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Statistical Issues in Toxicokinetic Modeling: A Bayesian Perspective 

Pascale Bernillon1 and Frederic Y. Bois2 

1B3E INSERM U444, Paris, France; 2lnstitut National de I'Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France 

Determining the relationship between an exposure and the resulting target tissue dose is a critical 
issue encountered in quantitative risk assessment (QRA). Classical or physiologically based 
toxicokinetic (PBTK) models can be useful in performing that task. Interest in using these models to 
improve extrapolations between species, routes, and exposure levels in QRA has therefore grown 
considerably in recent years. In parallel, PBTK models have become increasingly sophisticated. 
However, development of a strong statistical foundation to support PBTK model calibration and use 
has received little attention. There is a critical need for methods that address the uncertainties 
inherent in toxicokinetic data and the variability in the human populations for which risk predictions 
are made and to take advantage of a priori information on parameters during the calibration process. 
Natural solutions to these problems can be found in a Bayesian statistical framework with the help 
of computational techniques such as Markov chain Monte Carlo methods. Within such a 
framework, we have developed an approach to toxicokinetic modeling that can be applied to 
heterogeneous human or animal populations. This approach also expands the possibilities for 
uncertainty analysis. We present a review of these efforts and other developments in these areas. 
Appropriate statistical treatment of uncertainty and variability within the modeling process will 
increase confidence in model results and ultimately contribute to an improved scientific basis for 
the estimation of occupational and environmental health risks. Key words: Bayesian analysis, 
hierarchical models, MCMC methods, toxicokinetic models, uncertainty, variability. ? Environ 
Health Perspect 108(suppl 5):883-893 (2000). 
http://ehpnet 1. niehs. nih.gov/docs/2000/suppl-5/883-893bernillon/abstract.html 

Exposure concentrations of chemicals in air, 
food, water, soil, dust, or other media with 
which populations are in contact are the dose 
scales most commonly used when assessing 
health effects for environmental or occupa? 
tional pollutants. Yet, external exposure is 
often only a rough estimate for internal expo? 
sure delivered at the critical target in the 

body. The latter is a more appropriate mea? 
sure of dose for mechanism-based risk assess? 
ments (1). For example, many chemicals 

require metabolic conversion into chemically 
active species before exhibiting toxicity, and 
this conversion may be subject to saturation 
at high doses (2-5). In the presence of sat? 
urable activation or detoxification pathways, 
the relationship between administered (exter? 
nal) dose and delivered (internal) dose may be 
nonlinear. This nonlinearity is of particular 
concern when performing high-to-low-dose 
extrapolation of the overall exposure- 
response relationship. Indeed, a solution is to 
measure internal biomarkers of exposure, but 
such direct measurements may not be feasible 
if the relevant biomarkers are not yet devel? 

oped. In this case, modeling approaches can 
be advocated as an alternative. Toxicokinetic 

(TK) models, for example, are useful tools to 
relate external exposures to internal measures 
of dose. TK models describe the behavior of 
chemicals in the body, e.g. the processes of 

absorption, distribution, metabolism, and 
elimination. Two main classes of TK models 
have been developed: classical toxicokinetic 

models and physiologically based toxico? 
kinetic (PBTK) models. The development of 
PBTK models has been particularly active 

during the last 20 years, and their usefulness 
for chemical risk assessments is now firmly 
established (5-10). Several major chemical 
risk assessments currently processed by the 
U.S. Environmental Protection Agency 
involve the use of PBTK models. 

The focus of PBTK modeling in risk 
assessment to date has been essentially on 

improving the scientific basis for extrapolat- 
ing risk from animals to humans (11). 
Before the introduction of PBTK models, 
the key default assumption regarding inter? 

species extrapolation was that animal expo? 
sures could be converted to equivalent 
human exposures by a surface area correc? 
tion factor. However, several examples can 
be found in the literature in which compara? 
tive modeling of distribution and metabo? 
lism in animals and humans has challenged 
the use of simple surface area conversions for 

interspecies extrapolations (12-15). The 

ability to tailor the parameter values of 
PBTK models to a particular animal species 
offers, in theory, a firm basis for interspecies 
extrapolation. In practice, for most PBTK 
models some parameters remain difficult to 

extrapolate across species. For metabolic 

parameters, in particular, species-specific val? 
ues may be difficult to obtain experimen- 
tally. The "parallelogram approach" (16,17) 
may provide partial answers to this question, 

but parameters typically still need to be 

adjusted through calibration of the model 
with pharmacokinetic data (usually mea? 
sured time courses of parent compound and 
metabolites in biological media such as 
exhaled air, blood, urine, etc). 

If some uneasiness has been expressed 
about the use of PBTK models (18), it was 

essentially because of the lack of statistical 
methods for calibrating them, i.e., for adjust- 
ing their parameter values by taking toxicoki? 
netic data into account. Another issue 

gaining major attention in the scientific and 

regulatory communities is population vari? 

ability in toxicokinetic and metabolic 

processes (9,19-27). Considering this vari? 

ability and the uncertainty about many para? 
meters difficult to measure accurately, using 
fixed parameter values or presenting results 
in the form of point estimates can be funda- 

mentally misleading (28). Obviously, the 
task of a correct statistical treatment of 
PBTK models is daunting, as we are faced 
with large nonlinear models, small data sets, 

high uncertainty, and biological variability. 
Until recently, there was no method for 

rigourous statistical validation of PBTK 
models. For example, to our knowledge, the 

predictions made by such models were never 

presented with meaningful confidence levels. 

Consequently, it was impossible to decide 
whether the fits were acceptable, the models 
reasonable, and what confidence to place in 
the results of extrapolation (29). 

In response to this challenge, our group 
began to examine the statistical issues associ? 
ated with the calibration and use of PBTK 
models and to develop methods to solve them. 
This article first briefly presents the structure 
of classical TK and PBTK models. We then 
discuss the issues of parameterization and cali- 
bration of these models and describe a 

Bayesian approach to their statistical analysis. 

This article is part of the monograph on Mathematical 
Modeling in Environmental Health Studies. 
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Toxicokinetic Models 
A variety of TK models have been developed; 
all are simplified representations of chemical 

disposition within the human/animal organ? 
ism. This section describes the structure and 
characteristics of classical compartmental and 

physiologically based models, which are the 
main two classes of TK models found in the 
literature. We then briefly present minimal 

physiological models, which recently have 
been proposed by several investigators. 

Classical Compartmental (TK) Models 

In classical TK models, the body is repre? 
sented by several connected compartments 
(rarely more than three); each compartment 
is a virtual space (i.e., compartments do not 

necessarily reflect the anatomy of the species 
of interest) within which the chemical is 
assumed to be homogeneously distributed 

(30). Chemical transfers between compart? 
ments are described by a set of differential 

equations. Typical parameters are compart? 
ment volumes, exchange rates between them, 
and clearance (elimination rate). The number 
of compartments and the parameter values 
are inferred from fitting the model to TK 
data. A procedure commonly adopted when 

using these models consists in first fitting a 

simple, usually one-compartment model. If 
the fit is unsatisfactory, another compartment 
is added to the model, and so on, until an 

acceptable fit is achieved. Parameter values 
derived from the analysis of classical compart? 
ments models are data dependent and are not 
intended to represent actual physiological vol? 
umes or flows in the organism (11). For 

example, the volume of distribution of a par? 
ticular compound can be much greater than 
the volume of the body (this is the case for 
chemicals with high affinities for tissue pro? 
teins) (31). These models thus are commonly 
referred as empirical or data-based models. 

