

Analysis of a Health Indicator Surveillance System: Its Ability to Detect Annual Influenza Activity for the 1999-2000 and 2000-2001 Seasons Compared to Traditional Systems

Ji-Eun Lee, Julie Pavlin, MD, MPH, Yevgeniy Elbert, MS, Patrick Kelley, MD, DrPH

Department of Defense Global Emerging Infections System, Silver Spring, MD

Introduction

Need faster and accurate surveillance for identifying emerging and reemerging infectious diseases

Technology allows improvement in disease surveillance

- Electronic databases
- Ability to rapidly move data
- Ability to quickly manipulate and analyze data

Health indicator surveillance

 Using various types of non-traditional data as a surveillance tool to monitor the health of a community

Electronic Surveillance System for the Early Notification of Community-based Epidemics (ESSENCE)

- Monitors patient data from military treatment facilities to detect changes in disease incidence in the National Capital Area
- Primary care clinics located at 26 installations in a 50 mile radius of Washington, D.C.
 - >400,000 beneficiaries with > 2 million visits/year

Data captured daily and placed into one of seven syndrome groups based on ICD-9 codes

 Respiratory (cough, pneumonia, URI), Gastrointestinal (vomiting, diarrhea), Neurologic (meningitis, botulism-like), Hemorrhagic manifestations, Dermatologic – vesicular (smallpox-like), Fever/Sepsis, Coma/Sudden Death

ESSENCE's Influenza Surveillance

- **Faster than traditional surveillance systems**
 - ♦ 1-3 day time lag

Hypothesis

 ESSENCE can detect increases in influenza activity as accurately as more traditional surveillance systems

Syndrome groups used for Influenza Surveillance

- Respiratory and Fever
 - 219 ICD-9 codes used
- ♦ ICD-9 codes specific to Influenza-like Illnesses (ILI)
 - 32 ICD-9 codes used
 - ICD-9 code 079.99 (viral infection not specified), 460 (acute nasopharyngitis), 480 (viral pneumonia), 487 (influenza), 034 (sore throat), 780.6 (fever), 786.2 (cough)

CDC's Influenza Activity Surveillance

Sentinel Physicians Surveillance Network

- Volunteer physicians in 47 states and DC
- Compiled weekly from October through May
- Report the number of all patient's visits and the number of those visits for ILI (% ILI visits)
 - ILI is defined as cough or sore throat and a temperature of greater than 100°F (37.8 C)

 Rates greater than 3% correlate with increased influenza activity

CDC Influenza Regions

Study Methods

- Compare the percentage of visits for combinations of specific respiratory and febrile conditions in ESSENCE with what is reported by the CDC's sentinel physicians surveillance network for 1999-2000 and 2000-2001
 - Three syndrome groups
 - Respiratory
 - Respiratory or Fever
 - ICD-9 codes specific to ILI
 - For each of these three syndrome groups
 - Calculate number and percent of total patients seen
 - Prepare graphs using each combination to find the syndrome group that best matched the CDC data
 - Pearson's and Spearman's rank correlation

	CDC	ESSENCE	
Region	South Atlantic	National Capital	
Category	% ILI Visits	% Respiratory Visits	

Weeks: 1999-2000 and 2000-2001 Seasons

	CDC	ESSENCE	
Region	South Atlantic	National Capital	
Category	% ILI Visits	% Resp. or Fever Visits	

Weeks: 1999-2000 and 2000-2001

Results

- Comparison of CDC's % with ILI visits and ESSENCE's % with ICD-9 codes specific to ILI visits showed strongest relationship
 - R = 0.95 for 2000-2001 season using Spearman's correlation coefficient
 - R = 0.89 for 2000-2001 season using Pearson's correlation coefficient

		Correlation Coefficient		
	ESSENCE DATA	1999-2000	2000-2001	
Pearson's	% with Resp.	0.81	0.85	
	% with Resp. or Fever	0.81	0.87	
	% with ILI	0.83	0.89	
Spearman's	% with Resp.	0.65	0.94	
	% with Resp. or Fever	0.65	0.93	
	% with ILI	0.65	0.95	

2000/01 CDC vs. ESSENCE ILI category

CDC (VA, MD, and DC Area) vs. ESSENCE

Weeks: 1999-2000 vs. 2000-2001 Seasons

CDC — ESSENCE

CDC Sentinel Physician Compared to ESSENCE ILI Codes Nationwide 2001-2002 Influenza Season

ESSENCE ILI data 🔶 CDC ILI data

Specimens Received by the DOD Global Influenza Surveillance System Compared to Outpatient Visits Coded as Influenza During the 2001-2002 Influenza Season

DoD specimens submitted for testing — Count of outpatient visits coded as influenza

Conclusion

- ESSENCE influenza data are as accurate and valid as CDC sentinel physician data in detecting an influenza outbreak by showing similar outbreak curves and peaks
- For 1999-2000 season ESSENCE's measurements of the start date and the end date of the influenza outbreak season did not exceed seven days from similar dates reported by CDC
- Particular ICD-9 codes such as fever, upper respiratory infection, viral syndrome and cough are the best indicators of influenza outbreaks