3.6-1 
3.5-1 

2.1-1 
2.2-1 
2.0-1 
2.1-1 

1.5-1 
1.5-1 
1.5-1 
1.4-1 

QLR 
QPR 
QW 
LN 

0,0/ 2.0-1 
1.7-1 
1.6-1 
1.8-1 

5.7-2 
4.9-2 
4.3-2 
6.4-2 

3.0-2 
3.0-2 
2.9-2 
3.0-2 

QLR 
QPR 
QW 
LN 

1 X 10-6 1.7-1 
1.3-1 
1.6-3 
2.0-2 

7.8-3 
4.9-6 
4.3-6 
[.4-4 

3.0-6 
3.0-6 
2.9-6 
1.1-4 

a Source. Khera and Ruddick, 1973. 
b 4.6-1 means 4.6 X 10-1

• 
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TABLE 5 TABLE 6 
DosES CORRESPONDING TO GIVEN LEVELsDosES CORRESPONDING TO GIVEN LEVELS OF EXTRA 

RISK FOR QUANTAL HCBRISK FOR QUANTAL MURRAY POSTNATAL SURVIVAL 
DATA" 

Dose u.gjkgfday) 
Model Extra risk MLE 

Model Extra risk MLE 
95% 
lower 

99% 
lower 

QLR 
QPR 

0.1 21.7 
22.3 

17.4 
17.4 

QLR 
QPR 
QW 
LN 

0.1 9.3-3 6 

9.6-3 
9.3-3 

5.3-3 
Same as QLR 

5.3-3 
4.6-3 

4.4-3 

4.4-3 
3.5-3 

QW 
LN 

QLR 
QPR 
QW 

0.05 

22.0 
21.0 

10.6 
11.0 
10.8 

17.4 
14.2 

8.5 
8.5 
8.5 

QLR 0.05 4.9-3 2.6-3 2.1-3 LN 11.1 6.1 
QPR 
QW 
LN 

6.2-3 
5.5-3 

Same as QLR 
2.6-3 2.1-3 

1.5-3 

QLR 
QPR 
QW 

om 2.1 
2.2 
2.2 

1.7 
1.7 
1.7 

QLR 0.01 1.6-3 6.1-4 4.2-4 LN 3.4 1.3 
QPR Same as QLR QLR I x 10-6 2.1-46 1.7-4 
QW 2.3-3 5.1-4 4.2-4 QPR 2.2-4 1.7-4 
LN 2.0-3 4.1-4 3.2-4 QW 2.6-4 1.7-4 

QLR 1 x 10-6 8.0-4 5.1-8 4.2-8 LN 5.0-2 4.8-3 

QPR Same as QLR "Source. Khera, 1974. 
QW 9.6-6 5.0-8 4.2-8 62.1-4 means 2.1 x 10-.4. 
LN 6.0-5 1.5-6 1.2-6 

TABLE 7
• Source. Murray et al.. 1979. 

DoSES CORRESPONDING TO GIVEN LEVELSb 9.3-3 means 9.3 x 10-3• 

RISK FOR QUANTAL BoTULINUM ToXIN 

hibit a very rapid rise in response for doses 

larger than the NOEL of 27 ng. Neither of 

95% 

Model Extra risk MLE lower 

the nonthreshold models-QW or LN-fit 
QLR 0.1 3.0-26 2.8-2these data. However, both the QLR and QPR 
QPR 3.0-2 2.9-2models fit quite adequately (Table 2)~ All four QW 3.3-2 2.7-2 

of the models give comparable doSes corre- LN 3.3-2 3.1-2 
sponding to given extra risk levels, even down 

QLR 0.05 2.9-2 2.8-2to levels of extra risk of 10-6
• 

QPR 2.8-2 2.9-2 
Table 8 compares NOELs with .BDs cor- QW 3.0-2 2.2-2 

responding to three levels of extra ~sk. With LN 3.1-2 2.9-2 
the exception of the HCB data, the NOELs 

I • QLR 0.01 2.9-2 2.7-2 
generally correspond to the BDs for pxtra nsks QPR 2.7-2 2.5-2 
between 0.01 and 0.05. However, ~ese were QW 2.4·2 1.6-2 
all reasonably large studies and involived effects LN 2.9-2 2.5-2 

not seen in control animals; for smaller studies QLR I x 10-6 2.9-2 2.7-2 
or for effects which can occur spontaneously, QPR 2.7-2 2.3-2 
NOELs are liable to be larger relative to QW 7.3·3 1.8-3 

