


**Antimicrobial Resistance Panel:** 

# **Promoting Appropriate Antimicrobial Drug Use in Developing Countries**

Sayomporn Sirinavin, M.D. Division of Infectious Disease and Epidemiology Department of Pediatrics Faculty of Medicine Ramathibodi Hospital Mahidol University, Bangkok, Thailand rassr@mahidol.ac.th

#### - CHINA'S CRACKDOWN ON CORRUPTION

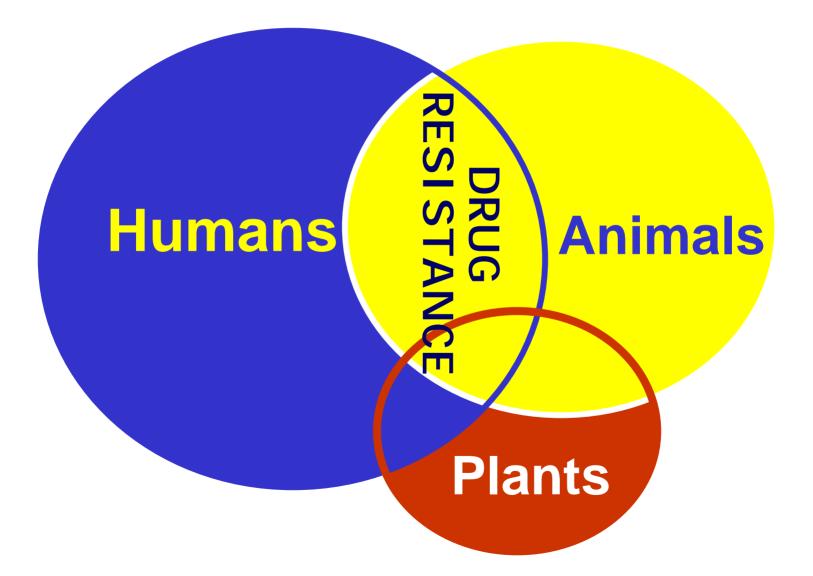
THE INTERNATIO?

Minimum and an and

Month 28, 100 a

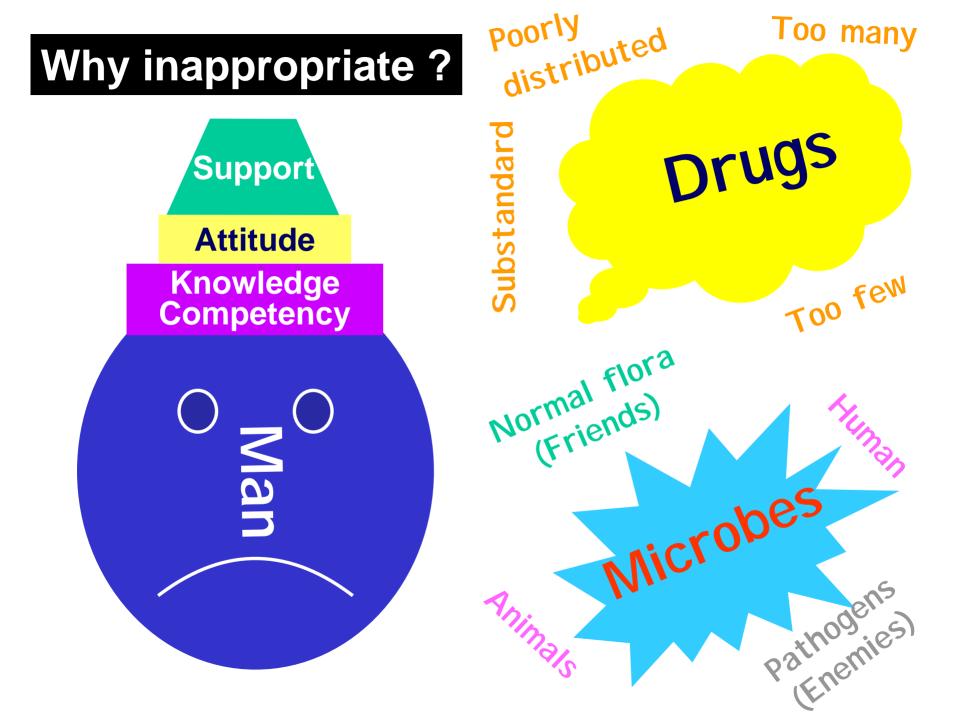
### THE END OF MIRAGLE DRUGS?

