Geographical coherence of influenza epidemics in the US, France and Australia: 1972-1998

Cécile Viboud, Antoine Flahault Inserm U444 and WHO Collaborating Center for Electronic Diseases Surveillance Paris, France

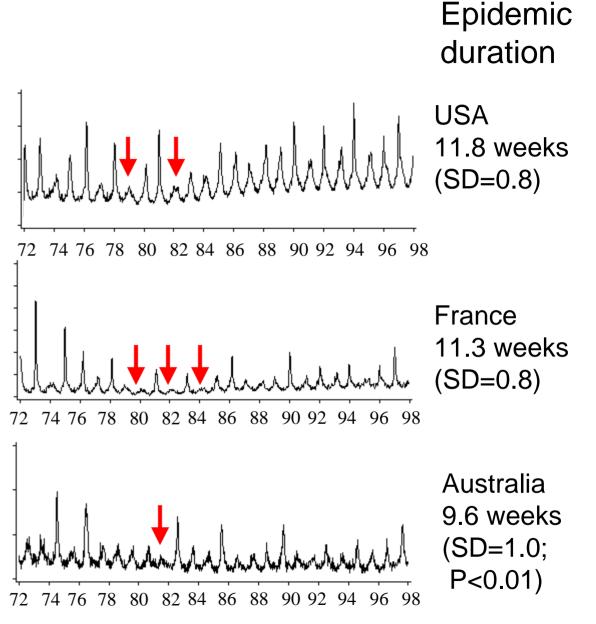
Influenza in temperate areas

- Inter-annual variability in the impact of influenza epidemics, circulating strains, and time of onset.
- Similar patterns in geographically distant areas geographical coherence.
- Why study geographical coherence ?
 - The determinants of the spread are unknown*; global vs local factors that impact or trigger influenza epidemics?
 - Forecasting

Data

- Weekly number of pneumonia (P) and influenza(I)-coded deaths 1972-1998 *
 - In the US (National Center for Health Statistics)
 - In France (Inserm = French National Institute for Health and Medical Research)
 - In Australia (Australian Bureau for Statistics)

* Pneumonia: ICD-8 and 9 codes 480-486; Influenza: ICD-8 codes 470-474, ICD-9 codes 487


Methods : measures of geographical coherence

- Epidemic impact:
 - Number of excess deaths (linear seasonal regression)
 - Between countries correlation
- Epidemic onset / date of peak :
 - Distribution of the time lags between dates of epidemic peaks/onsets
 - Phase coherence (synchronization) : wavelets analysis*

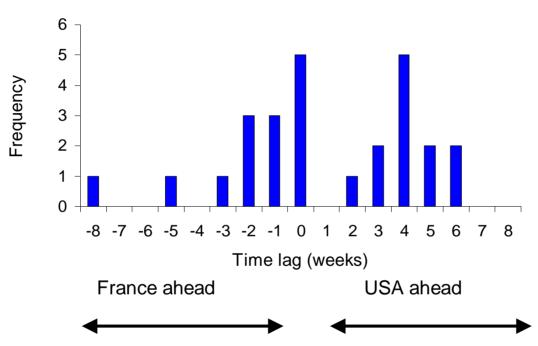
*http://paos.colorado.edu/research/wavelets

Pneumonia and Influenza, 1972-98

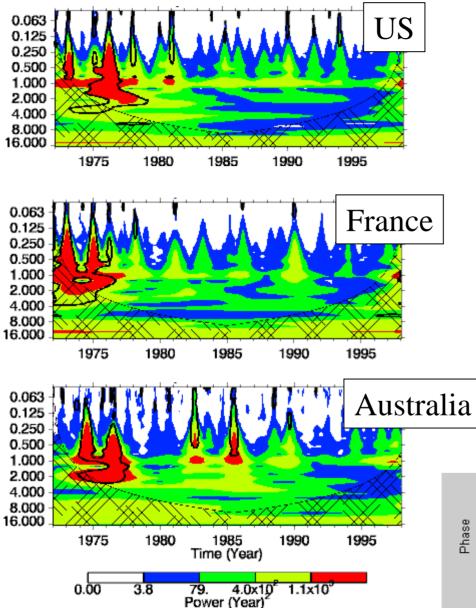
no substantial excess mortality

Pneumonia and influenza excess deaths

Excess deaths	USA (272.7 M pop)	France (58.6 M pop)	Australia (18.9 M pop)
Average	6,200*	2,500*	300
Min	0	0	0
Max	13,600	9,500	1,050

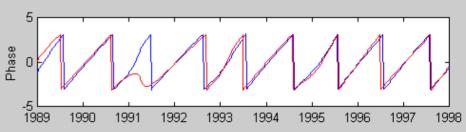

* In line with Simonsen 1997, Carrat 1995

Correlation coefficients

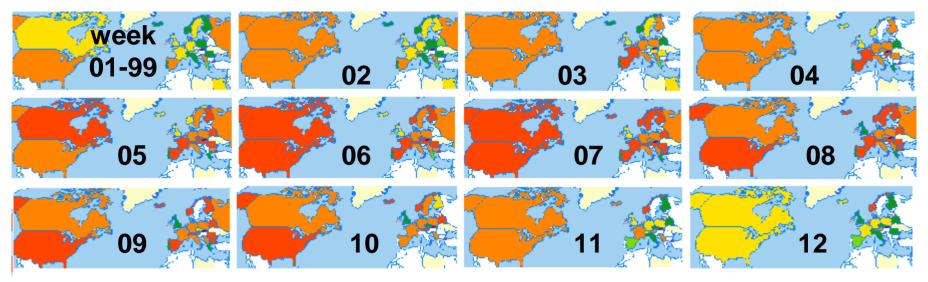

	US	France	Australia (preceding
			summer)
US	1.0	0.76**	0.14
France	-	1.0	0.37**
Australia	-	-	1.0

** significant at the 5% level

USA-France: time lag between epidemic peaks



- Mean time lag 0.96 week [-0.40 2.32], median : 0.
- No evidence of France or the US peaking in advance (P=0.66)
- Similar results with onsets (median time lag = 0 week [-14; +6])
- Mean time lag Fra / Aus = 26.4 weeks, US / Aus = 27.4



Wavelet analysis

-Analysis in both the time and frequency domains -Seasonal component (period=1 year) -Phase analysis : phase coherence between US and France=0.73

Real time observation: FluNet http://oms.u444.jussieu.fr

- 1998/1999: the epidemic wave lasts 10 weeks in Europe/US
- Similar as in 1999/2000, 2000/2001 (11 weeks, 13 weeks)

Conclusion

- US-France: fairly good synchronism for influenza related mortality.
 - In term of impact
 - In term of timing
- Australia-[US/France]: not so clear.
 - This lack of coherence may be due to lack of statistical power, or differences in the circulating strains, demography, vaccination.
- This work favors global factor(s) at the hemisphere level to explain the onset and impact of influenza epidemics in inter-pandemic periods: strains (US-France: similar in 15 of 17 winters), transportation fluxes, climate.