LN 2.0-2 1.6-2the BDs. 
The data for HCB illustrate a particular ad- • Source. FSC, 1978. 

vantage the benchmark approach bas over the 63.0-2 means 3.0 x 10-2• 
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TABLE 8 


COMPARISON OF BENCHMARK DoSES wrrn NOELS FOR QUANTAL DATA 


Benchmark doses.) corresponding to 
% extta risk 

Data set Dose units NOEL 10% 5% 1% 

mg/kg 5 13.9 11.6 7.2 

I-Ig/kg 0.125 0.32 0.22 0.049 
I-Ig/kg/day 1.0-3 5.3-3 2.6-3 5.1-4 
mg/kg NOb 17.4 8.5 1.7 

ng 0.027 0.029 0.Q27 0.025 

doses 95% lower limits derived from QPR model. 
not determined. 

Since a NOEL was not de
the NOEL-SF method can not be 
these data to determine an ADI. 
these data would present no dim

determining an ADI from a BD. 

of Benchmark Doses Calculated 
Data 

9 contains dose-response data on 
in rats after exposure to carbon tet

rachloride (Alumot et al., 1976), mean body 
weights in rats after exposure i to hexachloro
butadiene (HCBD) (Kociba en al., 1977), and 
thymus weights in rats aft4r exposure to 
TCDD (Murray et al., 1979). Figures 8-10 
contain graphs of the responses and 90% con
fidence intervals, along with th¢ dose-response 
curve obtained by fitting the c~ntinuous poly
nomial regression (CPR) m04el to the data. 
In the Kociba et al. data numbers of animals 
were not provided and the tQtal number on 

TABLE 9 


CONTINUOUS DATA USED TO ILLUSTRATE QuANTITATIVE DoSE-REsPONSE METHOdoLOGY 


tetrachloride (Alumot et aI., 1976) 
Average liver fat in male rats 

o 150 275 520 
61.0 ± 	 6.6 71.0 ± 6.0 136 ± 21 229 ± 49 

6 6 6 6 

'ilUOI'ooutadiene (HCBD) (Kociba et aI., 1977) 
Mean body weight of male rats 

o 0.2 2.0 20.0 
586 ± 43 	 568 ± 53 557 ± 52 494 ± 15 

90 40 40 40 

letr.achlroro.rJibt~nzo"p-Giioxin (TCDD) (Murrayet aI.. 1979) 

Thymus weights of male offspring, h generation 


o 	 0.001 (tOI 
0.19 ± O.ot 0.19 ± 0.06 0.08'± 0.02 

5 5 4 
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o 150 275 520 

Doses (ppm in diet): 

fIG. 8. Mean liver fat in rats exposed to carbon tet
rachloride (Alumot el al., 1976), with 90% ,confidence 
bars and best-fitting continuous linear regresSion model. 

test was assumed. Also, values reqorted by 
Kociba et al. as "s.d." were assumed to mean 
"s.e." As Table IO shows, all of tQe models 
fit each of these data sets adequate~y. 

Tables 11-13 show that the estimates of 
doses corresponding to given levels of extra 
response calculated using the four $odels are 

600 

.. 
c; 

IE 

'0 400 

o 

02 2 20 

Oo.e. (mo/ko/day) 

fIG. 9. Mean body weights in rats expOsed to HCBD 
(Kociba el al., 1977), with 90% conftdencc/ bars and best
fitting continuous linear regression model. 

CRUMP 

'"-


o 001 

Doses (uo/ko/day) 

FIG. 10. Mean thymus weights of male 
generation (Murray et al., 1979), with 90% 
bars and best-fitting continuous linear 

quite similar. In fact, 
confidence limits are almost identical 
12-14. In Table I I the 95% lower 
by as much as a factor of 2 for an 
sponse of 0.0 I and by larger 
smaller values of extra response. 