WARNING NO LONGER EFFECTIVE AGAINST KILLER BUGS

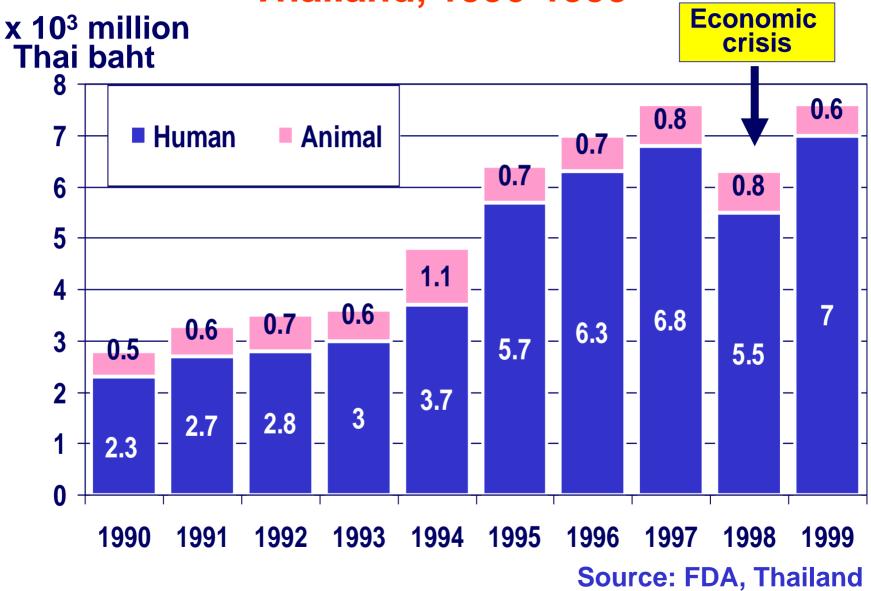

BEALSON AND - ALTER

Contraction of the local division of the loc

Provide State


And Party of Contract of Contr

# Where Antimicrobials are Used




## **Appropriateness of antimicrobial drug use**





### Annual Expense on Antimicrobial Agents Thailand, 1990-1999



#### **Licensed Antimicrobial Drugs in Thailand, 1998**

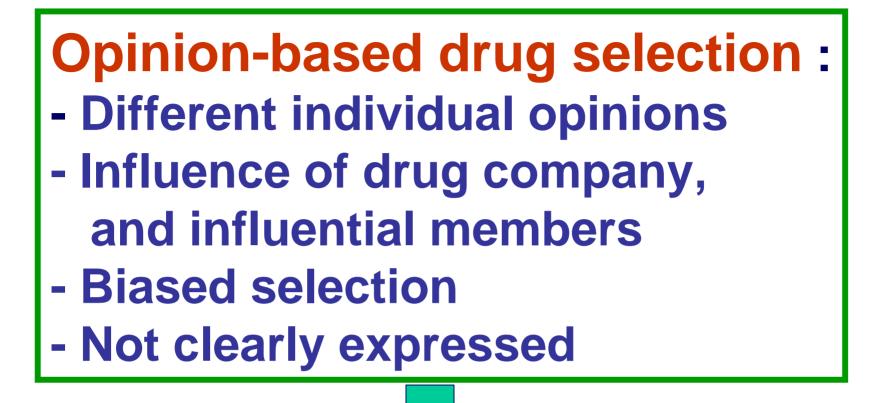
### **Antibacterial Drugs**

Amikacin Amoxvcillin Ampicillin **Azithromycin** Azusulfamide **Aztreonam** Bacampicillin Carbenicillin Cefaclor Cefadroxil Cefalexin Cefamandol Cefazolin Cefdinir Cefixime Cefminox Cefodixime Cefoperazone Cefotaxime Cefotiam Cefoxitin Cefpirome Cepodoxime

Cefprozil Cefsulodine Ceftazidime Ceftibuten Cefizoxime Ceftriaxone Cefuroxime Cefpodoxime Chloramphenicol Chlortetracycline Ciprofloxacin Clarithromycin Clindamycin Clioquinol **Cloxacillin** Colistin **Co-trimoxazole** Dibekacin Dicloxacillin Doxycycline **Erythromycin Fleroxacin Flucloxacillin** 

Fosfomycin Framvcetin **Furazolidone Fusidic acid** Gentamicin Imipenem Kanamycin Lincomycin Lemefloxacin Mecillinam **Methenamine Methicillin Metronidazole Midecamycin** Minocycline **Mupirocin Nalidixic Acid** Neomvcin Netilmicin Nitrofuroxazide Nitrofurantoin Norfloxacin Ofloxacin

Ornidazole Oxacillin **Oxytetracycline** Pefloxacin Penicillin G **Penicillin V Phthalvl** sulfathiazole **Pipemidic acid Piperacillin Pivampicillin Pivmecillinam** Spiramycin Sulfacetamide Sulfamethoxazole Rolitetracycline Roxithromycin Silver Sulfadiazine **Spectinomycin** Streptomycin **Sulbenicillin Sulfadiazine** Sulfadimidine


Sulfamethizole Sulfamethoxypyridazine Sulfasalazine Sulfasomidine Sulfathiazole Sultamicillin **Tetracycline** Thiamphenicol Teicoplanin Tinidazole Tobramycin Trimethoprim Vancomycin Amoxycillin + Clavulanic a Ampicillin + **Sulbactam** Ticarcillin + Clavulanic a Cefoperazone + Sulbactam



### National Drug List, Thailand, 1999 Antimicrobial selection by using a scoring system

**National Committee on National Drug List** 

Sub-committee on antimicrobial drugs



# Evidence-based antimicrobial drug selection

National Drug List, Thailand, 1999 Antimicrobial selection by using a scoring system

**National Committee on National Drug List** 

**Sub-committee on antimicrobials** 

**Explicit guideline for drug selection** 

**Develop a "scoring system"** 

# Explicit guideline for selection of antimicrobial drugs

- 1. List of all available antimicrobial drugs licensed in Thailand, provided by FDA
- 2. Exclude the well-known inappropriate drugs e.g. dibekacin, ampicillin+cloxacillin
- 3. Group the competitive drugs according to their clinical and microbiological indications e.g. cloxacillin and oxacillin
- 4. Compare the competitive drugs using a scoring system
- 5. Rational judgement
- 6. Record the reason for choosing or not choosing a drug

