Controlling Antimicrobial Resistance

Barry M. Farr, MD, MSc
University of Virginia Health System
Charlottesville, VA

Rapid Increase in the Prevalence of Penicillin-resistant *Staphylococcus* aureus, Hammersmith Hospital, London

```
1941 <1%
```

1946 13%

1947 38%

1948 59%

MRSA Isolates From ICUs vs Non-ICUs

ICU=intensive care unit

Fridkin. Clin Chest Med. 1999;20(2):303.

Percentage of Nosocomial Enterococci Reported as Resistant to Vancomycin, by Year

Data, 1989-1999.

Genetic Mechanisms Of Developing Antibiotic Resistance

- 1. Random genetic mutation.
- 2. Plasmid swapping during conjugation.
- 3. Movement of transposons to plasmids/chromosomes.
- 4. Transduction by bacteriophages.
- 5. Transformation (acquisition of resistant genes from a recently killed cell and incorporation into a chromosome or plasmid).
- 6. Binary fission (replication) can share any of the above.

Mechanisms Of Developing Antibiotic Resistance

Natural Selection

Darwin C. On the Origin of Species by Means of Natural Selection, London, 1859.

Antibiotic Exposure of Cases and Controls During Hospital VRE Outbreak

	Cases	Controls	p value
Vancomycin	46%	36%	0.219
Metronidazole	43%	21%	0.004
Clindamycin	31%	28%	0.755
Amp/sulbactam	27%	15%	0.073
Ticar/clav.	20%	14%	0.357
Imipenem	5%	4%	0.694
Ciprofloxacin	34%	24%	0.183
3 rd gen. Ceph.	65%	50%	0.092
Aminoglycoside	45%	39%	0.492

VRE Incidence

Hospital Ward	<u> </u>	<u>/eek</u>		4
	1	2	3	
6th Floor				
ICU	0	0	0	0
Step-down Unit	0	0	0	0
5th Floor				
ICU	2	1	0	0
Step-down Unit	4	2	1	1
3rd Floor				
ICU	1	1	1	0
Step-down Unit	6	3	0	1

Byers KE, et al. ICHE 2001;22(3):140-147.

Transmission Of Individual Clones Of VRE

Boyce, J Cin Micro 1994;32:1148. Dembry, SHEA 1994 Abstract #28. Edmond, Clin Infect Dis 1995;20:1126. Handwerger, Clin Infect Dis 1993;16:750. Livornese, Ann Int Med 1992;117:112. Montecalvo, Anti Ag Chemo 1994;38:1363. Rubin, Infect Cont Hosp Epi

1992;13:700.

Possible Control Measures

- 1) Antibiotic control
- 2) Prevention of spread
 - a) hand hygiene for all patient contacts (Universal/Standard Precautions)
 - b) identify colonized patients with active surveillance cultures and use barrier precautions to prevent spread

Failure to Control MRSA

• Thompson et al. found that the prevalence of MRSA continued to increase for 2.5 years despite isolating patients known to have MRSA from routine clinical cultures

	1977	1979	1980
Pneumonia	0%	19%	24%
Blood stream infection	0%	13%	40%
Surgical site infection	0%	27%	49%

Thompson RL, Ann Intern Med 1982;97:309

Control of MRSA Using Active Surveillance Cultures and Contact Precautions

Incidence (p < 0.002) and Prevalence (p < 0.001)

Thompson RL, Ann Intern Med 1982;97:309

Reservoir for the Spread of Antibiotic Resistant Pathogens

Control of an MRSA NICU Outbreak Using ASC Without Antibiotic Control

Jernigan, et al. Am J Epi 1996;143

Rates of MRSA Transmission

	Source		
	Isolated	Unisolated	
Transmissions	5	10	
Patient-days	558	71.5	
Rates	0.009	0.140	

RR=15.6, 95% CI=5.3-45.6, p<0.0001

Jernigan, et al. Am J Epi 1996;143:496-504.