Table 14 compares BDs with 
the continuous data. Question 
eluded beside the NOELs because 
clear when a NOEL has been ne1.ert1nml 

example, although fur the data for 
rachloride the average liver fat in I 
animals is not statistically different 
of control animals, there is an lnC:re<lL'>I: 

ppm that appears to be part ofa OOSe-It! 

trend (Fig. 8). For these three data 
BD corresponding to an extra 
are roughly comparable to the 

V. DISCUSSION 

In this paper we have examined 
native to the NOEL-SF approach 
volves fitting a mathematical model 
cological dose-response data. The 
used to define a BD, which rf'n,r~~nu 
tisticallower limit on the dose cnlrres~ 
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TABLE \0 

SUMMARY OF FITS TO MODELS TO CONTINUOUS DATA IN TABLE 9 

Model 4 

CLR 
CPR 
CP 
CP (no threshold) 

CLR 
CPR 
CP 
CP (no threshold) 

CLR 
CPR 
CP (no threshold) 

F statistic 

0.29 
0.29 
0.29 
1.25 

0.14 
0.14 
0.14 
0.14 

0 

0 

0 


df 

(1, 20) 
(I, 20) 
(1,20) 
(2,20) . 

(2,206) 
(2, 206) 
(2,206) 
(2, 206) 

p value 

NS b 

NS 
NS 
NS 

NS 
NS 
NS 
NS 

NS 
NS 
NS 

= continuous linear regression, CPR = continuous polynomial regression, CP = continuous power. 
significant (p value greater than 0.1). 

increase in risk between 1 and 
suggested that such a BD replace 

NOEL. We believe this ap.

proach mitigates 
in Section II 
method. 

several ofthe 
concerning the 

~ro raised 
NOEL-SF 

blems 

TABLE II 
TABLE 12 

DosES CORRESPONDING TO GIVEN LEVELS OF EXTRA
ORFtESI'ONDlNIG TO GIVEN LEVELS OF EXTRA RESPONSE FOR CONTINUOUS HCBD ,DATA ON MEAN 

CoNTINUOUS CARBON TETRACHLORIDE BoDY WEIGHTSa 

Dose (ppm) 
Extra 

response MLE 95% lower 

0.1 

0.05 

0.01 

0.001 

141 102 
141 63 
141 67.2 
95.6 47.1 

134 94.1 
134 37.6 
134 44.7 
68.0 29.2 

129 87.9 
129 9.48 
129 17.3 
30.8 9.53 

127 86.5 
127 1.03 
127 4.4 

9.90 1.89 

Model 

CLR 
CPR 
CP 
CP (no threshold) 

CLR 
CPR 
CP 
CP (no threshold) 

CLR 
CPR 
CP 
CP (no threshold) 

CLR 
CPR 
CP 
CP (no threshold) 

Extra 
response 

0.1 

0.05 

0.01 

0.001 

odses (mg/kg/day) 
! 

ML~ 95% lower 

14.1 9.14 
14.1' 9.14 
14.1 9.14 
14.1 9.14 

7.03 4.57 
7.03 4.57 
7.00 4.57 
7.03 4.57 

1.41 9.14-1 b 

1.41' 9.14-1 
I.4P 9.14-1 
1.4l 9.14-1 

1.4()..1 9.14-2 
1.41-'11 9.14-2 
1.4H 9.14-2 
1.41~1 9.14-2 

4 Source. Kociba et aI., 1977. 
b9.14-1 means 9.14 X 10-1 = 0.914. 
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TABLE 13 

DoSES CORRESPONDING TO GlVEN LEVELS OF EXTRA 

RESPONSE FOR CONTINUOUS TCDD DATA a 


Dose (I'g/kg/day) 
Extra 

Model response MLE 95% lower 

CLR 
CPR 
CP (no threshold) 

0.1 2.55-3 6 

2.55-3 
6.37-3 

1.32·3 
1.32-3 
1.32·3 

CLR 
CPR 
CP (no threshold) 

0.05 1.78-3 
I.78-3 
5.53-3 

6.61-4 
6.61-4 
6.61-4 

CLR 
CPR 
CP (no threshold) 

0.01 1.16-3 
1.16-3 
1.21-3 

1.32-4 
1.32-4 
1.32-4 

CLR 
CPR 
CP (no threshold) 

0.001 1.02-3 
1.02·3 
1.96·3 

1.32-5 
1.32·5 
1.32·5 

Q Source. Murray et al.• 1979. 

b 2.55.3 means 2.55 X 10-3 .00255. 