## "Scoring system" for selection of antimicrobial drugs, National Drug List, Thailand 1999

- Route
- Efficacy
- Safety
- Cost
- Ease of administration
- Bioavailability
- Tolerability
- Availability
- Total score
- Decision
- Comment

|                          |        |     |         |     | 000000   |            |                |                |       |                |            |      |                             |       |       |           |                                         |          |          |           |          |       |
|--------------------------|--------|-----|---------|-----|----------|------------|----------------|----------------|-------|----------------|------------|------|-----------------------------|-------|-------|-----------|-----------------------------------------|----------|----------|-----------|----------|-------|
|                          | Ro     | eff | sf      | inf | ESI      | mg         | original       | local          | G/day | B/day          | fre        | food | toler                       | Comp  | O/L   | difOL     | Distri                                  | Avail    | Factor   | Score     | Decis    | class |
| Beta-lactams             |        |     |         |     |          |            |                |                |       |                |            |      |                             |       |       |           |                                         |          |          |           |          |       |
| Penicillin G, benzyl     | 1      |     |         |     |          |            | 6.84           | 6.84           | 0.75  |                |            |      |                             |       | 1     | 0.8       |                                         |          |          |           | +        | 1     |
| Penicillin G,            | I      |     |         |     |          | 1.2 mu     | 40.8           | 34.95          | 0.75  |                |            |      |                             |       | 1.167 | 0.8       |                                         |          |          |           | +        | 1     |
| benzathine               | 1      |     |         |     |          | 1.2 mu     | 40.0           | 34.33          | 0.75  |                |            |      |                             |       | 1.107 | 0.0       |                                         |          |          |           | т        | '     |
| Penicillin G,            | I      |     |         |     |          | 4 mu       | 20             | 20             | 0.5   |                |            |      |                             |       | 1     | 0.8       |                                         |          |          |           | +        | 1     |
| procaine                 | 1      |     |         |     |          | 4 mu       | 20             | 20             | 0.5   |                |            |      |                             |       |       | 0.8       |                                         |          |          |           | Ŧ        | 1     |
| Penicillin V             | 0      |     |         |     |          | 250        | 0.72           | 0.72           | 2     |                |            |      |                             |       | 1     | 0.8       |                                         |          |          |           | +        | 1     |
| Cloxacillin              | I      | 1   | 1       | 1   | 1        | 1000       | 22             | 17.04          | 6     | 132            | 0.7        | 1    | 1                           | 0.7   | 1.291 | 0.8       | 1                                       | 0.8      | 0.56     | 236       | +        | 1     |
| Oxacillin                | I      | 1   | 1       | 1   | 1        | 1000       |                |                | 6     |                | 0.7        | 1    | 1                           | 0.7   |       | хх        |                                         |          |          |           |          |       |
| Flucloxacillin           | I      | 1   | 1       | 0.9 | 0.9      | 1000       |                |                | 6     |                | 0.7        | 1    | 1                           | 0.7   |       | хх        |                                         |          |          |           |          |       |
| Lincomycin               | I      | 0.9 | 1       | 1   | 0.9      | 600        | 64.23          | 18.12          | 1.8   | 192.69         | 0.8        | 1    | 1                           | 1     | 3.545 | 0.9       | 1                                       | 0.9      | 0.81     | 238       | +        | 1     |
| Clindamycin              | 1      | 1   | 0.9     | 1   | 0.9      | 600        | 379.17         | 379.17         | 1.2   | 758.34         | 0.8        | 1    | 1                           | 1     | 1     | 0.8       | 1                                       |          | 0.72     | 1053      | +        | 2     |
|                          | 0      | 1   | 1       | 1   | 1        | 250        | 2.37           | 1.57           | 2     | 18.96          | 0.7        | 0.9  | 1                           | 0.63  | 1.51  | 0.8       | 1                                       |          | 0.50     | 38        |          | 1     |
| Oxacillin                | 0      | 1   | 1       | 1   | 1        | 250        | 4              | 3              | 2     | 32             | 0.7        | 0.9  | 1                           | 0.63  | 1.333 | 0.8       | 0.9                                     | 0.72     | 0.45     | 71        |          |       |
|                          | 0      | 1   | 1       | 1   | 1        | 250        | 4.13           | 2.45           | 1     | 16.52          | 0.7        | 0.9  | 1                           | 0.63  | 1.686 | 0.9       | 1                                       | 0.9      | 0.57     | 29        |          | 1     |
|                          | 0      | 1   | 1       | 0.9 | 0.9      | 250        | 5.5            | 5.5            | 1     | 22             | 0.7        | 0.9  | 1                           | 0.63  | 1     | 0.8       | 0.9                                     |          | 0.41     | 54        |          |       |
| Ampicillin               | I      | 1   | 1       | 1   | 1        | 250        | 6.67           | 6.67           | 4     | 106.72         | 0.7        | 1    | 0.9                         | 0.63  | 1     | 0.8       | 1                                       | 0.8      | 0.50     | 212       | +        | 1     |
|                          | 0      | 1   | 1       | 1   | 1        | 500        |                |                | 2     |                | 0.7        | 0.9  | 0.9                         | 0.567 | ļ     | xx        | 1                                       |          |          |           | L        | ļ     |
|                          | 0      | 1   | 1       | 0.9 | 0.9      | 400        |                |                | 0.8   |                | 0.9        | 1    | 1                           | 0.9   | ļ     | xx        |                                         |          |          |           | ļ        | L     |
|                          | 0      | 1   | 1       |     |          |            |                |                | 2     |                |            |      |                             | 0     | ļ     | xx        |                                         |          |          |           | L        |       |
|                          | 0      | 1   | 1       | 0.9 | 0.9      | =          |                |                | 2     |                |            |      |                             | 0     |       | xx        |                                         |          |          |           |          |       |
|                          | 0      | 1   | 1       | 1   | 1        | 500        | 4.81           | 2.29           | 0.75  | 7.215          | 0.8        | 1    | 1                           | 0.8   |       | 0.9       | 1                                       | 0.9      | 0.72     | 10        |          | 1     |
| Cefazolin                | 1      | 1   | 1       | 1   | 1        | 1000       | 47.75          | 23.08          | 3     | 143.25         | 0.8        | 1    | 1                           | 0.8   |       | 0.9       | 1                                       | 0.9      | 0.72     | 199       |          | 1     |
| Cephalexin               | I      | 1   | 1       | 0.7 | 0.7      | 1000       | 74             | 74             | 4     | 296            | 0.8        | 1    | 1                           | 0.8   | 1     | 0.8       | 0.9                                     |          | 0.40     | 734       |          | -     |
| Clindamycin              |        | 1   | 0.9     | 1   | 0.9      | 600        | 379.17         | 379.17         | 1.2   | 758.34         | 0.8        | 1    | 1                           | 1     | 1     | 0.8       | 1                                       | 0.8      | 0.72     | 1053      | +        | 2     |
| •·····                   | 0      | 1   | 0.9     | 0.9 | 0.81     | 150        | 11.72          | 11.72          | 1.2   | 93.76          | 0.7        | 0.9  | 0.9                         | 0.567 | 1     | 0.8       | 1                                       | 0.8      | 0.37     | 255       | +        | 2     |