Classical compartmental models are reli? 
able tools to predict various surrogates of dose 
such as areas under the concentration-time 
curve or the maximum concentration reached 
in diverse biological media (e.g., exhaled air, 
venous blood, urine) when the objective is to 

interpolate from the current data. They are 

widely used in pharmacokinetic studies to 

investigate drug disposition in the body. 
Nevertheless, given their lack of physiological 
relevance, these models are not indicated to 

extrapolate kinetic results between species, 
exposure routes, or exposure conditions. For 
these reasons, other modeling approaches, 
including physiologically-based models, have 
been investigated. 

PBTK Models 

In PBTK models, the body is subdivided into 
a series of anatomical or physiological com? 

partments that correspond to specific organs 

(liver, kidney, lung) or lumped tissue and 

organ groups (fat, richly perfused, and slowly 
perfused tissues) (32-34). Tissues or organs 
are lumped when they have, for example, 
similar blood flow and fat content and when 

partitioning of the substance of interest 
between them can be considered homoge- 
neous. Connections between compartments 
represent the blood or lymphatic circulation 
and chemical transfers between compart? 
ments are described by mass balance differen? 
tial equations. The time course of transport 
and transformations of a chemical through 
the various compartments can be simulated 
via the resolution of the model's set of equa? 
tions for any given set of parameter values. 
PBTK models include three types of parame? 
ters: physiological parameters such as breath? 

ing rate, blood flows, and tissue volumes; 

physicochemical parameters, such as partition 
coefficients that represent the relative solubil- 

ity of a chemical in specific tissue; and bio? 
chemical parameters describing, for example, 
metabolic processes. The number of compart? 
ments to be included in the model depends 
on the objective of the study and on the pos? 
sible mode(s) of action and site(s) of toxicity 
of the chemical studied. In most cases, the 

kidney or the liver are usually individualized 
when they are major organs of elimination 
and/or metabolism. Other organs are also 
individualized (e.g. bone marrow, brain, 
bone) when they are known sites of metabo? 
lism, storage, or toxicity. In many applica? 
tions, distribution among compartments is 

supposed to be limited by perfusion; once in 
a compartment, the chemical distributes 

instantaneously and homogeneously through? 
out the entire volume of the compartment. 
More complex models describing the diffu? 
sion of the compound in subcompartments 
representing vascular, interstitial, and intra? 
cellular spaces (diffusion-limited models) 
have also been developed (35-37). 

Figure 1 illustrates a general four- 

compartment PBTK model for volatile 
chemicals, which we used to study tetra- 

chloroethylene (TETRA) kinetics in humans 

(38,39). In this model, TETRA distribution 

among the four compartments (well-perfused 
tissues, poorly perfused tissues, fat, liver) is 

supposed to be limited by blood perfusion, as 
is often the case for apolar solvents. TETRA 

absorption is supposed to occur by inhalation; 
elimination takes place by exhalation and 
metabolism. The only metabolically active 

compartment included in the model is the 
liver. TETRA primary metabolism is described 

by a saturable Michaelis-Menten mechanism. 
This model encloses 15 parameters. 

Toxic effects induced by exposure to 
chemicals are commonly observed during 
experimental animal studies under conditions 
of exposure different than typical human 

Qalv, Exhaled air 

Figure 1. Schematic representation of a PBTK model 
used for distribution and metabolism of TETRA (3B\. Q, 
blood flows; V, compartment volumes; P, partition coeffi? 
cients; VPR, ventilation over perfusion ratio; Vmax, maxi? 
mum rate of metabolism; Km, Michaelis-Menten 
parameter. 

occupational or environmental exposures. 
PBTK models are promising tools to solve 
some of the critical extrapolation issues 
encountered in chemical risk assessments 

(6,11,32,33,40-42): 
? for example, dose extrapolation can auto? 

matically be achieved with a PBTK model 

assuming the model correctly captures the 
linear and nonlinear dynamics involved in 
the transport and metabolism of the 

compound studied. 
? Interspecies extrapolation is resolved by 

assuming that the model structure is cor? 
rect for two or more species (the TETRA 
model described above, for example, is 
reasonable for any mammal). Simply 
changing parameters to values specific to 
the species of interest operates the 

extrapolation. 
? Interroute (of exposure) extrapolations 

can be performed. The model presented 
above (Figure 1) has only one route of 

entry, the lung; it is possible to simulate 
intravenous injection by imposing 
increase in venous blood concentration at 

any time or by an explicit additional 

equation; ingestion has been modeled 
with such models as a direct infusion into 
the liver compartment or with additional 

compartments describing the gastro? 
intestinal tract; dermal absorption has also 
been modeled by addition of a skin 

compartment (43,44). 
PBTK models can explain the toxico? 

kinetic behavior of the compound studied 
under special conditions in humans such as 

physical activity (45) or in specific targeted 
populations (children, aged, obese) by simply 
changing the values of some physiological 
parameters. In addition, these models are 

884 volume 1081 supplement 51 October 2000 ? Environmental Health Perspectives 



STATISTICAL ISSUES IN TOXICOKINETIC MODELING 

attractive when modeling complex situations 
such as developmental toxicity (36,46-52); 
unusual exposure scenarios such as delayed 
exposure of a nursing infant due to the 
mother's inhalation exposure can also be 
addressed (53,54). 

The above properties of PBTK models 
contribute to the development of more accu? 
rate estimates of risk. PBTK modeling tech? 

niques are now well developed. Nevertheless, 
such models involve a large number of para? 
meters (typically more than 20), each of 
which is subject to some degree of uncer? 

tainty and variability, which are translated 
into PBTK model outputs. It is thus neces? 

sary to consider the statistical issues raised by 
such complexity. 

Minimal Physiological Models 

Minimal (or reduced) physiological models 
are PBTK models in which some of the com? 

partments (e.g., poorly and well-perfused tis? 

sues) have been lumped into a single central 

compartment. Reducing the number of 

compartments is a way to simplify the cali? 
bration process while partly preserving the 
model's physiological character. In the case 
of benzene, it has been shown that a reduced 

three-compartment PBPK model can be a 

good alternative to a five-compartment 
PBPK model (23). 

Figure 2 presents a minimal physiologi? 
cal TK model of TETRA kinetics in the 
human. TETRA kinetics in blood and 
exhaled air are described by a three-compart? 
ment TK model linked to a one-compart- 
ment submodel for the main TETRA 
metabolite, trichloroacetic acid (TCA) (55). 
In the model, TETRA enters the body by 
pulmonary exchange, modeled by first-order 
transfers between air and the central com? 

partment. TETRA venous blood concentra? 
tions are assumed to be predicted by the 
central compartment concentrations. The 
second and third compartments are a priori 
supposed to represent fat and muscles, 

respectively. Metabolism of TETRA is 
assumed to take place in the central com? 

partment and is described by a linear 

process. A fraction of metabolized TETRA 
leads to TCA; the rest is made of the other 
TETRA metabolites. TCA is formed from 
TETRA metabolism but also from endoge? 
nous background reactions. Urinary elimi? 
nation of TCA is assumed to follow 
first-order kinetics. 