A BD is calculated using a J!l1athematical 
dose-response curve estimated from all of the 
dose-response data. Thus the:! benchmark 
should better reflect the shape df the dose reo 
sponse than the NOEL. Becausela benchmark 
represents a statistical lower limit, larger ex
periments will tend on average to give larger 
benchmarks, thus rewarding gockl experimen· 
tation. As we pointed out, NQELs have the 
opposite tendency. With the NOEL approach, 

ADIs cannot be determined until a 
been established. An otherwise 
experiment may therefore be 
appropriate for calculating an ADI 
is established. In such a case, UCllennili 
ADI could require an additional 
resulting in considerable additional 
delays. On the other hand, the 
periment might be quite ae<:ep'tablle 
culating a BD. This situation is 
the quantal data for HCB (Fig. 6). 

A BM-SF approach to setting 
allow proponents of chemicals 
in the design of experiments than is· 
under the NOEL-SF approach. With 
method minimum sample sizes 
ified by the regulatory agency in 
that NOELs are established to the 
satisfaction. With a BM-SF 
agency would still in some cases need 
methods for choosing the maximum 
the sample size to be used at this 
otherwise important effects might 
tected at all. Beyond this r .."llli.·....... , ... 

ever, proponents of a chemical could 
wide latitude in selecting dose levels 
pie sizes. Of course, the larger a 
better designed it is to estimate the 
higher the benchmark is liable to 
accurate benchmark is considered 
experimentors may wish to cOlndllctll 
study and consider carefully the 
the experimental doses; otherwise, 

TABLE 14 


COMPARISON OF BEI';C}lIMA,RK DoSES WITH NOELS FOR CONTINUOUS DATA 


Benchmark dosesR corresIIOD(1i! 
% extra risk 

Data set Dose units NOEL 10% 5% 

Carbon tetrachloride 
(Alumot et al.. 1976) ppm 15070 141 134 

HCBD (Kociba et al., 1977) 
mean body weights m$fkgtday 2.07 14.1 7.0 

TCDD (Murray el al., 1979) 0.0017 .0026 .0012 

Q Benchmark doses = 95% lower derived from QPR model. 
o 7 indicates that it is doubtful a NOEL has been established. 

I 
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be considered adequate. Any prior 
on the shape of the dose-response 
be used in optimally designing an 
Such prior information might 

pilot studies or studies of similar 
Given such choices, proponents of 
should be able to design studies 

keeping with their needs and bud
constraints without compromising 

example of how experimental design 
could be put to effective use, 

a company knows the smallest ADI 
permit the marketing of their 

It would be simple to calculate the 
that would produce this ADI. 
then design an experiment that 

optimal under the assumption that 
benchmark is in fact the true 
Ifthe true benchmark were lower 

they were hoping for, the statistical 
used in calculating the benchmark 

that human safety would not be 
On the other hand, if the 

were near that for which the ex
was designed, the extra care that 

design might allow the marketing 
that could not have been mar

less optimal design had been used. 
factors are largely arbitrary, one 

choosing safety factors to use with 
would be to make the resulting 

...____ on average, to those Cal·1..1 

using the NOEL-SF 
could be accomplished by cal

for a number of sub
Which ADIs have been developed 
'V'LJ....-(>r method, and then deter
safety factor that, when applied to 

would on average yield the 
Of course, ADIs calculated using 

and BM-SF methods could dif
in specific cases. 

we have not discussed the use of 
models for extrapolation of 

!lOg~mesii's data to low dose and thus 
safety factors, this is another pos

of these methods. Our re

luctance to recommend this application stems 
from the uncertainty as to the shape of the 
dose-response curves at low dpses for toxic 
effects in general. Dose-response curves which 
are linear at low doses have be¢n used to set 
upper bounds for low dose cancer risks (EPA, 
1980). This approach has been justified on the 
grounds that cancer mechanisqts that would 
produce linear dose responses iat low doses 
appear quite plausible and thoj)e that would 
produce supralinear responses' seem highly 
implausible. The low dose linearity concept 
could be used to determine uJilper limits of 
risks of noncarcinogenic effects!as well. How
ever, many of these effects app~ar threshold
like. The assumption ofa linear response could 
greatly overestimate risk in Cj:lseS where a 

I • 

threshold exists. The threshold models dIS
cussed in this paper might be ,sed to deter
mine risks at low doses for effect~ which appear 
to be threshold-like. However,; we have not 
recommended this in this paph because of 
both the uncertainty as to the ¢xistence of a 
threshold and because these tlueshold esti
mates are apt to differ widely dej>ending upon 
the specific model used. 