|                          | 0<br>0 | 1   | 1       | 1   | 1        | 500        | 10.52          | 5.64           | 2     | 42.08          | 0.7        | 0.9  | 1                           | 0.63  | 1.865 | 0.9       | 1                                       | 0.9      | 0.57     | 74        |          | 1     |
|                          | 0      | 1   |         | 1   |          | 500        | 23             | 23             | 1.5   | 69<br>641.4    | 0.9        | 0.9  | 1                           | 0.81  |       | 0.8       | 0.9                                     | -        | 0.58     | 118       |          | -     |
| Cefoxitin<br>Cefmetazole | 1      | 0.9 | 1       |     | 0.9      | 1000       | 213.8          | 147            | 3     | 041.4          | 0.8        | 1    | I                           | 0.8   | 1.454 | 0.8       |                                         | 0.8      | 0.58     | 1114      | +        | 3     |
| Co-amoxiclav             | 1      | 0.9 | 1       | 0.9 | 0.81     | 1200       | 225.28         | 225.28         | 3.6   | 675.84         | 0.8        | 1    | 1                           | 0.8   | 1     | xx<br>0.8 | 0.9                                     | 0.72     | 0.47     | 1449      | +        | 3     |
| Sultamicillin            | י<br>ו | 1   | 1       | 0.9 | 0.9      | 1500       | 193.33         | 193.33         | 4.5   | 579.99         | 0.8        | 1    |                             | 0.0   |       | 0.8       | 0.9                                     | <u>8</u> | J        | 1119      |          | 3     |
| Cefuroxime               | 1      | 1   | 1       | 0.5 | 1        | 750        | 187.06         | 109.2          | 2.2   | 548.7093       | 0.8        | 1    | 1                           | 0.0   |       | 0.0       | 0.0                                     | 1        |          | 762       | ?        | ?     |
| Cefamandole              |        | . 1 | 1       |     | . 1      | 1000       | 212.85         | 186            |       | 851.4          | 0.7        | 1    | 1                           | 0.0   | 1.144 | 0.8       | . 1                                     | 0.8      | 0.56     | 1520      |          |       |
|                          |        |     |         | 0.7 |          |            |                |                | 4     |                |            |      | 1                           |       |       |           |                                         | 1        |          |           | <u> </u> |       |
| Cefotiam                 | і<br>О | 1   | 1       | 0.7 | 0.7      | 1000       | 324            | 324            | 4     | 1296           | 0.7        | 0.9  | 1                           | 0.7   |       | 0.8       | 0.9                                     | 0        | 2        | 9         | <u> </u> | 2     |
|                          | 0      | 0.9 | 1       | 1   | <u>R</u> | 250        | 19.09          | 19.09          | 0.75  | 57.27          | 0.8        |      | 1                           |       |       | 0.8       | 1                                       | 1        | R        | -         |          | 2     |
|                          |        | 1   | · · · · | 0.9 | 0.9      | 250        | 31.25          | 31.25          | 0.5   | 62.5           | 0.9        | 8    | 1                           | 0.81  | 1     | 0.8       | 0.9                                     |          | §        | 119       |          |       |
|                          | 0<br>0 | 1   | 1<br>1  | 1   | 1        | 250<br>375 | 27.43<br>22.32 | 27.43<br>11.79 | 0.5   | 54.86<br>66.96 | 0.9<br>0.8 | 0.9  | 0.9                         | 0.81  | 1.893 | 0.8       | 0.9                                     | 0.72     | Į        | 94<br>103 |          | 2     |
|                          | 0      | 1   | 1       | 0.9 | 0.9      | 375        | 22.32          | 23.83          | 1.125 | 71.49          | 0.8        | 1    |                             | 0.72  |       | 0.9       | 0.9                                     |          | l        | 103       | +        | 2     |
| Cefotaxime*              |        | 1   | 1       | 0.9 | 0.9      | 1000       | 192.93         | 85.12          | 1.125 | )              | 0.8        |      |                             | 0.72  |       | 0.8       | 0.9                                     |          | 8        | §         | +        | 3     |
| Ceftriaxone*             | ·      | 1   | 1       | 1   | 1        | 1000       | 431.63         | 132.42         | 4     |                | 0.9        | 1    |                             | 0.81  |       | 0.9       | 1                                       |          |          | 1059      |          | 3     |
| Ceftizoxime              |        | 1   | 1       | 0.8 | 0.8      | 1000       | 220            | 220            | 3     |                | 0.8        | 8    | ļ                           | 0.9   |       | 0.9       | 0.9                                     | <u>.</u> | §        | 1591      | -        | 5     |
| Cefodizime               |        | 1   | 1       | 0.8 | 0.8      | 1000       | 434            | 434            | 2     |                | 0.8        |      |                             | 1     |       | 0.8       | 0.9                                     |          | 5        | 1860      |          |       |
|                          | 0      | 1   | 1       | 0.9 | 0.9      | 1000       | 36             | 36             | 0.4   | 144            | 0.9        | 1    | 0.9                         | 0.81  | 1     | 0.8       | 0.9                                     | 1        |          | 274       |          | 3     |
| Cefpodoxime*             | 0      | 1   | 1       | 0.9 | 0.9      | 100        | 28.79          | 28.79          | 0.4   | 115.16         | 0.9        | 0.9  | 0.9                         | 0.729 | 1     | 0.8       | 0.9                                     | 0.72     | 0.47     | 244       | +        | 3     |
|                          | 0      | 1   | 1       | 0.9 | 0.9      | 400        | 138.73         |                |       | 138.73         | 0.3        | 1    | 0.9                         | B     |       |           |                                         | A        |          | h         | 4        | 3     |
|                          | 0      | . 1 |         | 0.9 | 0.9      | 100        | 28.21          | 28.21          | 0.4   | 112.84         |            | -    |                             |       |       | 0.8       |                                         |          | <u>K</u> | 8         |          | 3     |
| Cefsulodin               | 1      | 0.9 | 1       | 0.9 | 0.81     | 1000       | 298            | 298            |       | 1294.98        |            |      |                             | 0.7   |       | 0.8       |                                         | 1        | 1        | 3172      |          |       |
| Cefoperazone             |        | 1   | 1       | 1   | 1        | 1000       | 363            | 363            |       |                |            |      |                             | 0.9   |       | 0.8       |                                         |          |          | <u> </u>  | <u> </u> |       |
| Ceftazidime              |        | 1   | 1       | 1   | 1        | 1000       | 195.03         | 160            |       |                |            |      | 1                           |       | 1.219 | 0.8       |                                         | *        |          |           | 1        | 3     |
| Piperacillin             | I      | 0.9 |         | 1   | 0.9      | 2000       | 215.83         |                |       | 1294.98        |            | 1    |                             | 0.0   |       | 0.0       | 012000000000000000000000000000000000000 | 8        |          |           |          | 5     |
| -                        |        |     |         |     |          |            |                |                |       |                |            |      |                             |       |       |           |                                         |          |          |           |          | -     |
| Sulfoperazone            | 1      | 1   | 1       | 0.9 | 0.9      | 1000       | 472.88         | 472.88         |       | 1891.52        | 0.9        |      |                             | 0.9   |       | 0.8       | 0.9                                     |          |          |           | -I       | 3     |
| Cefpirome                | 1      | 1   | 1       | 0.9 | 0.9      | 1000       | 461            | 461            | 4     | 1844           | 0.9        |      | Louis position and a second | 0.9   |       |           | 0.9                                     |          | l        |           |          | 3     |
| Cefepime                 | 1      | 1   | 1       | 0.9 | 0.9      | 1000       | 457.5          |                |       | 1830           |            |      |                             | 0.9   |       |           | 0.9                                     | 0.72     | 0.58     | 3137.86   | +        | 3     |
| Ticarcillin              | 1      | 0.9 | 1       | 1   | 0.9      | 3000       |                |                | 18-24 |                | 0.7        | 1    | 1                           | 0.7   |       | XX        |                                         |          |          |           |          |       |

