Surveillance of Livestock for Zoonotic Diseases and Veterinary Bio-Threat Agents

William D. Hueston, DVM, PhD Jeff Bender, DVM, MS Center for Animal Health and Food Safety University of Minnesota

Sharing human-animal agents

- Agents don't distinguish between humans and domestic animals
- Agents regularly cycle between animals and humans through
 - Direct contact
 - The human food, animal feed system
 - Other animal products
 - The environment (air, water, soil)

Agent sharing is dynamic and big news stories!

- Sharing involves both natural spread of disease and human intervention
- Anthrax bioterrorism in US
- Foot and mouth epidemic in UK
- Salmonella and E coli recalls in US
- Spread of West Nile virus across US
- Rabies epizootic in US

Exotic diseases have high visibility

Foot and Mouth Disease virus Classic Swine Fever virus African Swine Fever virus Rinderpest virus Rift Valley Fever virus Avian Influenza virus Newcastle disease virus Venezuelan Equine Encephalitis

List based on economic trade impact and ease of transmission

Many zoonoses and bio-threat agents are endemic

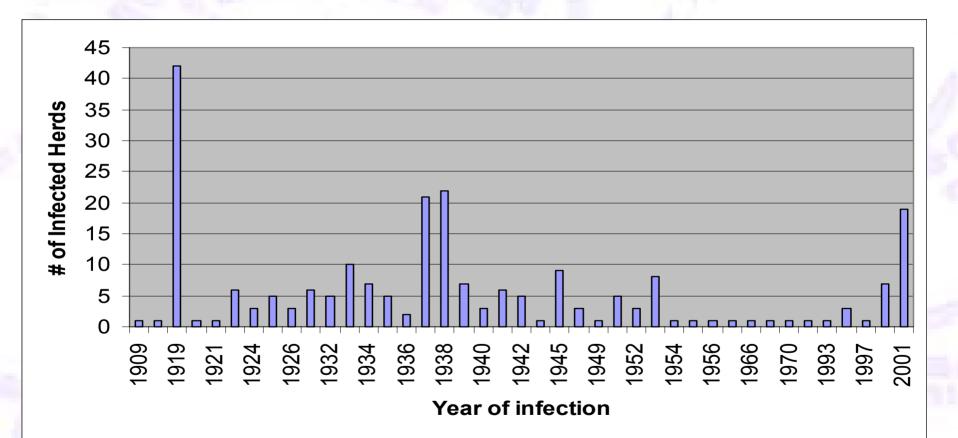
Bacterial:

Bacillus anthracis (Anthrax) Yersinia pestis (Plague) Francisella tularensis (Tularemia) Coxiella burnetii (Q Fever) Salmonella Shigella Cryptosporidium parvum

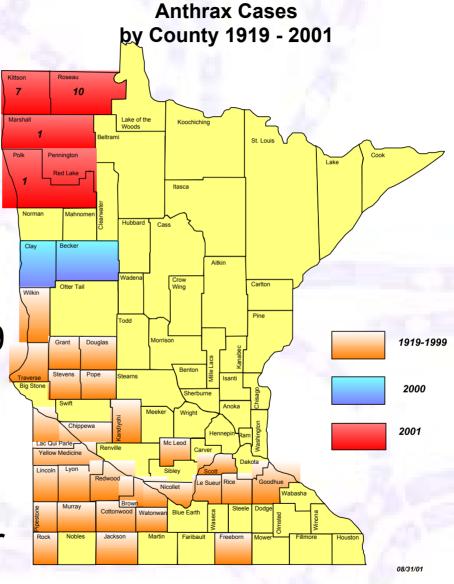
• Viral:

• <u>Toxin</u>:

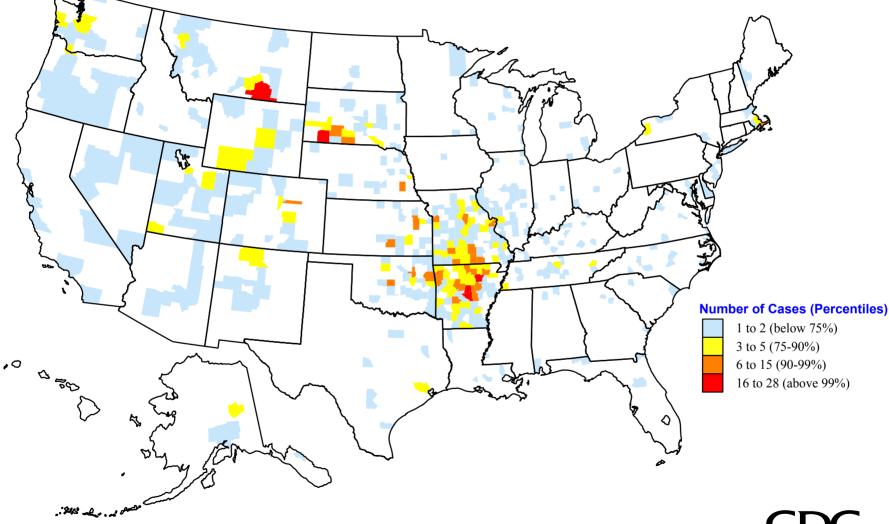
Viral encephalitides


Clostridium botulinium (Botulism)