Reduced PBTK models may be promising 
tools to analyze data when many subjects are 
involved. Recently, Fanning (56) used a 
reduced PBTK model to analyze benzene 
kinetics data from a cohort of 60 Chinese 
workers. In that model, the human body was 
divided into three compartments: a central 

compartment, fat, and liver. Thomaseth and 

Salvan (57) consider a minimal physiological 
model to describe long-term kinetics of tetra- 

chlorodibenzo-/-dioxin in human tissues 

using data from a cohort of 359 subjects. 
These examples simply illustrate that, as 

with any modeling exercise, the development 
of a toxicokinetic model must be guided pri? 
marily by the question raised and the data 
available to deal with it. 

Statistical Considerations 

PBTK models are considered an effective 
means to predict target tissue dose, in particular 
because of the large amount of a priori infor? 
mation available in the literature on their 

parameters. Nevertheless, calibration of TK 
models, even when they are physiologically 
based, is hardly feasible using only a priori 
information. We mean by calibration the 
allocation of appropriate values to model 

parameters to enable that model to behave 
like the system it represents. In fact, even 

though reference values can be found in the 
literature for physiological parameters such as 

organ volumes or blood flows, experience has 
shown that the calibration of virtually all 
PBTK models requires estimation of some 

parameters (in particular those describing 
metabolism) using experimental TK data. 
Such data typically consist of measured par? 
ent and/or metabolite amounts or concentra? 
tions from various sites in the body (e.g., 
blood, exhaled air, urine) at various times fol? 

lowing the beginning of a controlled exposure 
to the chemical studied. 

We address, in the following subsections, 
the parameterization of TK models, their cali? 
bration, and finally, the predictive use of 
these models. 

Parameterization 

It is first necessary to pay careful attention to 
model parameterization (i.e., to definition of 
the model parameters) to facilitate their sub? 

sequent estimation. Many parameters of a 
toxicokinetic model (e.g., cardiac output, 
organ volumes, maximum rate of metabo? 

lism) tend to be correlated to some measure 
of body size. Furthermore, some parameters 
are correlated to each other (e.g., organ blood 
flows with cardiac output). Neglecting those 
correlations might lead to unrealistic physio? 
logical properties of the model, particularly 
when a distribution of behaviors is computed 
(e.g., through Monte Carlo simulations). It is 
traditional to implement an a priori deter- 
ministic modeling of known physiological 
dependencies between parameters by using 
scaling functions and allometric (related-to- 
size) relationships (58-63). For example, vol? 
umes can be parameterized as fractions of the 
lean body weight, flows as fractions of cardiac 

output, and the maximum rate of metabolism 
in the liver as a power function of lean body 

weight. Not all parameters need to be scaled. 

Unfortunately, there is no unique way to 

implement scaling, and there does not appear 
to be a rigorous foundation for any particular 
choice so far in the literature. We assert that 
covariate modeling should be guided by sta? 
tistical considerations, as it is essentially a 

regression problem, but this is a research 

topic still to be explored. 
Another problem that can be solved 

through proper parameterization is parameter 
identifiability. Identifiability characterizes 

parameters for which reasonable estimates can 
be obtained given experimental data (64?66). 
Parameter identifiability is a critical issue in 

compartmental kinetic modeling (67,68) and 
should be examined before any attempt to 
calibrate the model. Two types of identifiabil? 

ity can be distinguished: structural and statis? 
tical. The first is concerned with the formal 
model's equations and parameters, i.e. the 
structure of the model. As an example, con? 
sider the following model equation: 

y = a x p X x, [1] 

where a and (3 are unknown parameters to 
estimate from observations of x and y. If nei? 
ther a nor (J appears separately in another 

model-defining equation, OC and P will not be 

separately identifiable whatever the data used 
to estimate them. Each one can take an infinite 

Second 
peripheral 
TETRA 

Kcp2/Pp2c 

First 
peripheral 
TETRA 

Other metabolite(s) Central TCA 

Other TCA 
elimination 
pathways 

TCA in urine 

Figure 2. Schematic representation of a linear three- 
compartment model used for distribution and metabo? 
lism of TETRA and distribution of TCA by Bernillon et al. 
[55). The model considers 14 parameters; symbols are: 
Faiv, alveolar flow; V, volumes; K, rates of distribution 
from central to peripheral compartments; P, partition 
coefficients; CLTetra, TETRA metabolic clearance; 
BgdTcA, endogenous TCA formation rate; KelTCA/ TCA 
elimination rate; fTCA, fraction of metabolized TETRA 
leading to TCA; fjcA_u> fraction of total eliminated TCA 
excreted into urine. 
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and unbounded number of values. Only their 

product a X (3 can be reasonably estimated. a 
and P can become identifiable if an informa? 
tive prior has been specified for one of them in 
a Bayesian context. Structural identifiability 
can also be ensured by an adequate parame? 
terization. Structural nonidentifiability was 
encountered when calibrating the minimal 
PBTK model for TETRA kinetics depicted in 

Figure 2, with the two couples of parameters 

(Ppio vPeriph\) and (Pp2, Vperiph2)- Their prod? 
ucts, P.lc X Vperiphx and Pp2c X Vperiphl, were 
thus tne parameters actually estimated. 

Putting separate priors on Pplc, Vperiphx, Pp2c, 
and Vperiptii was another option we could have 
taken. The second type of identifiability, 
called data-conditioned, or statistical, charac- 
terizes parameters that can be precisely esti? 
mated. For a parameter estimate, precision is 
the inverse of uncertainty, and we treat this 

question extensively in the next section. In 

essence, statistical identifiability is ensured by 
either adequate data to estimate all model 

parameters or, in a Bayesian context, suffi? 
cient prior information to constrain those 

parameters (69). In a TK context, for exam? 

ple, statistical nonidentifiability may be 
encountered when experimental data do not 
include observations during or close to the 

absorption phase. In that case, the parameters 
characterizing absorption will be poorly esti? 
mated given that data set. In a way, statistical 

identifiability is a milder form of structural 

identifiability that does not require reparame- 
terization to be treated. Reparameterization 
can still be useful in case of statistical identifi? 

ability, as it can hasten computations during 
the calibration process. 

Calibration, Uncertainty, and Variability 

Uncertainty and variability in the TK 

parameter estimates affect potentially all TK 
model predictions (e.g., estimates of tissue 

doses); it is necessary to assess both to make 

predictions useful for risk analysts and deci- 
sionmakers. This helps to determin the con? 
fidence to place in those predictions, to 
assess the range of internal dose likely to 
occur within the population for which the 
risk is being evaluated, and finally, to weight 
the decisions on the basis of TK model 

predictions (21,26). 
It is important to distinguish between 

uncertainty and variability. Variability typi? 
cally refers to differences in the values of 
model parameters among individuals (inter? 
individual variability) or across time within a 

given individual (intraindividual variability). 
Variability may stem from genetic differences, 

lifestyles, physiological status, age, etc. (26). 
Uncertainty, on the other hand, essentially is a 
result of lack of knowledge (70) and may have 
various sources. TK parameters are known 

only with finite precision. The use of 

standard values, such as those in the 
International Commission on Radiological 
Protection report (71), tend to give a false 

impression of precision for physiological 
parameter values (and thus for model predic- 
tions). At best, such standard or default val? 
ues are approximate values of the average for 
a human population. There always will be 

uncertainty about their true value for a par? 
ticular group of animals or humans, and even 
more for a particular individual exposed 
(from which TK data may be available). In 
addition, most chemical-specific parameters 
tend to be imprecise; i.e., they may have 
been measured in vitro rather than in vivo or 

they may be accessible only after fitting a 
model to TK data. Measurement errors on 
the experimental data, sparseness of those, 
and model simplifications or mispecifications 
are translated into uncertainties in the para? 
meter values determined by statistical fitting 
to such data. Uncertainty may be reduced by 
further experiments, the design of which can 
be formally optimized (72,73), or by a better 

understanding of the actual processes under 

study. 
Variability is inherent in animal and 

human populations and cannot be reduced. 
Both variability and uncertainty are usually 
present in TK data. For example, each TK 
data set is specific to the subjects studied and 

extrapolating quantitative information from 
such small groups to larger and different pop? 
ulations requires careful consideration. In 

fact, the primary interests of TK analyses 
rarely lie in the toxicokinetics of the com? 