National Drug List, Thailand, 1999 Antimicrobial selection by using a scoring system

**National Committee on National Drug List** 

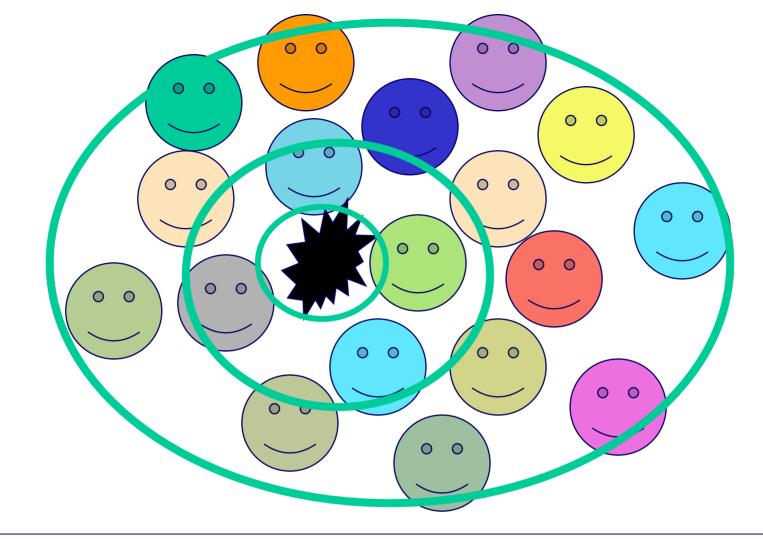
**Sub-committee on antimicrobials** 

**Explicit guideline for drug selection** 

**Develop a "scoring system"** 

**Discussion** 

Decision


Indication

**Grouping by level of restriction** 

## **Restriction Policy for Antimicrobial Drugs**

- 1. Commonly indicated drugs (Essential Drugs)
  - all MDs should know how to use them well
  - e.g. penicillin G, V, cloxacillin, ampicillin, gentamicin, erythromycin, etc
- 2. Broad-spectrum but commonly indicated (due to local drug-resistance problems)
   - e.g. cefotaxime, ceftriaxone, amikacin, etc.
- **3. Restricted drugs (DUE is required)** (very broad-spectrum and expensive drugs)
  - e.g. imipenem, meropenem, vancomycin, teicoplanin, ciprofloxacin, netilmicin, etc.

