
Microbiome Therapeutics to Potentially Transform the Management of Antimicrobial Resistant Infections

FDA/CDC Drug Development Considerations for the Prevention of HealthCare-Associated Infections Workshop Matthew Henn, PhD

EVP, Chief Scientific Officer

August 30, 2022

Seres' mission: To transform the lives of patients worldwide with revolutionary Microbiome Therapeutics

Clinical benefit through modulation of multiple disease-relevant pathways

Microbiome Therapeutics are a potentially transformative technology in effort to manage Antimicrobial Resistant Infections (AMR)

AMR and bloodstream infections are a major burden to society

Declared "one of the world's most urgent threats"

\$20 billion excessdirect healthcare costs35,000 deathsper year in US

Bloodstream infections (BSI) major cause of death due to AMR infection

Limited innovation despite substantial and growing impact of AMR

Addressing these challenges requires new therapeutics with novel mechanisms of action

Microbiome therapeutics offer **novel mechanisms** with potential to combat infections and AMR

Seres is developing drugs to prevent infection/bacteremia & decolonize pathogens that carry AMR in high-risk patient populations

ECOSPOR III: SER-109 was superior to placebo in Phase 3 trial of patients with recurrent *C. difficile* infection (CDI)

12.4% SER-109 Recurrence rate

sustained clinical response rate 87.6%

PRIMARY EFFICACY ENDPOINT RESULTS

Time point	SER-109 (N =89) n (%) of recurrences	Placebo (N =93) n (%) of recurrences	Relative risk (95%CI)	p-value
Week 8	11 (12.4)	37 (39.8)	0.32 (0.18-0.58)	<0.001 @ 1.0 <0.001 @ 0.833

- Recurrent C. difficile patients (n=182); all subjects treated with standard of care antibiotics followed by SER-109 or Placebo
- Relative risk exceeded FDA predefined threshold for single pivotal trial
- SER-109 was well-tolerated. Most common reported AEs were flatulence, fatigue, abdominal distension, abdominal pain, constipation, decreased appetite, diarrhea, chills, nausea, & UTI. Three deaths occurred on SER-109 evaluated as unrelated to treatment by the investigators. Full description of safety results in Feuerstadt et al. NEJM. 2022
- ECOSPOR IV (n=289; Open-label) provides additional support for observed efficacy and safety profile

The pathogenesis of *C. difficile* infection is a two-hit process

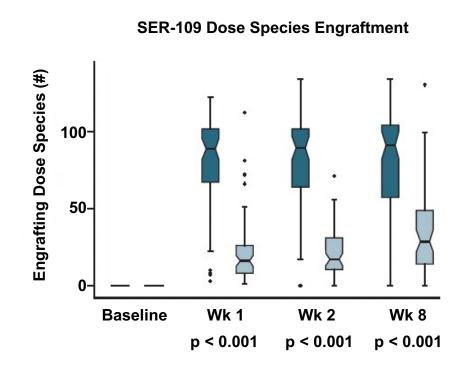
Disruption of gut microbiome

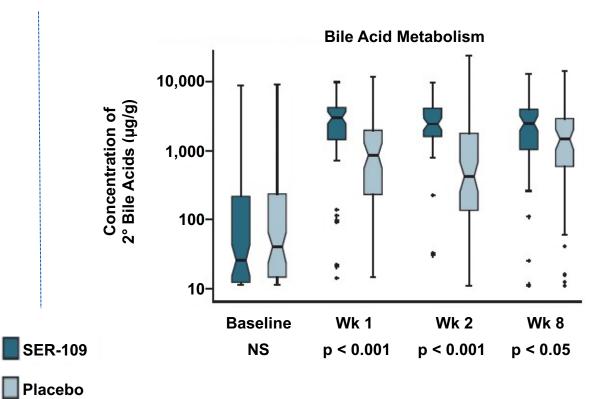
Leading risk factor for *C. difficile* infection is exposure to antibiotics, which disrupt the microbiome

Exposure to **S** C. difficile spores

Disrupted microbiome is susceptible to colonization and vegetative outgrowth of *C. difficile*

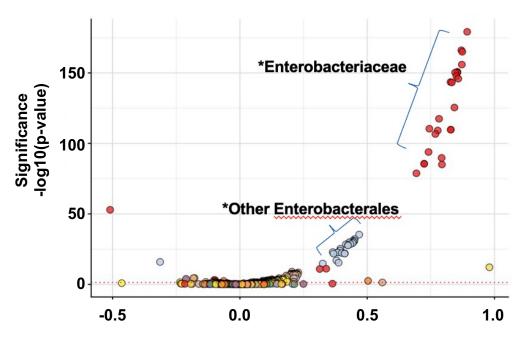
SER-109 mechanism targets disrupted microbiota and prevention of *C. difficile* spore germination and vegetative growth