pound studied in any particular individual 
but resides instead in inferences both about 

average TK behavior of substances in larger 
groups (sensitive subpopulations, age groups, 
whole-country population, etc.) and quantifi? 
cation of the variability in such behavior. It is 

necessary to take variability explicitely into 
account within the calibration process. Data 

pooling (i.e., treating averaged data values as 
if they characterized a typical member of the 

population) should be avoided, as it can 

gravely distort the data (74,75). 
Given the usual sparseness of TK data and 

the number of parameters involved in a 
PBTK model, conventional (e.g., uncon- 
strained least square) parameter estimation is 

generally not feasible. From a statistical point 
of view, manually adjusting several parame? 
ters is not scientifically acceptable. Neither is 
the commonly used alternative, which con? 
sists of statistically fitting only a subset of the 
model parameters (assuming that the others 
are exactly known and set to predefined refer? 
ence values). It is difficult to arrive at a cor? 
rect assessment of the uncertainty in model 

predictions through such an approach. 
Ignoring the uncertainty in a parameter value 

implicitly ignores covariances between this 

particular parameter and all others. This leads 
to distortions in the entire covariance struc? 
ture of parameter estimates (because covari? 
ance between two parameters vanishes when 
one is fixed) and finally, to an underestima- 
tion of the uncertainty in model outputs 
(76). As an illustration, consider a simple 
two-dimensional case (Figure 3). Assume 
that both parameter estimates, given the 
data 9j, and 02, are marginally (i.e., when 
considered alone) normally distributed 

(Figure 3A, C) and that they are highly cor? 
related. The ellipse (Figure 3B) that outlines 
the 95% joint confidence region for 0X and 

02 illustrates that covariance. A correct joint 
estimation of 0j and 02 should give both 

marginal and joint distributions closely 
approximating those. However, setting 01? 
for convenience, to a fixed value, a, modifies 
the structure of covariance between 0X and 

02, transforming the initial ellipse into a seg- 
ment of line, s. The 95% confidence interval 
for 02, given 0j= a, now ranges from b to c 

(panel C). The resulting distribution of 02 
estimates is much narrower than the correct 
distribution and its mean may not even be 
the same, which could later lead to biases 
and underdispersion in predictions. In higher 
(imagine 20) dimensions, the situation 
would be considerably worse. 

Three points can be made here: First, fix- 

ing the value of some parameters while 

adjusting the other parameters is not satisfac- 

tory unless there is no correlation between the 
fixed and other parameters. Proving the 
absence of such correlations is difficult and 
amounts to first estimating all parameters 
together (that is, considering all of them 

uncertain). It is simpler and often more judi- 
cious to stop at this first step and acknowl- 

edge the complete covariance between all 

parameters. Second, fixing 0i for estimating 
02 and then relaxing this constraint when 

Figure 3. Illustration of covariance effects between two 
parameter estimates. The correct joint and marginal 
posteriors (i.e., data conditioned) are drawn as thick 
lines. Setting fy to the value a before calibration leads 
to biased and underdispersed estimates of 02. 
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performing predictions is incorrect, as the 
covariance structure of &i and 02 is disrupted 
in the process and the resulting marginal dis? 
tribution of 62 is a conditional distribution 
on the assumed known value of &\. Third, in 
most cases, it is not sufficient to check the 
absence of sensitivity of some of the model 

predictions to variations in fy values, because 
what is important is the sensitivity of the 
entire model calibration process to Q\. 
Checking the sensitivity of some predictions 
also raises a number of questions. For exam? 

ple, which predictions should be checked? 
And what is the scientific value of a calibra? 
tion exercise which gives results only for a 

particular application? Overall, ad hoc cali- 
brations are an impediment to the general 
applicability of PBTK models to various sce? 
narios of exposures and effects. 

Confidence in Model Predictions 

Models are usually developed to obtain 

predictions of various quantities of interest, 
for example, the quantity of metabolites 
formed for a given exposure to a specific com? 

pound. Ignoring both variability and uncer? 

tainty in model parameters renders TK model 

predictions almost useless for risk assessment. 
Several attempts have been made recently to 

study the propagation of variability and 

uncertainty in model parameters to model 

predictions using Monte Carlo simulation 
methods (13,23 24,27,77,78). These meth? 
ods consist of: a) specifying a probability dis? 
tribution for each model parameter; b) 
sampling randomly each model parameter 
from its specified distribution; c) running the 
model using the sampled parameter values, 
and computing various model predictions of 
interest. Repeating steps b) and c) a large 
number of times generates many different 
values for the model predictions. Those val? 
ues can be used as samples to create his- 

tograms approximating the probability 
distribution of any model prediction (79). 

Monte Carlo methods can be useful in 

conducting global sensitivity analysis (25,80). 
It is also possible with such methods to dis- 

tinguish between variability and uncertainty 
in model predictions when it is feasible to 

separate the two for each model parameter 
(81). The validity of Monte Carlo methods is 

obviously highly dependent on the validity of 
the assumed parameter distributions. These 
distributions should adequately characterize 
the variability and/or uncertainty and covari? 
ance in the model parameters to predict the 

range of TK behavior that could be expected 
in a population and to determine the confi? 
dence to place in model predictions (76). 

Most Monte Carlo simulations of TK 
models performed to date assumed for conve- 
nience that all input parameters were inde? 

pendent?partial exceptions can be found in 

Farrar et al. (20), Bois et al. (21), and Smith 
et al. (76). Most ofthe time this assumption 
is not valid. Neglecting covariances typically 
leads to very large confidence intervals in 
model predictions, overestimating their actual 

spread (19). 
A better and more comprehensive 

approach is to sample all parameter values 
from their joint probability distribution (39). 
Empirically specifying such a joint distribu? 
tion is a difficult task, particularly when some 

parameters have been estimated. In the next 
section we describe how a Bayesian statistical 

analysis can yield naturally such a joint distri? 
bution (called joint posterior distribution). 
Such an analysis leads to more relevant and 
useful Monte Carlo simulations, taking into 
account dependencies among all TK parame? 
ters when computing model predictions. 

Multilevel Bayesian Analysis 
ofTK Models 

The above considerations led us to develop 
and use multilevel models of uncertainty/vari- 
ability in a Bayesian framework for the statis? 
tical analysis of TK models. Those tools are 
described in the following sections. 

Multilevel Modeling 
As stated above, inferring the TK behavior of 
a compound in a population necessitates 

extracting quantitative information from 
individual TK data. A hierarchical structure 

distinguishing individual and population lev? 
els of variability is a convenient and efficient 

way to perform that task. 