The model-fitting techniques proposed here 
have fairly minimal data requir(1ments. When 
quantal data are used, the basic needs are the 
doses, number of animals in ea¢h group, and 
the number of these animals Which are af
fected. With continuous data ~ne needs the 
doses, number of animals in each group, the 
average response in each group,iand the stan
dard errors of these responses. Some effects, 
such as cloudy swelling of the jliver, are in
herently difficult to quantify and! are normally 
classified qualitatively, such as by present/ab
sent or mild/severe. Even for eff~cts which are 
quantifiable, the data needed to apply dose
response methods are frequentl~ not reported 
in the literature. Thus, it will n~t be possible 
to apply these methods univergaJly. However, 
the introduction of these methOds would en
courage more complete present~tion of data, 
as well as generally encouragitfg the use of 
quantitative methods in toxicolpgy. 

It should be kept in mind that determining 
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ADIs does not involve purely statistical meth
ods. Toxicological evaluation of data on nu
merous species and biological endpoints may 
be required. Included in the many consider
ations should be differences in species sensi
tivities to various chemicals and the need for 
affording different levels of protection tbr dif
ferent toxicological effects. The statistical 
methods proposed in this paper should be 
useful in this process but they should npt sup
plant a careful toxicological evaluatio~ of all 
the data. 

APPENDIX 

Description ofMaximum 

Likelihood Procedures 


Likelihood for Quantal Data 

Consider an experiment with g dose levels 
db' .. , dg , and let N; and Xi be, respectively, 
the number ofanimals tested and the number 
of animals affected at the ith dose level. Let 
P(d) be the probability ofa response iat a dose 
d. Assuming that Xi has a binomih! distri
bution with parameter Nj and P(dj ), the like
lihood of the data can be written as 

g 

L = n XfIP(dfi[I - p(d;]NI~Xt. 
i=1 

Likelihood for Continuous Data 

Consider an experiment with g qose levels 
d l , •.. , d&; let Nj be the number <iJf animals 
in the ith dose group, and let xij, j, = 1, ... , 
N j , i = 1, . . . , g represent the res~nse of the 
jth animal in the ith dose group. It is assumed 
that Xij has a nonnal distribution With mean 
m(di ) and variance ut. The paramfters in the 
model consist of those involved iln the defi
nition of m(d), plus UI, ••• , Ug. Let Xi be the 
sample mean in the ith dose grouiP. i.e., 

Nt 
Xi = L xijlNj • 

j=1 

CRUMP 

and s; the sample variance, i.e .• 
N/ 

sf = :z: (Xjj - Xj)2/(N; - I).. 
j=1 

Then the likelihood of the data can 
as 

L = (211'rg
/
2 ng 

uil exp[-(Nj - 1)82 

j=1 

Estimation and Confidence 

The parameters are estimated as 
which maximize the appropriate 
The "likelihood method" (Cox 
1974; Crump and Howe, 1983) is 
culate confidence limits. For 
using quantal data the lower 95% 
dose d corresponding to an extra 

P(d) - P(O) 
1 - P(O) = 0.1 

is calculated as the smallest d 

P(d) - P(O) 
1 - P(O) = 0.1 

and 
2 log(LmadL) = (1.645)2 

where Lmax is the maximum value 
lihood L. When using continuous 
same approach is followed except 
for extra response replaces the one 
risk. 

Computer Programs 

These methods require iterative 
calculations. We have developed 
programs to perfonn these ca1.culati( 
intend to have them available for 
public in the near future. 

The authors acknowledge the input received 
of worksbops conducted by tbe EPA Environill1ll 
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Office in Cincinnati, including partic
comments of Dr. Roy Albert, Dr. Michael 

Or. Rick Hertzberg, Dr. RolfHortung, Dr. Nor
Dr. Marvin Schneidennan, and Dr. Jerry 

the research described in this article has 
by the U.S. Environmental Protection Agency 

68-03-3111, it has not been subject to 
peer and administrative review and therefore 

necewuil~ reflect the views of the Agency, and 
endorsement should be inferred. 
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