Thailand NDL 1999



If the enemy is not identified, how can we use a narrow-spectrum weapon to destroy them without doing harm to the other non-guilty ones.

# **Infectious Disease Diagnosis**

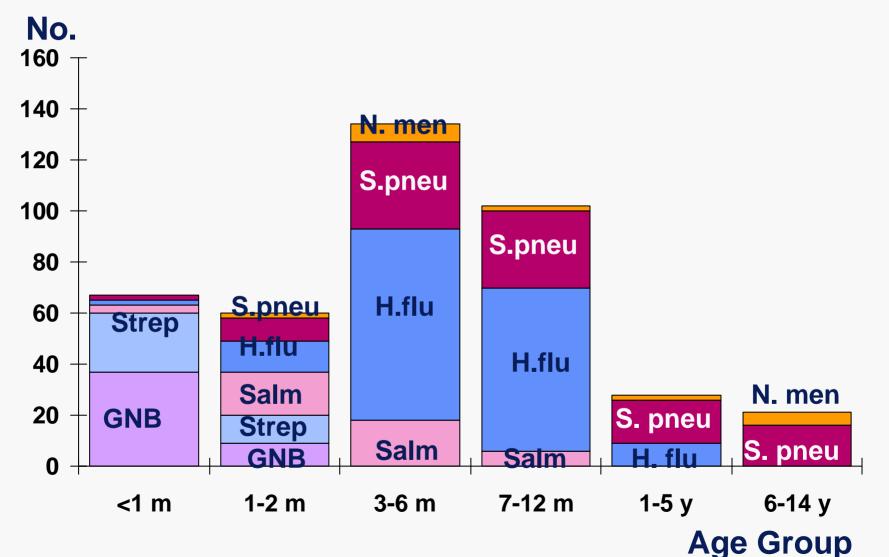
# - Anatomic diagnosis

# - Etiologic diagnosis

- Pathophysiologic diagnosis

# Requirement for accurate diagnosis

1. Diagnostic competency


2. Supportive information
- Epidemiology data
- Laboratory data

# Etiologic Epidemiology Data in developing countries

# Usually

- Deficient
- Poorly gathered
- Mostly tertiary-care hospital-based
- Insufficient demographic and clinical data
- Not integrated into practice

### Age-specific Etiology of Bacterial Meningitis in Thai Children (National Study Group on Etiology of Bacterial Meningitis)



Microbiology Lab Facilities to support appropriate use of antimicrobials

- **1. Appropriate clinical specimens**
- 2. Reliable isolation and identification
- 3. Appropriate susceptibility test : drugs and discs
- 4. Rapid reports
- 5. Selective and educational report
- 6. Appropriate interpretation and implementation
- 7. Appropriate accumulative review



He may have some kind of infection. This antibiotic may make him better and he will be satisfied. It is safe. He can afford it and I will get some money.

# Requirement for appropriate use of antimicrobial agents

# Diagnosis

Accurate diagnosis: - clinical diagnosis - causative diagnosis



## **Cost-effective regimens**

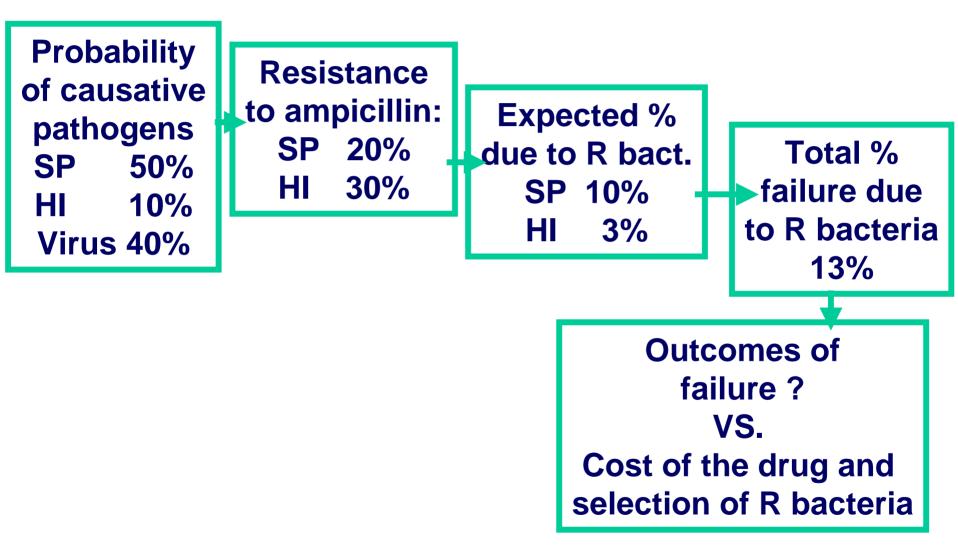


Good-quality drug Accurate dispensing



# Requirement for cost-effective prescription

**1. Competency of prescribers** 


Infectious disease diagnosis
Clinical decision making

# 2. Accurate diagnosis

- 3. Availability of good data for decision making
- 4. Availability of drugs

5. Patient & society - centered (NOT prescriber - centered)

### **Evidence-Based Clinical Decision Making: e.g. treatment of pneumonia with ampicillin**



Minimise selection pressure, maximise treatment effectiveness.