Population analyses were first introduced 
in the context of pharmacokinetic studies for 

drug development and evaluation (74,82,83). 
Their advantages have long been discussed in 
this context and a number of applications can 
be found in the pharmacokinetic literature. 
Yuh et al. (84) published a comprehensive 
bibliography on methodological aspects and 

applications of population models and a 
detailed review of these methods can be 
found in Davidian and Giltinian (85). 
However, until recently, very little attention 
has been paid to these approaches in a TK 
context. Before the work of Bois et al. (38,86) 
and Gelman et al. (39), the only attempt to 
link population principles to TK modeling 
was achieved by Droz et al. (87,88), but no 

fitting to experimental data was performed in 
this exercice. 

The objective of population models is to 
obtain from individual data a quantitative 
description of the variability of the kinetic 
behavior of a given compound within a pop- 
ulation. Such a model is illustrated in 

Figure 4. This hierarchical model has been 
used for TETRA and benzene by Bois and 

colleagues (38,39,86). The basic idea is that 
the same kinetic model /can describe the 

concentration-time profiles of the compound 
and its metabolites for each individual, and 
that the model parameters may vary from 
individual to individual. Interindividual vari? 

ability is then described by assuming that 
each individual's parameter set \|/; arises inde- 

pendently from the other individual parame? 
ter sets, from a common multivariate 

probability distribution. 
The model presented in Figure 4 has two 

major components: the subject level and the 

population level. At the subject level, chemical 
concentrations are measured on each of the / 
individuals studied (e.g., ?,- measurements for 
individual /). Let: yx = 

{y^y^, 
. . . , yin) 

denote the set of concentration measurements 
made on individual /', and t;- = Uzi^2>???>*/?,} 
the set of their associated sampling times; the 
kinetic model, denoted f, can predict concen? 
tration-time profiles for given exposure char? 
acteristics (E), individual TK parameters (\|/;), 
and physiological covariables (cp^) (e.g., body 
weight, age, sex, etc). At this level, the mea? 
surement error model is defined. Various error 
models have been suggested to model the dif? 
ferences between observed and model-pre- 
dicted concentrations. One possible 
lognormal error model frequently used for 
concentration measurements is given by: 

Hyij 
= 

ln/(^-,l|/;,(p,) + tij, [2] 

where the error terms e,y are assumed to be 

independent and normal random variables, 

Figure 4. Graph of a hierarchical population model 
describing dependencies between groups of variables. 
Three types of nodes are featured: square nodes repre? 
sent variables for which the values are known by obser? 
vation, such as Yi or 9/' nr were fixed by the 
experimenters, such as ?, and tf, circle nodes represent 
unknown variables such as \|/,-, o2, u, I; the triangle 
represents the deterministic TK model /. A plain arrow 
between two nodes indicates a direct statistical depen- 
dency between the variables of those nodes, a dashed 
arrow represents a deterministic link. Symbols are given 
in the text. 
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with mean 0 and variance O2. These error 
terms may represent assay precision, model 

mispecification, and/or random intraindivid? 
ual variability in model parameters and 
co variables. O2 can be set to a fixed known 
value (e.g., when the analytical error is 
known and modeling error assumed negligi- 
ble) or assumed to be a known function of 
actual concentration in the biological sample; 
it can also be estimated along with the other 
model parameters. 

At the population level, interindividual 

variability is described by considering that the 
vectors of individual TK parameters \\fx, 
. . . , \j/j are independent realizations from a 
multivariate distribution, F, with mean vector 
u and scale matrix S: 

yi~F(vZ),i=l,...,I. [3] 

The population parameters, u and X, are a 

priori affected by uncertainty. 
Within the population framework, infor? 

mation is gained on the average population 
behavior, but at the same time information 
on each subject is reinforced by borrowing 
strength from the other subjects. The latter 
effect is particularly useful when few observa? 
tions are available per subject, which is typical 
in pharmacokinetic and TK studies. This 
framework is flexible and, for example, can be 
extended to separate within-subject, between- 

subject, and measurement uncertainty. 
A number of methods have been proposed 

to estimate kinetic parameters within a popu? 
lation framework. They can be separated into 
two broad classes, parametric and nonpara? 
metric. In the parametric case, the shape of 
the population distribution is assumed to be 
known, and the population parameter values 
are quantities to estimate (e.g., multivariate 
normal distribution with unknown vector of 
means and variance/covariance matrix). 

Typically, assumed distributions for the popu? 
lation distribution F include multivariate nor? 
mal, lognormal, Student-?, or mixtures of 
such distributions. In the nonparametric 
approach, no assumption about the shape of 
the population distribution is made, and the 
entire distribution (both the shape and the 

parameters) is estimated from the population 
data (89-91). The parametric approach is the 
most commonly used because the data are 
often too sparse for nonparametric estimation. 

The above approaches rely typically on 
maximum likelihood techniques (82,92,93) 
or on Bayesian principles (94,95). Bayesian 
approaches prove to be very efficient when 

dealing with the complexities brought about 

by the large number of parameters of the 
hierarchical structure (a 10-parameter TK 
model applied to 50 subjects leads to more 
than 500 parameters to estimate) and by the 
nonlinearities typically present in the subject- 

specific kinetic models (94,95). They are 

particularly appealing in the case of PBTK 

models, as they allow prior physiological 
information to be incorporated explicitely 
into the analysis (39). 

The Bayesian Approach 
A Bayesian statistical analysis allows combina? 
tion of two forms of information: prior 
knowledge about parameter values drawn 
from the scientific literature, and data from 
TK experiments (96,97). In this section we 
first present the general principles of Bayesian 
statistical analyses and then we explain how 
likelihood and prior distributions can be 
elicited in the case of a population TK model; 
then, using the Metropolis Hastings (MH) 
sampler as an illustration, we explain how 
Markov chain Monte Carlo (MCMC) algo- 
rithms proceed, and finally, we illustrate how 
inference and predictions can be made from 
MCMC outputs. 

General principles. In a Bayesian setting, 
all model unknowns, 6, are considered ran? 
dom variables. The probability distribution 
of an unknown model is interpreted in terms 
of degrees of belief about possible values of 
that quantity. Before conducting an experi? 
mental study, a prior probability distribu? 
tion, p(Q) is constructed to reflect current 

knowledge of 0. This prior distribution is 
then updated using the data values, y, to 

yield a posterior probability distribution of 
model unknowns. Bayes' theorem indicates 
that the posterior probability distribution of 
0 given y, p(&\y), is proportional to the prod? 
uct ofthe likelihood by the prior ^(0). In a 

Bayesian framework, the likelihood of a par? 
ticular data set, given an assumed model and 
its parameter values, is the conditional prob? 
ability distribution of the observed data, 

p(y\Q). Bayes' rule can be viewed as a formula 
that shows how existing beliefs, formally 
expressed as probability distributions, are 
modified by new information (98): 

/>(eiy)=c/>(yie)x/,(e). [4] 

All inferences about 0 or a particular set of its 

components follow from the posterior distrib? 
ution p(Q\y): means, standard deviations 

(SDs), quantiles, correlations, and marginal 
distributions are obtainable by integration of 

p(Q\y). In the case ofthe above population 
TK model, model unknowns, 0, comprise the 
individual TK parameter vectors \|fif i = 1, 
. .., I (denoted \|/ in the following, for conve- 

nience), the population parameter vector or 
matrix, p and X, and a variance term for the 
measurement errors, CJ2. Hence, Equation 4 
takes the form: 

p(\\f,]lX,G2\y) oc ̂ (y|\|/,p,I,a2) X/>(\|/,p,?,CJ2). 
[5] 