Control of 2 MRSA NICU Outbreaks Using ASC and Barrier Precautions Without Antibiotic Control

First outbreak in a 50-bed NICU controlled over several months

32 colonized over 5 weeks

5 colonized infants (16%) became infected and one died of MRSA BSI.

2nd outbreak of 14 colonized and 4 infected (29%) (with another death due to MRSA BSI) controlled in less than one month.

Back NA, et al. ICHE 1996;17:227-231.

Antimicrobial Resistance Surveillance in *Staphylococcus aureus* blood isolates, Denmark, 1960-1995

Source: DANMAP Report, 1997.

Incidence of Nosocomial VRE Due to Endemic Strain

Byers KE et al. ICHE 2001;22:140-7.

Conditional Logistic Regression Analysis

<u>Variable</u>	<u>OR</u>	<u>P</u>
Proximity to unisolated VRE patients	2.04*	0.0014
History of major trauma	9.27	0.020
Metronidazole therapy	3.04	0.040

^{*} Per exposure-unit

Byers KE et al. ICHE 2001;22:140-7.

VRE Prevalence in 32 Healthcare Facilities, Siouxland, 1997 vs 1999

N	lumber (%) VF	RE-Coloniz	ted	
Facility	1997	1999	Relative Risk	p-value
All	40 (2.2)	9 (0.5)	0.23	<0.001
Acute Care	10 (6.6)	0	0	<0.001
Long-Term Care	30 (1.8)	9 (0.5)	0.31	0.001

Ostrowsky BE, et al., NEJM 2001;344:1427-1433.

Excess Cost of MRSA Infection

MRSA infections cost significantly more than MSSA infections.

- Engelmann J et al, ICAAC 2001 abst. K-2056, p. 441.
- Cosgrove SE et al, ICAAC 2001 abst. K-1221, p. 415.
- Abramson, ICHE 1999;20:408.
- Wakefield, *AJIC* 1988;16:185-192.
- Cheng, J Hosp Infect 1988;12:91-101.

Comparison of Primary MSSA and MRSA Nosocomial Bloodstream Infections

	MSSA	MRSA	P-value
Attributable excess length of stay median, days	4	12	0.023
Attributable total cost median	\$9,661	\$27,083	0.043
Attributable variable direct cost median	\$4,989	\$14,783	0.043

Abramson MA, ICHE 1999;20:408-11.

Attributable Mortality of MRSA Bacteremia

•Association with death was almost two-fold higher for MRSA bloodstream infections than for MSSA BSI (OR=1.9, 95% CI, 1.5,2.4, p < 0.001) after adjustment for severity of illness in a recent meta-analysis.

Cosgrove. SHEA 2001. Abstract #96.

Cost Benefit Analysis of Controlling MRSA

Compared: Excess costs generated by MRSA infection with the costs of control program (surveillance cultures and isolation).

Concluded: That control measures cost less than the infections and that this would remain so even if infection rates had declined by only 14%.

Chaix, et al. JAMA 1999;282:1745.

Cost Benefit Analysis of Controlling MRSA

<u>Compared</u>: Excess costs generated by MRSA infection with the costs of control program (surveillance cultures and isolation).

Concluded: That control measures cost less than the infections and that this could prevent 8 to 41 nosocomial infections and save a tertiary care hospital from \$20,062 to \$462,067 per year.

Jernigan JA, et al. ICHE 1995;16:686.

FIGURE

Karchmer TB et al, J Hosp Infect. In press.

VRE and MRSA Bacteremias at Hospitals of Comparable Size and Complexity, 1999

Calfee DP, et al. SHEA 2001, abstract 127, p 66.

Antimicrobial Resistance Surveillance in *Staphylococcus aureus* blood isolates, Denmark, 1960-1995

Source: DANMAP Report, 1997.

MRSA Isolates From ICUs vs Non-ICUs

ICU=intensive care unit

Fridkin. Clin Chest Med. 1999;20(2):303.