PK & PD: In ECOSPOR III, SER-109 bacteria engraft restructuring the disrupted microbiome and changing its function to inhibit *C. difficile*

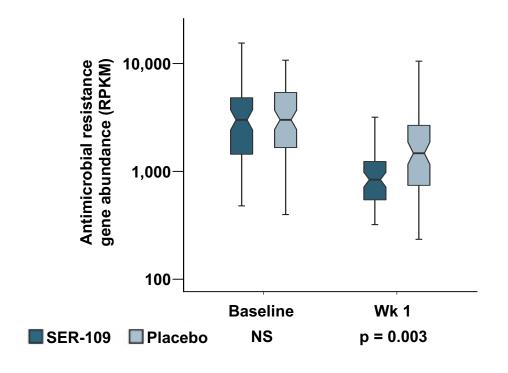


SER-109 bacteria engraft durably & rapidly to restructure microbiome

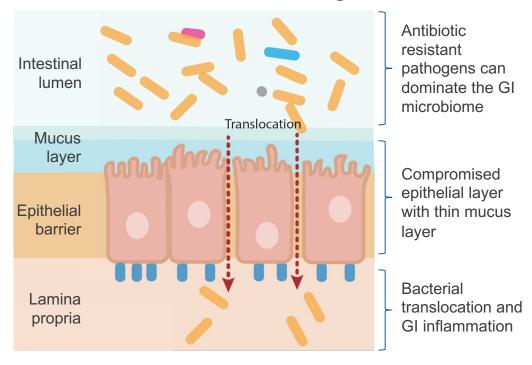
SER-109 bacteria shift gut metabolic landscape following engraftment



PK & PD: ECOSPOR III data support that microbiome therapeutics can reduce pathogens that can harbor antimicrobial resistance


Reduce Proteobacteria* associated with antimicrobial resistance genes

Correlation between abundance of bacterial family and antibiotic resistance genes by drug class

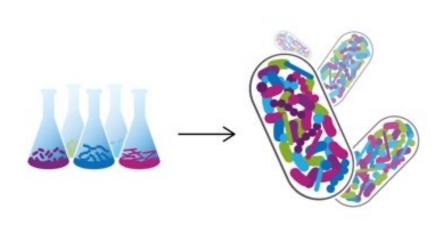

Reduced antimicrobial resistance gene carriage

Microbiome therapeutics have potential to reduce infections, bacteremia, & antimicrobial resistance through multiple mechanisms

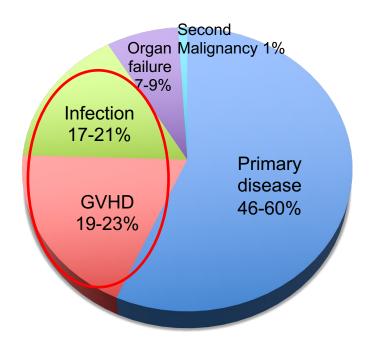
Disrupted Gastrointestinal Microbiome is Reservoir for Potential Pathogens

Microbiome Therapeutics

Restore colonization resistance and potentially decrease patient-to-patient transmission potential by preventing pathogen growth via nutrient competition and other functional mechanisms

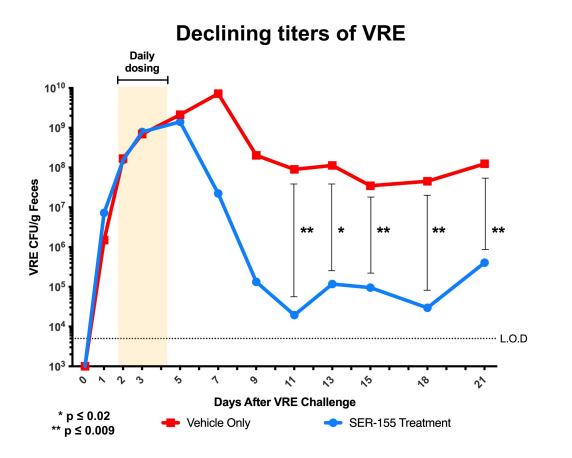

Enhance epithelial barrier integrity and reduce likelihood of translocation to bloodstream by preventing/repairing epithelium and mucosa damage