It is possible to rewrite Equation 5 as a 

product of simpler conditional distributions, 

considering the following arguments, which 
are legitimate in any similar hierarchical 
model. First, arguments of conditional inde- 

pendence (99-101) allow us to simplify the 
first term ofthe right side of Equation 5: 

/>(yl V|/,u,X,a2) = p(y\\\f,C2). [6] 

Second, assuming that the experimental 
error variance is a priori independent of (\|/, 
u, X) (which is reasonable in most applica? 
tions), and by the definition of conditional 

probabilities, the second term of the right 
side of Equation 5 can be written as: 

p(\\f,\iX,c2) = p(y,\i,Z) xp(a2) 
= p(y\]i,l)xp(]i,l)xp(cj2), [7] 

leading to the following expression for p(Q\y): 

/>(\j/,u,Z,G2ly) ?= p(y\\\f,G2) X 

p(y\]i,l)xp(]iZ)xp(G2y, [8] 

finally, u and X are usually assumed to be a 

priori independent, allowing the factorization 

of/>(u, ?): 

/>(\|/,u,?,a2ly) oc p(y\\\f,C2) X 

/>(\|/lu,I) x />(u) x p(L) x p(a2). [9] 

Even though Equation 9 involves simpler 
components than Equation 5, it is impossible 
to obtain an analytical expression for/>(0ly), 
in particular because of the nonlinear form of 
the TK model. Until recently, this intractabil- 

ity has been a strong impediment to practical 
Bayesian analyses. Fortunately, the recent 
advent of MCMC methods has alleviated a 
number of these difficulties. These methods 
are powerful tools to provide samples of para? 
meter values from p(0\y) even without knowl? 

edge ofthe analytical expression of p(0\y) 
(102,103). They have largely contributed to 
the recent proliferation of Bayesian analyses 
in applied statistics. These methods require 
the functional forms for p(y\\\f,G2) (the likeli? 

hood), />(\|/lu,E) (the population model per 
se), andp(\i),p(X), andp(o2) (the priors). 

Specification of likelihood and prior 
distributions. The choice of a likelihood 
function embodies an error model and has 
been discussed previously. For example, con? 
sider the 15-parameter (K= 15) PBTK model 

depicted in Figure 1 and the associated popu? 
lation model in Figure 4 (38). This model 
was calibrated using TETRA concentration 
data measured in the exhaled air and venous 
blood of I = 6 human volunteers exposed to 
70 and 144 ppm of TETRA for 4 hr (104). 
To specify a likelihood on the observed indi? 
vidual concentrations (n; observations for 

subject /), it was assumed that analytical 
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errors were independent and lognormally 
distributed. The first-stage likelihood 

p(y\\\f,G2) was then: 

hp{yi\yi,G2) 
= 

hflp{yi;\vi,o2) 
= 

FI fi AT[ln /(^, ^, XJ/,, (p,), <T2 ]. [10] 

The variance term G2 was a vector with two 

components: G2 for the measurements in 

blood, and G^ for the measurements in 
exhaled air; these measurements had different 

experimental protocols and were thus likely 
to have different precisions. 

Interindividual variability was described 

by assuming that each component \|/^ of the 
individual TK parameter sets \|/;, was distrib? 
uted lognormally, with population para? 
meters p^ and 2,1 k (in log-space). So the 

population model p(\\f\\i,T) was given by: 

p{v\\i,z)=nn^v*ML)> [11] 

and 

ln\|/^~Mlnp^). [12] 

The use of a probability distribution to 

represent prior knowledge offers a unified 

way to account for precise as well as vague 
information available before experiments. 
There is a large body of literature on the elic- 
itation of prior distributions (96,105,106). 
When little prior knowledge is available on a 

particular parameter value, a noninformative 
distribution (i.e., flat-shaped) can be used. 

Conversely, in the case of stronger prior 
knowledge, the distribution shape, location, 
and dispersion parameters should be chosen 
to represent that information as appropri? 
ately as possible. As stated previously, there is 

usually very little prior knowledge of the 

parameter values for a particular individual 
because information obtainable from the lit? 
erature relates more often to average values 
or variances for a human population. Within 
a population model, such information can be 

directly used under the form of prior distrib? 
utions for the population parameters p and ? 

(Figure 4). For example, when a PBTK 
model is considered, reference values avail? 
able in the literature (71,107) for physiologi? 
cal parameters such as blood flows and organ 
volumes yield a sound basis for setting up 
informative prior distributions. For chemi- 

cal-specific parameters, prior information is 
often less precise but can still be obtained 
from previously published experiments (for 
example, in vitro determinations of partition 
coefficients or estimates of metabolic para? 
meters obtained from in vivo experiments). 

In all cases, it is preferable when setting 
uncertainties on population parameters to be 
conservative and set the prior population 
variances higher rather than lower when 
there is ambiguity. To stay in physiological 
or biochemical plausible ranges, truncated 
distributions can be used. 

In the example cited above, all population 
parameters were assumed a priori independent 
(after scaling functions had been applied). The 

prior distribution assigned to each term, u^, of 
the population mean u was a truncated nor? 
mal distribution (with parameters M^ and S% 
in log-space). So the prior on the mean popu? 
lation vector p(\i) was given by: 

p(v) = flp(Vik) [13] 
k=l 

and 

pk~N(Mk,Si) [14] 

The prior distribution assigned to each popu? 
lation variance Zj^ was an inverse-gamma dis? 
tribution with shape parameter equal to one 

(to indicate large uncertainties) and scale 

parameter CO^ (oty was the prior estimate of 
the true population variance). p(I<) was 
therefore given by: 

p{-L)=Yl?{zi) [15] 

vhere 

l%k - InvGamma( 1 ,?*) [16] 

The quantities Mj, S/, and CO^ are called 

hyperparameters. They directly embody prior 
knowledge. For each k, M^ relates to the loca? 
tion of the population mean u^, Sj1 character- 
izes the (prior) uncertainty associated with this 

location; 0)^ is used to represent prior beliefs 
on the variability of the TK parameter V|/^ 
within the population. Variability and uncer? 

tainty were thus formally distinguished. As an 

example, consider the metabolic parameter 
Vm, which represents the maximum rate of 
TETRA metabolism. To reflect the large prior 
uncertainty associated with that parameter, 
exp(Sl) was set to 10, while exp(0)/) was set 
to 2. This indicates that this parameter was 
believed to vary by a factor 2 in the popula? 
tion studied, but its true population mean was 
uncertain by a factor of 10. It would be diffi? 
cult to express such uncertainties without an 

explicit hierarchical model. 

Finally, the prior distributions assigned 
to the experimental error variances G2 and 

G2 were standard noninformative priors for 
variances (108): 

p(a2) = p(clo22) - Gf2x c22. [17] 

Computational aspects?MCMC 
sampling. MCMC methods are iterative 

sampling schemes that provide direct 

approximations to a complex joint posterior 
distribution (by random draws from it sets 
of parameter values). These methods consist 
in constructing a Markov chain that con- 

verges, as iterations progress, toward the 

posterior distribution, />(0ly). Various 
MCMC methods have been developed to 
date; they differ in ways the Markov chain is 
constructed. The MH algorithm proved in 
our experience to be very efficient in dealing 
with Bayesian population TK models. 

