Epidemiology of Raccoon and Skunk Rabies in the Eastern United States

CENTERS FOR

M Guerra, A Curns, W Ivy III, C Rupprecht, C Hanlon, J Childs Viral and Rickettsial Zoonoses Branch Division of Viral and Rickettsial Diseases Centers for Disease Control and Prevention Atlanta, GA

Background Rabies in North America

Rabies maintained enzootically in the wild among terrestrial carnivore species: raccoon, skunk, fox, coyote (bats-nonterrestrial)

Each species strongly associated with a genetically distinct variant

Each variant and its associated species occur in geographically distinct areas

Spatial Distribution of Major Variants of Rabies Virus in Terrestrial Carnivores in the United States

Dynamics of Rabies Virus

When epizootics of rabies occur in a reservoir species, spillover of rabies can occur into other species

- Adaptation of the virus to a new host species may occur over time
- No documented evidence of rabies variant becoming established in another species

Raccoon Rabies Epizootics mid-Atlantic states 1981 2000

Emergence of Epizootics of Skunk Rabies mid-Atlantic states 1990 2000

Pattern of Epizootics observed in majority of counties with epizootics in both species

Fairfield County, CT

CENTERS FOR DISEASE CONTROL AND PREVENTION

Pattern of Epizootics Skunk rabies cases > raccoon rabies cases in areas of Massachusetts and Rhode Island

CENTERS FOR DISEASE CONTROL AND PREVENTION

Objectives study dynamics of rabies in skunks and raccoons

 Describe characteristics of rabies epizootics in skunks vs. raccoons
 Determine if rabies in skunks and raccoons are temporally and spatially associated

Assess evidence of spillover of rabies vs. independent cycling

Materials and Methods

Database- passive surveillance data collected by state health depts. and compiled by CDC yearly

States- Connecticut, Delaware, Massachusetts, Maryland, North Carolina, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, West Virginia

Time period- first case of raccoon or skunk rabies reported (1981 – 2000) by county

Unit of analysis- number of laboratory-confirmed rabid raccoons and skunks reported monthly at the county level

Descriptive Analysis Are skunk and raccoon epizootics similar?

Comparison of number of rabid animals, duration of epizootics (Wilcoxon rank sum test)

Epizootic- definition

 starts when # of rabid animals reported by month > county's monthly median for 2 consecutive months

 ends when the number < the county median for 2 consecutive months

minimum duration of 5 months

Epizootic Characteristics Skunks vs. Raccoons

Characteristics of Raccoon and Skunk Epizootics Restricted to 12+ Counties											
			Epizootic Number								
Characteristic		1	2			3		4		5	
Number of counties with ep				izootics							
Raccoon		32	22				10	2			0
Skunk		31	19			12	6		2		
Length (months)				Median (min, max)							
Raccoon		18.5 (6, 26)	8.	5 (5 ,	, 23)	8	(6, 12)	11.5 (1	1, 12)		-
Skunk		8 (5, 24) *	8	(5,	10)	6 (5, 10)**	8 (5,	13)	7.5	(5, 10)
Size (# of rabid animals)				Median (min, max)							
Raccoon		125.5 (9, 494)	18.	5 (5	,138)	18.	5 (9, 43)	53 (28	8, 78)		-
Skunk		16 (4, 85)*	18	3 (5,	39)	13	(4, 32)**	18 (6	, 37)	13 (1	12, 14)
Comparison between raccoon and skunk (Wilcoxon Rank-Sum test)											
* p < 0.0001											
**0.01 < p < 0.05.											

CENTERS FOR DISEASE CONTROL AND PREVENTION

Spatial Analysis Are epizootics associated in space through time?

- Determined mean center and standard deviational ellipse of counties positive by year for raccoons and skunks
- County considered positive when first epizootic of rabies for each species occurred

Epizootics

Mean Center and Standard Deviational Ellipse

Are epizootics moving in the same direction?

Vectors

Skunk

Raccoon

Calculation of direction (0-360°) and distance (km) for each epizootic by year and species

 Calculation of directional mean and variance for each epizootic (Crimestat, DOJ)

Comparison of angle of rotation between epizootics (Watson-Williams test)

00 km

Spatial Analysis Results

Directional mean and distance of epizootics: Skunk - 42.06+/-0.23 degrees 339.28 kilometers Raccoon - 47.76+/-0.28 degrees 368.18 kilometers

 No significant difference between angles of rotation of epizootics

F_{1,18;0.05} = 0.11 (<4.41, n.s.)

Temporal Analysis Are raccoon and skunk rabies associated over time?

32 counties selected for analysis Criteria- \geq 12 rabid skunks in first year Corresponded to 90th percentile of counties at least 1 rabid skunk

Temporal Analysis

Poisson regression analysis

- Variables that describe count data
- When events occur randomly in space or time
- Poisson distribution parameter- average count/unit time
- Outcome- # of rabid skunks
- Predictors- # of rabid raccoons, time (continuous,
 - 1-140 months), month, county

Regression equation:

 $Log(SKUNK) = 0.2835 + 0.0262(RACCOON_{t-1}) - 0.0021(time) + 0.0020(RACCOON_{t-1}*time) + B_i(county_i) + B_i(month_i)$

Poisson regression model

- # of rabid raccoons (lag of 1 month) significant predictor of # of rabid skunks (p=0.0054)
- Effect of # of raccoons on # of skunks increased over time (p=0.0037)
 # of skunks strong seasonal component (p=0.0049)

Percent of Rabies Cases by Month

Month

Summary

- Spillover of rabies from raccoon to skunk population
- After initial epizootic, size and duration of skunk and raccoon epizootics similar
 - Directional and magnitude of epizootic spread does not differ between species
- Number of skunk and raccoon rabies cases are temporally associated - with a lag time of 1 month (rabies incubation period – 3-8 weeks)
- Increased number of rabid skunks in the fall months when dispersion of juveniles occurs

Future Research

At present, no evidence of independent maintenance of rabies in skunk population where raccoon-associated variant is enzootic

Further investigations needed to assess changes in the dynamics of rabies:

- periodicity of epizootics long cycles
- influence of environmental factors
- changes in genetics of regional rabies variants

Acknowledgements

John Krebs
Meghan Dey
Wade Ivy III
State and county health departments
PDI Images

