The acquisition of ciprofloxacin resistance in travel-associated and home-acquired *Campylobacter jejuni* infection: a case-case comparison.

The Campylobacter Sentinel Surveillance Scheme Collaborators, UK

(I.A. Gillespie, S.J. O'Brien, J.A. Frost)

Acknowledgements

- Staff in the participating DHA's
 - Public Health
 - Environmental Health
 - Laboratory
- The Campylobacter Reference Unit
- Gastrointestinal Diseases Division, CDSC
- Dr SJ O'Brien & Mrs J Frost

Contents

- Background
 - The scheme
 - This study
- The analysis
- The results
- Conclusions

Laboratory reporting of selected GI pathogens in England & Wales.

Epidemiology

- Associations with chicken
 - minority (10-40%) of cases
- Other studies show a protective effect
- Most infections remain unexplained by recognized risk factors

Campylobacter Sentinel Surveillance Scheme

- 1st May 2000
- 22 HA's
- ~12.5 million
- 15% lab. confirmed cases

Typing

- Speciation
- Serotyping
- Phage typing
- Antibiotic resistance testing

Questionnaire

- Demographics
 - Age, sex
 - Occupation
 - SEG
- Illness
 - Symptoms
 - Length
 - Severity
- Travel
 - Abroad/home
 - Destination
 - Accommodation

- Foods
 - 20 exposures
 - Never/once/more often
 - Handling/cooking
- Milk
 - 3 exposures
- Water consumption
 - 8 exposures
- Recreational water act.
- Animal contact
- Other illness
 - Household
 - Community

Response rate ~76%

The current picture (E&W)

 Ampicillin 	
--------------------------------	--

- Chloramphenicol
- Quinolones
 - Ciprofloxacin
 - Nalidixic acid
- Aminoglycosides
 - Gentamycin
 - Kanamycin
 - Neomycin
- Erythromycin
- Furazolidone
- Tetracycline
- Overall

26%

3%

21%

19%

21%

2%

0.2%

2%

2%

1%

0.2%

30%

51%

Aim

 Determine factors affecting the acquisition of a ciprofloxacin-resistant C. jejuni infection

 Generate new hypotheses for campylobacter infection

Analysis I

- 'Cases'
 - cipro resistant C. jejuni infection
- 'Controls'
 - C. jejuni sensitive to all antimicrobials
- Excluded
 - Sensitive to cipro but resistant to one other antimicrobial

Analysis II

- Single risk variable analysis
 - S P<0.1

- Logistic regression
- Simplified
 - LR test
- Interactions
 - Main effects in initial model
 - Age, gender and season

Ciprofloxacin resistance in *C. jejuni* 638 'cases' vs. 1741 'controls'

Exposure	OR	P value	Lower	Upper
Summer	0.66	0.001	0.51	0.85
Travel abroad	12.79	<0.001	9.83	16.65
Baby food	0.34	0.011	0.15	0.78
Age	1.00	0.706	1.00	1.01
Sex	0.94	0.627	0.74	1.20

Risk ratios for travel abroad

- Ciprofloxacin resistance
 - -4.58 (*P*<<0.001)
- Erythromycin resistance
 - 1.99 (P>0.05)
- Clinicians need to obtain travel history prior to treatment
- Self treatment with ciprofloxacin may not work

Ciprofloxacin resistance in *C. jejuni*Acquired abroad (n=653)

Exposure	OR	P value	Lower	Upper
Spain (vs. others)	6.87	<0.001	3.52	13.38
Portugal (vs. others)	22.40	<0.001	4.36	114.99
Cyprus (vs. others)	11.74	0.03	1.28	108.02
Africa (vs. others)	0.11	0.019	0.02	0.70
Chicken	4.95	<0.001	2.12	11.56
Bottled water	3.70	0.001	1.69	8.10
Mains water	0.24	<0.001	0.12	0.50
Contact with a pet bird	0.11	0.009	0.02	0.58
Mains water x Africa	9.17	0.044	1.06	79.67

Chicken

- Enrofloxacin in veterinary medicine and animal husbandry?
 - used extensively in the broiler industry
 - 1st week to reduce vaccination problems
 - 3rd/4th week to combat respiratory illness due to *E. coli.* (Jacobs-Reitsma, et al. 1994)
 - Same class as cipro
 - Selection of resistance to one → cross resistance to the other (Piddock, JAC, 1996)

Bottled water

- No interactions
 - age group
 - Gender
 - Season
 - other variables in the initial model
- Narrow confidence intervals
- >Real effect

Bottled water

- Biologically plausible
 - Raw water can be contaminated with campy
 (Jones, et al. 1984; Bolton, et al. 1987)
 - European legislation governing the marketing of natural mineral water
 - free from parasites and pathogenic organisms
 - Testing for campylobacters is rarely undertaken

Ciprofloxacin resistance in *C. jejuni*Home acquired (n=2783)

Exposure	OR	P value	Lower	Upper
Summer	0.46	<0.001	0.33	0.65
Cold meats (pre-cooked)	2.13	<0.001	1.44	3.13
Private water supplies	0.38	0.018	0.17	0.85
Age	1.00	0.925	0.99	1.01
Gender	0.87	0.521	0.56	1.35

Cold cooked meats

- Not been implicated in epidemiological studies in the past
- 3494 ready-to-eat sliced meat samples
 - 26% unsatisfactory
 - 15 (<1%) unacceptable/potential risk to public health (Gillespie, et al. 2000)
- Improvements could be made in the hygienic handling of meats

Cold cooked meats

- Salmonella agona infection assoc.

 precooked turkey meat (Synnott et al CDPH, 1998)
 - Turkey joints (3.2 to 5.2 kg) cooked for fixed periods of time
 - survival of the pathogen in undercooked larger joints
- Campy low infective dose

Conclusions.

- Foreign travel remains an important risk for cipro resistance in C. jejuni
- The risks at home appear to differ from those abroad
 - Implications for intervention strategies
- Case-case comparisons useful for generating hypotheses for infection
- These can be tested analytically & microbiologically.

Don't drink the water!