Briefly, it proceeds as follows: at the begin? 
ning, all model unknowns are assigned val? 
ues; for example, by sampling from their 

respective prior distribution. At each follow? 

ing iteration step, each component, 0^, of 
the parameter vector 0 is eventually updated 
according to the following acception/rejec- 
tion rule: a proposed value, 0^', is sampled 
from a "proposal" distribution (e.g., normal, 
centered on the current value 0^). The joint 
posterior density is then computed at 0^ and 

Qjt' (up to a proportionality constant, using 
Equation 9). Label these two density values 
K and 7t'. If the ratio 7t77t exceeds 1, the 
new value 0^' is accepted and replaces 0^; 
otherwise, 0/ is accepted only with proba? 
bility 7T//7L In case of rejection of 0^', the 
value 0? is kept. After (eventually) upating 
all components of 0 sequentially, their val? 
ues are recorded, which completes one itera? 
tion of the Markov chain. Many iterations 
are typically needed. It has been shown that 
under some regularity conditions (i.e., the 
Markov chain has to be irreducible, aperi- 
odic, and positive recurrent), the chain con- 

verges toward the distribution of interest, 
i.e., the joint posterior distribution. This 
means that after a sufficient number of itera- 
tions, the samples generated by such a 

process can be considered approximate sam? 

ples from p(Q\y), and thus can be used to 
make inferences. Implementation details 

(e.g., how to choose the proposal distribu? 

tion) and techniques to monitor convergence 
are well described in the literature 

(102,103,109-111) and will not be discussed 
here. Briefly, the main desired characteristics 
of the proposal distribution are related to 
ease of simulation and approximation of the 

posterior distribution. 
MCMC methods provide joint distribu? 

tions of parameter estimates appropriate for 

uncertainty analyses because they account for 
the full dependence structure between para? 
meter estimates. They are directly usable as 

inputs for uncertainty analysis of exposure- 
dose relationships. 

MCMC methods can actually be viewed 
as extensions of the traditional or standard 
Monte Carlo methods for uncertainty analysis 
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(9). Figure 5 is an illustration of MCMC 

sampling, compared to simple Monte Carlo 

sampling. In the former, the values drawn for 
each parameter start from its prior distribu? 
tion and converge, as iterations progress, to a 

data-adjusted posterior distribution. In the 
case of simple Monte Carlo sampling, the val? 
ues are always drawn from the prior distribu? 
tion. The use of uniform priors in a Bayesian 
analysis leads to posteriors strictly propor? 
tional to the data likelihood and is equivalent 
to the frequentist maximum likelihood esti? 
mation. Conversely, if the data do not convey 

Iteration 

Figure 5. Illustration of MCMC sampling compared to 
simple Monte Carlo sampling. In MCMC sampling (dots), 
the values drawn for any parameter 6 start from the 
prior distribution and converge, as iterations progress, to 
a data-adjusted posterior distribution. The posterior den? 
sity corresponds to the product of the prior density by 
the data likelihood. In the case of simple Monte Carlo 
sampling (crosses), the values are always drawn from 
the prior distribution. Reproduced from Bois (119) with 
permission from Environmental Health Perspectives. 

TETRA clearance (L/min) 

Figure 6. Posterior distributions of TETRA clearance for 
subject A [A) and mean population clearance [B) 
obtained by calibrating the TK model depicted in Figure 
2 to the data of Bernillon et al. [55). The histograms bin 
3,000 parameter values sampled from their posterior 
distribution. 

information about some parameters, the 

corresponding posteriors are equal to the priors 
and this approach becomes equivalent to stan? 
dard Monte Carlo sampling from the priors. 

Analyzing MCMC outputs. MCMC sam? 

pling methods provide joint multivariate 

samples of parameter values from/>(0ly). 
Posterior means, SDs, and quantiles of any 
single (or set of) component(s) of 0 can be 
estimated from these samples by computing 
their equivalent in the MCMC output. As an 
illustration, we present some results obtained 

by calibrating, within a Bayesain hierarchical 
framework, the TK model depicted in Figure 
2 with the data of Bernillon et al. (55). These 
data consisted in concentration-time profiles 

0.05 0.15 0.25 0.35 

TETRA clearance (L/min) 

Figure 7. Posterior distributions of TETRA clearance 
parameters (occasion-specific, individual mean, and pop? 
ulation mean) estimated by calibration of the TK model 
depicted on Figure 2 with the data of Bernillon et al. 
(55\. The population mean distribution is denoted by u 
(thick line), individual means by unsubscripted capitals 
A-F (thin lines), occasion-specific distribution values by 
subscripted capitals At?F2 (dashed lines). The mode of 
the distribution of the population mean is indicated by 
the vertical dashed line. 

of TETRA in air and blood and TCA in 
blood and urine, followed for 1 week after 

exposure for six volunteers exposed once or 
twice to 1 ppm TETRA for 6 hr. 

Histograms can be used to represent the 

marginal distribution of individual or popula? 
tion parameters. Figure 6A is a histogram of 
the estimates of TETRA clearance (mean, 
0.17 L/min1; SD, 0.05) for subject A. Figure 
6B is a histogram of the distribution of the 

population mean of TETRA clearance (mean, 
0.16 L/min; SD, 0.03) for the six subjects 
studied. The distribution of the population 
mean was slightly skewed. 

In Bernillon et al. (55), four ofthe six 

subjects studied underwent repeated expo? 
sures to TETRA; intraindividual variability 
was thus assessed in addition to interindivid? 
ual variability. This was achieved by adding 
one level to the hierarchy: the first level was 
the occasion level (where the observations 
were available); at the individual level, occa? 

sion-specific parameters were supposed to 

vary among exposures around a subject- 
specific mean; at the population level, these 

subject-specific means were supposed to vary 
among individuals. Figure 7 illustrates the 

posterior distributions of TETRA clearance at 
each of these three levels: occasion, individual 
mean, and population mean. For display pur? 
poses, the distributions are approximated by 
normal (occasion-level parameters) or lognor? 
mal (individual or population mean parame? 
ters) distributions, whose means and SDs 
have been computed on the posterior sam? 

ples. A subject's average clearance estimate is 
not only influenced by his occasion-specific 
estimates but also by the population mean. In 
other words, sharing information across indi? 
viduals and occasions occurs through the 
hierarchical structure. 

In the six-subject sample studied, 
interindividual differences in clearance 
reached a factor of 1.2 (between subjects A 
and C); intraindividual (i.e., interoccasion) 
variability reached a factor of 1.3 (subject C). 
Inference for a larger population is given by 
the size of the posterior interindividual and 
intraindividual variances, whose correspond? 
ing coefficients of variation were estimated at 
33 and 18%, respectively. Using the popula? 
tion parameter estimates, it is possible to sim- 
ulate additional hypothetical individuals. 

Correlations between parameters can also 
be studied through correlation matrices (esti? 
mated from the MCMC output) or simple 
scatterplots. Figure 8 illustrates the correla? 
tion between the occasion-specific estimates 
of TETRA clearance and the TETRA cen- 
tral/air partition coefficient for subject A. 
These two parameters are negatively corre? 
lated (r = -0.33). 

