International Conference on Emerging Infectious Diseases 2002

The Agent: Prions as Emerging Infectious Particles

David C. Bolton, Ph.D. New York State Institute for Basic Research

Topics Covered

• Prions

- Prion paradigm shift
- Prion composition and structure
- Prion replication
- Prions as emerging infectious particles
 - Prion diseases
 - Emerging prion diseases

Kuhn's Scientific Revolutions

- Paradigm-based normal science
- Crisis provoked by anomalous observations
- Revolution
 - Competition between new and old paradigms
 - New paradigm displaces old
- Normal science under a new paradigm
 - Transition is discontinuous
 - New or revised field is repopulated with believers

VIROLOGY / MICROBIOLOGY PARADIGM Prion Revolution

ICLEI

FOUNDSS

6

Q

Membrane

Hypothesis

TSE/

RESISTANCE

TO

RADIATION

Polysaccharide

Hypothesis

VIRUS

Protein

Hypothesis

PARTICLES

NOTSEEN

G

Uirino Hypothesis

Prion Paradigm Shift

- Prion paradigm displaced virus paradigm
 - Prion paradigm is better at explaining the existing data
 - Prion paradigm is not necessarily correct
- Shift to prion paradigm takes time
 - Young scientists or those from other fields tend to adopt the prion paradigm
 - Established scientists tend to resist the prion paradigm
 - Crisis began ~1965; gained wide acceptance ~1990's
 - Transition to new paradigm depends on the individual

Prion (Protein) Hypothesis

- Prions are infectious agents composed of a modified host protein, PrP^{Sc}
- A non-host nucleic acid is not a component
- PrP^{Sc} is derived from the cellular form, PrP^C
- PrP^{Sc} and PrP^C share the same primary structure
- PrP^{Sc} and PrP^C have different conformations

Unusual Properties of Prions Early Studies

- Resistant to UV and ionizing radiations
- Resistant to various chemical and enzymatic treatments
- Heterogeneous in size and density
- No unitary structure identified by EM

Unusual Properties of Prions Later Studies

- Scrapie-associated fibrils (SAF) identified by EM
- Abnormal host protein (PrP^{Sc}) purifies with infectivity
- Degrading PrP^{Sc} destroys infectivity
- Denaturing PrP^{Sc} destroys infectivity
- Purified preps lack specific nucleic acid

PrP^{Sc} and Prions

- PrP^{Sc} and infectious prions copurify
- PrP^{Sc} is the only macromolecule consistently identified in purified prion preparations
- No prion-specific nucleic acid has been identified (except host PrP gene & mRNA)
- Prions are unaffected by many treatments that degrade nucleic acids

PrP^{Sc} and Prions (2)

- PrP^{Sc} and prions resist degradation by proteases
- Prolonged digestion degrades PrP^{Sc} and destroys infectivity
 - Kinetics of degradation of PrP correlate with prion inactivation
- Denaturing PrP^{Sc} destroys infectivity
 - Physical treatments
 - Chemical treatments

PrP^{Sc} and Prions (3)

- PrP^{Sc} concentration and prion infectivity correlate in various preparations
- PrP^{Sc} binds to PrP^C in vitro and can change its conformation
- Mice that don't have the PrP gene (*Prnp*^{0/0}) cannot be infected by prions
- Neurons that do not produce PrP^C are not damaged by prion infection

Properties of PrP^C and PrP^{Sc}

Characteristic	PrP^C	PrP^{Sc}
Normal brain	Present	Absent
Diseased brain	Present	Present
Infectious	No	Yes
Concentration (µg/g)	20 – 40	60 – 160
Fibrils in vivo	No	Yes
Amyloid plaques	No	Yes
Soluble in Sarkosyl	Yes	No
Resists proteolysis	No	Yes

Bendheim et al. (1988) J.Infect.Dis. 158: 1198-1208

PrP detected by Western blotting

Purified PrP^{Sc} is Infectious

	Specific Activity	
Sample	(LD ₅₀ /mg protein)	
PrP ^{Sc} Lanes 1 & 2* (Lane 2 contains 4 times as much PrP as lane 1)	6 x 10 ¹⁰	
Trypsin fragment of Lane 3*	PrP ^{Sc} 3 x 10 ¹¹	

Bolton, *et al.* (1987) Arch. Biochem. Biophys. <u>258</u>: 579-590

*PrP detected by silver staining

Prion Replication

Prion Aggregation Dynamics

Prion Structural Models

Wille, et al. (2002) PNAS 99: 3563-3568

PrP^C Metabolism in a Normal Cell

Possible Sites of PrPSc Action

Bolton & Bendheim (1988) Ciba Found. Symp. 135: 164-181

Summary

- Prions are composed of an abnormal host protein, PrP^{Sc}
- Conformation of PrP^{Sc} is different from host PrP^C
- Prion-specific nucleic acid molecules have not been identified
- Protein-only hypothesis provides the best explanation for data (to date)

Prion Disease Etiologies

• Familial

- More than 25 mutations in *PRNP* gene
- Autosomal dominant mutations
- Some cases are infectious (transmitted experimentally)
- Infectious
 - Transmissible vs. contagious
 - Biologically distinct strains
 - Infectious particle contains PrP^{Sc} from wild-type gene
- Sporadic
 - No demonstrable link to familial or infectious causes

Species Variation and Mutations

Prusiner (1998) PNAS <u>95</u>: 13363-13383

Infectious Prion Diseases

Animal Diseases

- Scrapie
- BSE
- CWD
- TME
- FSE
- Exotic ungulate encephalopathy

<u>Human Diseases</u>

- Variant CJD (vCJD)
- Iatrogenic CJD (iCJD)
- kuru
- sCJD as source for
 - iCJD
 - kuru)
 - ???

Emerging Prion Diseases

Animal Diseases

- Scrapie
- BSE
- CWD
- TMÉ
- FSE
- Exotic ungulate encephalopathy

<u>Human Diseases</u>

- Variant CJD (vCJD)
- Iatrogenic CJD (iCJD)
- kuru
- sCJD as source for
 - iCJD
 - kuru)
 - ???

Interspecies Transmission of Prions

Prions as Agents of Emerging Disease

Good News

- Long incubation times
 Time to react
- Not highly contagious
- Prions show restricted tissue distribution
- Species barriers

Bad News

- Long incubation times
 Undetected reservoirs
- Invariably fatal
- Difficult to inactivate
- Persist in environment
- Difficult to detect
- High prion titers in CNS

Revolution

"I have shown the existence of at least three classes of replication mechanisms and that, therefore, the occurrence of a protein agent would not necessarily be embarrassing although it would be most interesting." J.S. Griffith *Nature 215: 1043-1044 (1967)*

Revolution (2)

"This shows that there is no reason to fear that the existence of a protein agent would cause the whole theoretical structure of molecular biology to come tumbling down." J.S. Griffith *Nature* <u>215</u>: 1043-1044 (1967)