Anthrax in Minnesota



Anthrax in Minnesota



Anthrax 2001

- First death, June 19
- 19 Premises
- Approx 80 animals
 Cattle, horses, deer

Reported Cases of Human Tularemia 1990-1998

CENTERS FOR DISEASE CONTRO

Veterinary diagnostic laboratory role: individual animals

- Diagnostic work-up for ill animals

 Individual case work-up to establish diagnosis, support treatment
 - Outbreak investigation to rule out exotic agent (foreign animal disease)

Note: limited government subsidy and no third party payer except suspected foreign animal disease

Document disease status of animals to support trade

Veterinary diagnostic laboratory role: populations

- Support targeted disease control and eradication programs
 - Federal: Bovine tuberculosis, brucellosis
 - State or individual: Leucosis, paratuberculosis
- Public health and food quality programs
 Milk and meat samples
- Disease surveys, ad hoc and NAHMS
- Herd or area testing to document status

National Animal Health Monitoring System

- Periodic national surveys based on statistical sampling of herds and animals
- Collects data on risk factors (husbandry, housing, feeding, demographics)
- Implements collection of biological samples from subsets to characterize national prevalence

Vision for the future

- Integrated and coordinated animal health/public health surveillance
- Build linkages between animal health, wildlife, food surveillance and public health
- How do we get there from where we are now?

Critical Assessment: Strengths

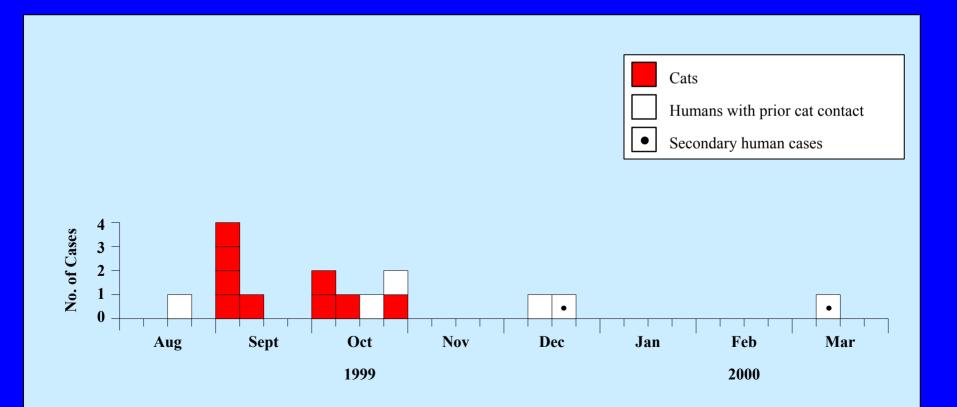
- Diagnostic laboratories in every state
- National reference laboratories for domestic and exotic diseases
- Dedicated cadre of diagnosticians with extensive experience
- National system for baseline prevalence information (NAHMS)

Weaknesses

- Lack of epidemiologic capacity within veterinary diagnostic labs
- Sampling by convenience
- Resources vary widely between states
- Little uniform reporting or diagnostics
- Little sharing of data for regional or national summaries
- Limited collaboration with public health

Threats to successful integration

- Failure to recognize link between livestock surveillance and public health
- Conflict of paradigms
- No new resources committed to system
- Continued deterioration of livestock surveillance infrastructure
- Additional polarization between animal health and public health


Opportunities

- Recent events (FMD and anthrax) heightened recognition of importance
- Willingness and commitment to strengthening the system
- Proven examples of coordinated surveillance enhancement (PulseNet)
- Homeland security initiative offers resources to encourage enhancements

Salmonella Surveillance

- Salmonellosis is reportable in Minnesota and all Salmonella isolates are sent to the MDH for confirmation
- Beginning in 1996, VDL isolates sent and subtyped by MDH
- Human cases were interviewed with a standard questionnaire regarding possible sources of infection.

Date of Death among Cats and Illness Onset among Human Cases Minnesota, 1999

Other MN examples

- Anthrax
- Arboviruses (WNV and EEE)
- Other bioterrorism agents
- Drug resistant salmonella
- Chronic Wasting Disease

Benefits of integrated animalpublic health surveillance

- Better understanding of endemic disease dynamics
- Monitoring of agent/disease spread
- Early detection of emerging diseases
- Rapid response to bio-threats
- Further characterization of risk

The Minnesota Integrated Surveillance Team

The University

- Jim Collins, VDL
- Craig Hedberg, SPH
- Dick Isaacson, CVM
- Scott Wells, CVM
- Tim Schacker, COM
- Board of Animal Health
 - Bill Hartmann
 - Kris Petrini

Dept of Health

- John Besser
- Heidi Kassenborg
- Joni Scheftel
- Kirk Smith
- Dept of Agriculture
 - Bill Krueger
 - Kevin Elfering
- Dept Nat Resources

 Joe Marcino

From Farm to Table: Safety & Biosecurity in Food Production Systems

I have a server of the server of the

Courses

- Surveillance of Foodborne Diseases in Humans
- Surveillance of Foodborne Diseases in Animals and Plants
- Public and Environmental Health Problem Solving: The Changing Food Industry

- Food System Biosecurity: Threats
- Food System Biosecurity: Preparedness/Response
- Applications of Microbiology to Food Monitoring

Global Food System Field Trips

To build better understanding of the complexity of the food system....

- Pork
- Dairy
- Fresh Produce

- Information
- WWW.CPHEO.UMN.EDU/INSTITUTE
- 612.626.4515