Distributions of model predictions of tox? 

icologic interest can also be easily obtained. 
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Figure 9 gives the posterior distributions of 
the fraction of TETRA metabolized by the six 
individuals studied, for each occasion of 

exposure. These results were obtained by 
running the TK model once for each of 3,000 
vectors from the MCMC ouptuts for each 
individual and occasion-specific parameters 
simulating a 1 ppm exposure to TETRA for 6 
hr. Large intraindividual variability is 
observed following those of TETRA clearance 
estimates (Figure 7). Estimates ofthe fraction 
of TETRA metabolized after 1 ppm 6-hr 

exposures range from 14% (subject C, occa? 
sion 2) to 25% (subject D, occasion 1). This 
tends to confirm our results obtained by 
extrapolating the results obtained by calibra? 
tion of a PBTK model to high-exposure data 

(70 and 140 ppm) (38). 
After calibration, residual (posterior) 

uncertainty is reflected by the range of para? 
meter estimates. For each parameter, an esti? 
mate of variability is given by the location of 
the corresponding (intraindividual, interindi- 

vidual) variance parameter. Note that the 
variance parameters are themselves affected by 
uncertainty. 

Sensitivity analyses. Bayesian analyses call 
for the specification of prior distributions. A 

legitimate question is the sensitivity of the 
results (either posterior parameter estimates 
or model predictions) with respect to the 
choice of those priors. It is therefore recom? 
mended that diagnostics of sensitivity be per- 
formed. That is quite easy to do after 
MCMC sampling, for example, by plotting 
and analyzing the correlations between results 
and sampled parameter values (39). The prior 
assumptions about the parameters that 

strongly influence the results can be further 
evaluated. It is possible, for example, to study 
the effect of changing prior specifications. 

The question of sensitivity to the priors 
can also be answered generally. Note first that 
the choice of priors should always be trans- 

parent, i.e., fully stated, to allow useful dis? 
cussion of the results. Clearly, the choice of 

priors for noninfluential parameters should 
not be a problem. For influential parameters, 
the priors used can either be vague or infor? 
mative (i.e., biologically motivated and 

knowledge based) and the posteriors distribu? 
tions can be either prior- or data-driven. Four 

major cases can therefore be envisioned: 
? Both prior and posterior are vague (the 

data brought no information). The results 
will be prior dependent and more infor? 
mation should be acquired either in form 
of prior knowledge or additional data. 

? The prior is vague, but the posterior is 
informative (the data are driving the esti? 

mates). In that case, the conclusions 
should be robust with respect to the prior. 

? The prior is informative and reinforced by 
the data (data and prior agree). Here also, 
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Figure 8. Posterior correlations between TETRA clear? 
ance and central/air TETRA partition coefficient esti? 
mates (subject A) obtained by calibrating the TK model 
depicted in Figure 2 to the data of Bernillon et al. (55). 
The dots represent 3,000 pairs of parameter values from 
the MCMC outputs. The correlation coefficient is esti? 
mated at-0.33. 

if the data are strongly informative, the 
conclusions should be robust. When the 
relative weight of prior and data is less 
clearcut, further checks of sensitivity are 
warranted. 

? The prior is informative but the data con? 
flict with it. The conclusions will be prior 
dependent, but in that case the model, the 

prior, and the data should be questioned 
to resolve the discrepancy. 

Perspectives 
The objective of this article was to present a 

Bayesian statistical approach to the analysis of 

population TK models, which offers a num? 
ber of advantages over previously proposed 
approaches. The proposed methodology is far 
from definitely established and several issues 
still must be resolved. For example, several 

modeling assumptions are involved, particu? 
larly within the population model, that 
should be further validated. Hopefully, expe? 
rience gained from population analyses using 
simpler models can be transposed to PBPK 
models. Another task is to reduce the associ? 
ated computational burden so as to quickly 
explore alternative models. Simple MCMC 

samplers can sometimes converge slowly or 
even fail to converge. Improved algorithms 
recently have been proposed (103,112-115) 
and should be tested. In addition, the defini? 
tion of prior distributions is not always an 

easy task because of data accessibility. 
Although it is well known that TK parame? 
ters exhibit inter- or intraindividual variabil? 

ity in humans (and other species), the only 
values readily available and those commonly 
used on physiological modeling are reference 
values for young Caucasian males. The use of 
reference values artificially reduces estimates 
of population variance. Information about 

population variability may eventually be 
found by researching the original publica? 
tions, but even these often lack adequate sta? 
tistical treatment. Data about the shape of the 
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Figure 9. Prediction of the fraction of TETRA metabo? 
lized after an exposure to 1 ppm TETRA for 6 hr by the 
six subjects studied at each occasion. Box plots of 3,000 
estimates are displayed. Each box encloses 50% of the 
predictions; the lines extending from the top and bottom 
of each box mark the 10th and 90th percentiles. The line 
inside the box represents the median value. 

distributions are even harder to find. A 
database giving population distributions of 

important physiological parameter values 

together with their correlations is needed. 
Such a database would be useful for all types 
of physiological modeling and for both toxi? 
cants and drugs. Despite these limitations, 

experience has been sufficient to demonstrate 
that the Bayesian approach provides reason? 
able estimates of uncertainty and variability of 
TK model parameters and predictions. 

Is it worth making the computational 
effort implied by such an approach? The 
answer to that question is a matter of choice 
and scientific judgment. A PBTK model with 
standard parameter values might be sufficient 
for simple exploratory analyses or for theoret? 
ical work on model structure. Alternatively, 
for the full analysis of a data set or for risk 
assessment purposes, a formal model calibra? 
tion along the lines presented here appears 
necessary. For example, in a scientific data 

analysis context, Smith (116) illustrated, in 
the case of occupational exposure to gasoline, 
how PBTK and pharmacodynamic models 
could be combined with epidemiological data 
to evaluate concurrent reasonable hypotheses 
concerning mechanisms of toxicity. The sta? 
tistical framework described in this article is 
convenient in such a setting because distribu? 
tions of internal doses are more suitable than 

average point estimates in comparing alterna? 
tive hypotheses. We have shown how to 
extend the methodology for optimal design- 
ing of occupational monitoring programs or 
TK studies (73). 

This approach is also particularly suited 
for risk assessment and decision making. For 

example, population extrapolations can be 

accomplished if the factors responsible for 

heterogeneity (e.g., body weight, breathing 
rate, metabolic constants) are among the list 
of model parameters. In this case, the popula? 
tion distributions obtained for these parame? 
ters, from fitting datasets with few volunteers, 
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can be changed to better reflect the range of 
values found in the general population or in 
sensitive subpopulations (e.g., children). 
Alternatively, if these parameters are measured 
for each volunteer and introduced as fixed 
covariates during the calibration procedure 
(117), they can be replaced by distributions 
when making predictions. In this way, the 

predictions of interest (e.g., internal metabo? 
lite dose, fraction metabolized) can be extrap- 
olated beyond the group of individuals used 
for calibrating the model. Note that this statis? 
tical approach also can be used to calibrate the 
other (e.g., fate and transport, cancer effects) 
models used in risk assessment (118). 

Finally, one of the challenges of toxico? 

logical modeling is the full exploitation of 
the numerous datasets collected during epi? 
demiological or occupational hygiene studies, 

generally in settings in which exposure con? 
centrations are unknown. Most of the time, 

exposure is represented in a considerably sim- 

plified and approximate manner, which can be 

misleading. It is possible using the above statis? 
tical framework to consider exposure as one of 
the estimands. A major problem, however, 
resides in accounting fully for the uncertainties 

stemming from unknown time-varying expo? 
sures. The impact of particular functional form 
for the time evolution of exposure has not yet 
been thoroughly studied and validated. We are 
confident that as progress is made toward 

answering such questions, TK modeling will 
become a more powerful and widespread tool 
for toxicity and risk assessments. 
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