# Constraints in developing countries

- Deficiency of epidemiology data and laboratory support for etiologic diagnosis
- Deficiency of probability data input for decision making

# Getting evidence to support clinical decision

Antibiotics for treating salmonella gut infection Sirinavin S, Garner P Cochrane Database Systematic Review 2000;2:CD001167 **Does antimicrobial therapy improve outcomes of salmonella gut infection?** 

- **1. Duration of illnesses**
- 2. Duration of diarrhea
- 3. Duration of fever
- 4. Systemic complication
- 5. Duration of salmonella excretion
- 6. Emergence of resistance bacteria
- 7. Adverse effects of therapy

# **Search Strategy**

- Any comparative studies on antibiotic therapy for non-typhoidal salmonella
- From:
  - The Cochrane Controlled trials Registers MEDLINE 1980-1997
    - ExtraMed

**Reference lists of all potential trials** 

**Selection criteria** 

• All trials (RCT) comparing antibiotic therapy with placebo / no antibiotic

## **Reviewed trials**

 15 clinical trials -14 published in 1972-1996 - from Europe & Scandinavia 6, **North America 4** Australia 1, Colombia 1, Egypt 1 Internatinal multicentered 2 - on 857 participants (43% were infants and children) 7.2% were asymptomatic 92.8 % had diarrhea

## **Outcomes**

## Any antibiotics VS. placebo / no antibiotic

| Clinical outcome                 | Pooled WMD | 95% CI       |
|----------------------------------|------------|--------------|
| <b>Duration of illness (days</b> | s) - 0.07  | - 0.55, 0.40 |
| <b>Duration of diarrhea (day</b> | vs) - 0.03 | - 0.53, 0.48 |
| <b>Duration of fever (days)</b>  | - 0.45     | - 0.98, 0.08 |

Adverse drug reaction OR 1.67 (95%CI 1.05, 2.67)

Bacteriologic outcome more in antibiotic group

- Bacteriologic relapse
- Salmonella in stool after 3 weeks

Efficacy of norfloxacin or azithromycin in treating non-typhoidal Salmonella carriers

- **Setting** : a province in Thailand
- Study population : asymptomatic food handlers Method : double-blinded RCT
- **Study regimens :** 
  - 1. Norfloxacin 400 mg PO bid x 5 days
  - 2. Azithromycin 500 mg PO bid x 5 days
  - 3. Placebo PO bid x 5 days

(Department of Communicable Dis, MOPH, Thailand, 2001)

| <b>Total screening numbe</b> | rs : 3205   |
|------------------------------|-------------|
| Positive culture             | : 317 (10%) |
| Inclusion to study           | : 284       |

| RSC           | % positive salmonella |            |            |            |  |  |  |  |
|---------------|-----------------------|------------|------------|------------|--|--|--|--|
|               | <b>D7</b>             | <b>D30</b> | <b>D60</b> | <b>D90</b> |  |  |  |  |
| Same sertypes |                       |            |            |            |  |  |  |  |
| Norflox       | 1.1                   | 2.3        | 2.4        | 1.4        |  |  |  |  |
| Azithro       | 0                     | 1.1        | 0          | 3.8        |  |  |  |  |
| Placebo       | 1.1                   | 2.4        | 3.6        | 3.7        |  |  |  |  |

(Preliminary data)

## **Recommendation:**

- No antimicrobial drugs for uncomplicated non-typhoidal *Salmonella* gut infection in normal hosts.

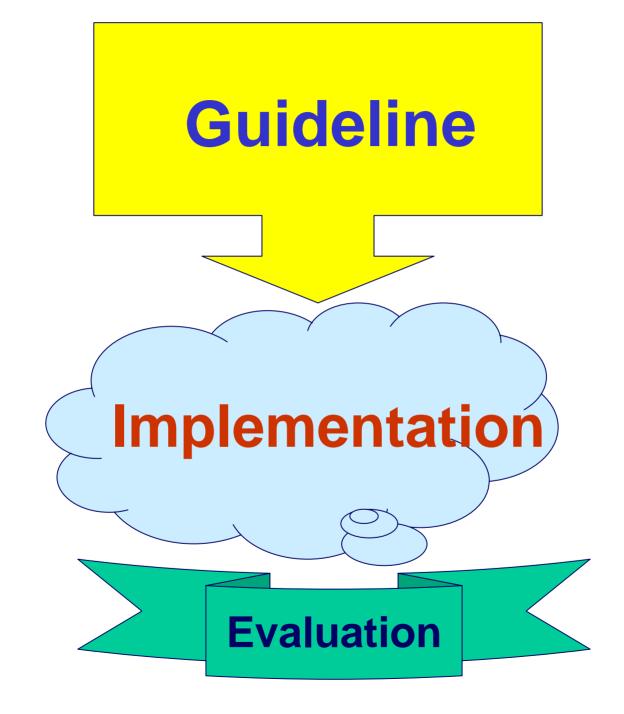
- Antimicrobial drugs must be given to patients suspected or proved of extra-intestinal *Salmonella* infection.

#### ารบริหารจ**ัดการ** เพื่อพัฒนาการใช้ ยาต้านจุลชีพในโรงพยาบาล

สำนักงานคณะกรรมการมายารและมา สำนักงามปลัดกระทรรงสาธารณสุข International Network for Rational Use of Drugs (Thailand)

นรรณาอิการ สขมพร ศิรินาวิน, ศรีเพ็ญ ต้นติเวลส, ศิวพร จิตตรรณ

## Pocket book on antimicrobial therapy


สมะทั่วงานจัดส่างสัตการใช้ตาด้านจุลจิต

การใช้

Guideline for hospital management to promote appropriate use of antimicrobial drugs 1995 (supported by Thai FDA & INRUD) Hospital management to promote appropriate use of antimicrobial drugs

- **1. Drug selection**
- 2. Restrict drugs
- 3. Bacteriology laboratory facility
- 4. Antimicrobial guideline
- **5. Surgical prophylaxis policy**
- 6. Education program
- 7. Monitoring of drug use
- 8. Hospital infection control