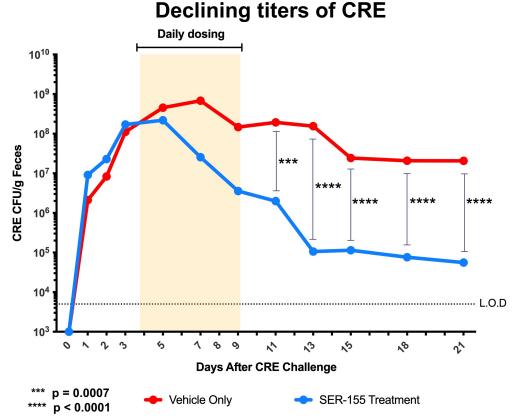
Modulate immune response by improving immune homeostasis and reducing inflammatory responses


Microbiome consortia therapeutics likely can circumvent known resistance mechanisms of traditional antibiotics

SER-155 is a cultivated consortium designed to target VRE & CRE infection and to modulate immune responses associated with GvHD

- Investigational consortium of unique, human commensal bacterial strains
- Cultivated and encapsulated for oral delivery
- GMP manufacturing of bacteria in both spore and vegetative formulations

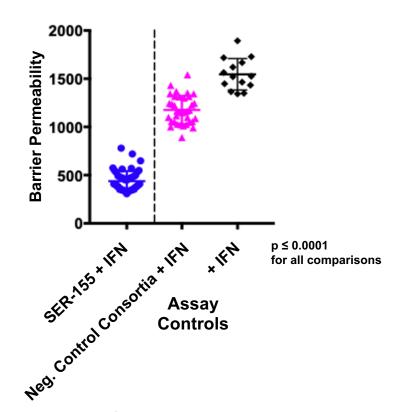

- Phase 1b trial designed to assess safety and SER-155 drug pharmacology
- Will evaluate decolonization of pathogens as well as incidence of infections and GvHD, the two leading causes of mortality at 1-year post-transplant



Lead optimization: SER-155 leads to a reduction in VRE and CRE

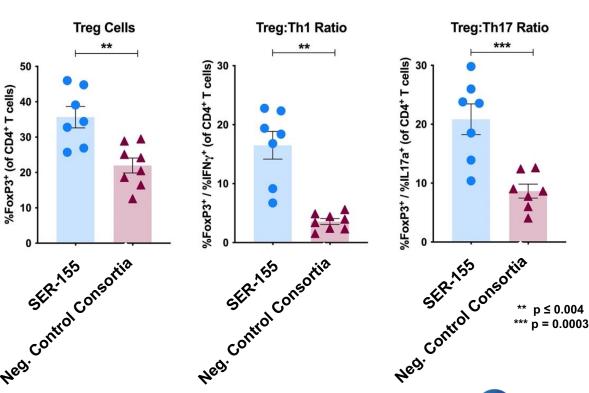
colonization in vivo

- SER-155 can decolonize CRE (carbapenem-resistant Enterobacteriaceae) and VRE (vancomycin-resistant Enterococci) in *in vivo* specific pathogen-free mouse models
- Enterococcus species and Enterobacteriaceae specifically linked to infection and GvHD


Lead optimization: SER-155 designed to prevent translocation of bacteria into bloodstream and reduce GvHD

Consortia strains optimized for production of metabolites that:

- Prevent Translocation: Enhance epithelial barrier integrity, mucosal homeostasis & tight junction gene expression
- Reduce GvHD: Increase Treg differentiation and decrease proinflammatory T Cells


Epithelial Barrier Integrity

(in vitro primary colonic epithelial membrane assay)

Immune Modulation

(in vivo germ-free mouse model)

Moving microbiome therapeutics from concept to reality in AMR

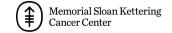
Microbiome therapeutics are potentially a transformative technology with novel mechanisms to combat infections and AMR

Seres is developing drugs to prevent infection/bacteremia & decolonize pathogens that carry AMR in high-risk patient populations

Discovery & Development Considerations for Successful Translation

- Continue to improve translatability of preclinical screens & models for lead optimization
- Continue to enhance methods to evaluate PK, PD, & dosing strategies
- Refine understanding of patient subpopulations on disease pathogenesis & drug pharmacology
- Develop drug formulation strategies that optimize patient access & can capture breadth of microbial biology
- Scale GMP manufacturing for use of broad breadth of microbial strains in drugs

Thank You


Patients & Participating Clinical Sites in Seres Clinical Trials

Seres R&D, Manufacturing, Clinical, & Regulatory Teams

Marcel van den Brink, Jonathan Peled, Maria Vehreschild, Doris Ponce, Rob Jeng, Curtis Huttenhower, Andy Goodman

Contact Information:

Matthew Henn, PhD mhenn@serestherapeutics.com

in linkedin.com/in/mhenn1