(National Workshop 1995 by FDA Thailand & INRUD)

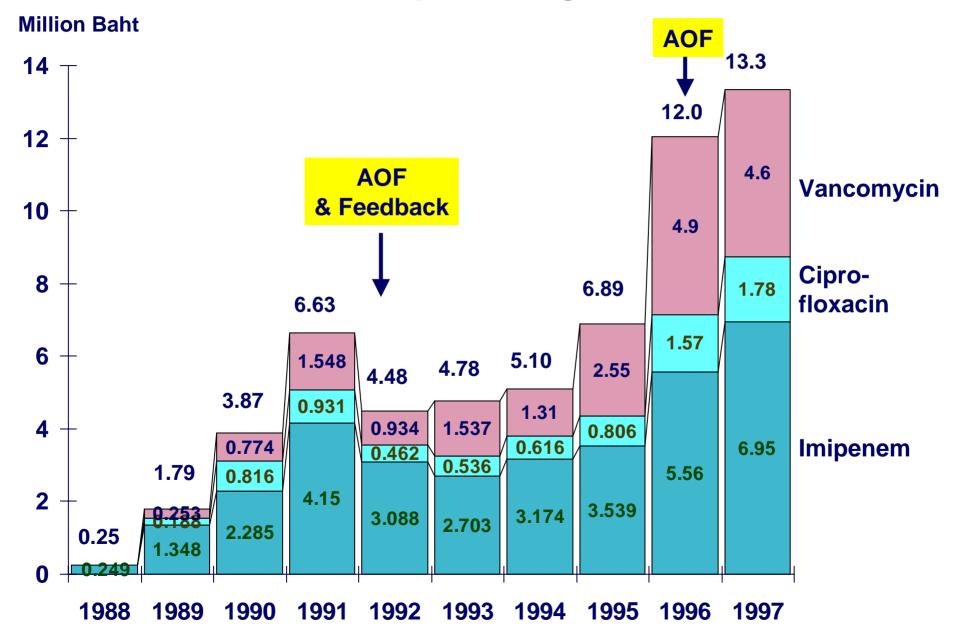


## **Antibiotic Order Form (AOF)**

AOF as a strategy to control use of restricted antibiotics in admitted patients when immediate consultation is not possible.

Sirinavin S, Suvanakoot P, Satapathayavongs B, Malatham K. Effect of antibiotic order form guiding rational use of expensive drugs. Southeast Asian J Trop Med Public Health 1998

## **Antibiotic Order Form**


Objectives: 1. Education 2. Audit 3. Surveillance

### Antibiotic Order Form (AOF) for restricted drugs (Ramathibodi Hospital, Bangkok)

Information needed to be filled in AOF before the restricted antibiotics were dispensed from hospital pharmacy

- Patient's profile
- Site of infection
- Suspected causative organism
- Microbiology investigation
- Reasons for using the restricted drug

#### Annual Expense on Restricted Antibacterial Drugs Ramathibodi Hospital, Bangkok, 1988-1997



Lesson learned : AOF is helpful for busy ID consultants. It does not work without auditing and feedback.

It did not prohibit physician's prescription therefore it did not compromise patient care.



Consumers have high expectations in the power of pharmaceuticals and demand them from health practitioners.

**Consumers' demand for medicines benefit prescribers, dispensers, and manufacturers.** 

Decreased patients' demand are likely to make them unpopular with the population, reduce the numbers of clients, and reduce their income.

Homedes N, Ugaldeb A. Soc Sci Med 2001;52:99

Health professionals are trained to cure with pills, and consultation time is shortened by prescribing medicines rather than explaining alternative behavioral therapies.

#### Homedes N, Ugaldeb A. Soc Sci Med 2001;52:99

Promoting appropriate use of antimicrobial drugs in Specific Disease Management

- Acute respiratory tract infection
- Acute diarrhea
- Sexually transmitted disease

# Some of activities to promote appropriate antimicrobial use in Thailand

- 1995 : Pilot project for improving antibiotic use in hospitals, MOPH
- **1995 : National antibiotic guideline**
- 1995 : Workshop for the MOPH hospitals on strategies for improving antibiotic use in hospitals

(supported by Thai FDA and INRUD)

- 1995 : Committee on development of practice guideline for the Pharmacy and Therapeutic Committee, MOPH
- 1997 : Committee on quality improvement of microbiology laboratory, MOPH

# Some of activities to promote appropriate antimicrobial use in Thailand

- 1998 : National program on controlling non-typhoidal Salmonella
- 1999 : National program for surveillance on antimicrobial resistance in humans
- **1999 : Center for Antimicrobial Resistance Monitoring of Foodborne Pathogens**
- 2001: National Program for Antimicrobial Resistance Monitoring in Food-borne pathogens
- 2001: National program for promoting prudent use of antimicrobial drugs in food animals
- 2001 : Evidence-based clinical practice guideline for prevention and treatment of communicable disease

More interdisciplinary collaboration in promoting appropriate antimicrobial use

- Medical doctors
- Verterinarians
- Pharmacists (ID pharmacists)
- Drug sellers
- Microbiologists
- Consumers (e.g. AIDS / HIV)
- Ministry of public health and medical schools

## Summary

Some activities to promote appropriate use of antimicrobial drugs in a developing country are presented, including:

- Drug selection into National Drug List
- Support for etiologic diagnosis
- National antimicrobial guideline
- Control of restricted broad-spectrum antimicrobials
- Infra-structure development

### Summary

Success in improving antimicrobial use and prevention of drug resistance problem is still not achievable. Strong and long-termed policy and support are needed.