Surveillance for Patients with Acute Febrile Illness in Egypt, GEIS Program at NAMRU-3

International Conference on Emerging Infectious Diseases
Atlanta, March 2002

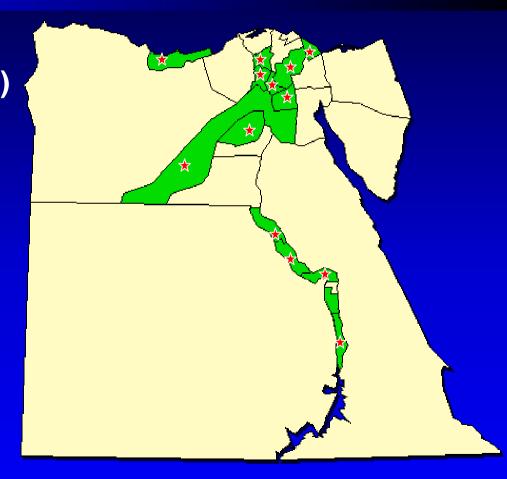
Salma Afifi, Ken Earhart, H. El-Sakka, Momtaz Wasfy, Fouad Gergis, Hoda Mansour, M. Adel Azab, Frank Mahoney

Background

Acute Febrile Illness Surveillance (AFI) -- Egypt

- Pathogens causing AFI are important public health problems in Egypt
 - Typhoid is one of the most frequently reported diseases
 - Little information on brucellosis
- Surveillance for patients with AFI is complex
 - Wide variety of organisms
 - Limited laboratory capacity

Objectives AFI Surveillance - Egypt, March 99- August 01


- Upgrade laboratory and epidemiology capacity in the MOH for the prevention and control of infectious diseases causing AFI
- Characterize epidemiology of infectious agents causing AFI

 Identify risk factors for disease to target prevention strategies

Methods

AFI Surveillance - Egypt, March 99- August 01

- Clinical case finding
- Infectious Disease Hospitals (n=13)
 - Clinicians trained:
 identify AFI cases
 blood culture on admission

Surveillance Network of Infectious Disease Hospitals in Egypt

Methods AFI Surveillance - Egypt, March 99- August 01

- Epidemiology
 - Standardized surveillance form demographic, clinical, and risk factor data
 - Computerized database
 - Monthly site visits
 - Risk factors were evaluated by comparing patients with brucellosis to all other patients admitted with AFI

Laboratory Methods

AFI Surveillance - Egypt, March 99- August 01

Blood culture

- 5-10 cc of blood in biphasic media
- checked daily for growth
- 3 week incubation time at 37°C

Serology

- WIDAL for typhoid fever
- Brucella tube agglutination

Special studies

- arbovirus infections, selected rickettsial pathogens

AFI Case Definition

AFI Surveillance - Egypt, March 99- August 01

Clinical case definition

- any patient > 4 years of age
- fever for > 2 days
- admission temperature > 38.5° C
- no other identified cause of fever

or

any patient with clinical diagnosis of typhoid fever or brucellosis

Case Definitions for Typhoid Fever, Brucellosis, and Arbovirus Infections

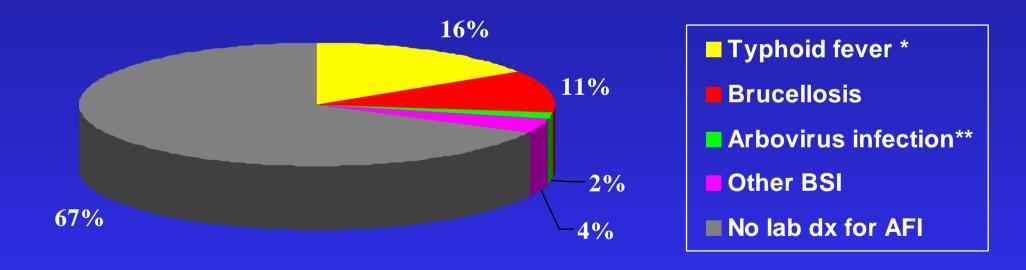
Typhoid

Probable: tube agglutination widal titer ≥1/160

Confirmed: isolation of S. typhi

Brucellosis

Confirmed: isolation of brucella Spp.

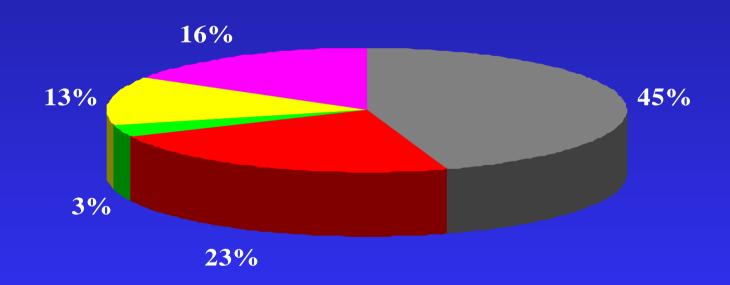

tube agglutination ≥ 1:160

Arbovirus infections

IgM antibody to RVF, Sandfly, Sindbis, West Nile viruses

Results: Laboratory Diagnosed Etiologies of Acute Febrile Illness

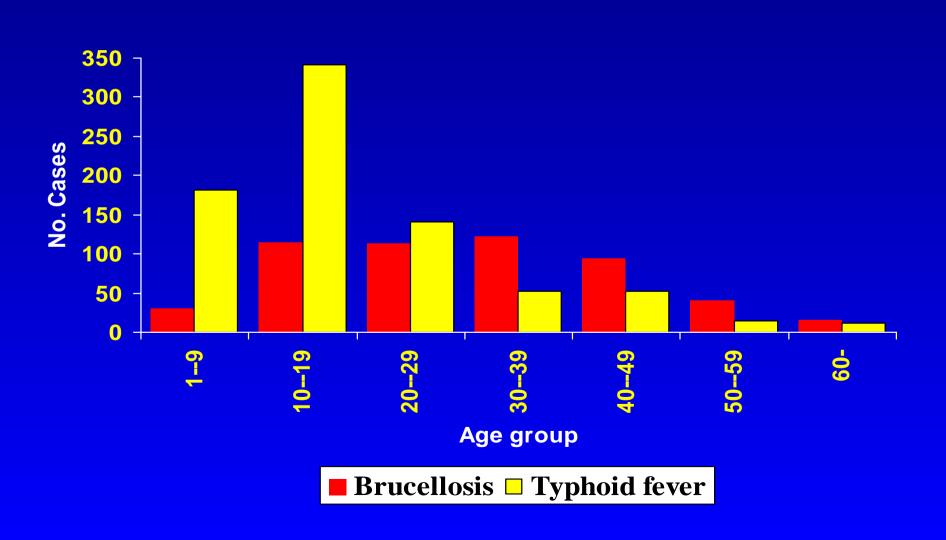
4906 Patients Evaluated, March 99- August 01



- * Confirmed and probable cases
- ** Representative sample

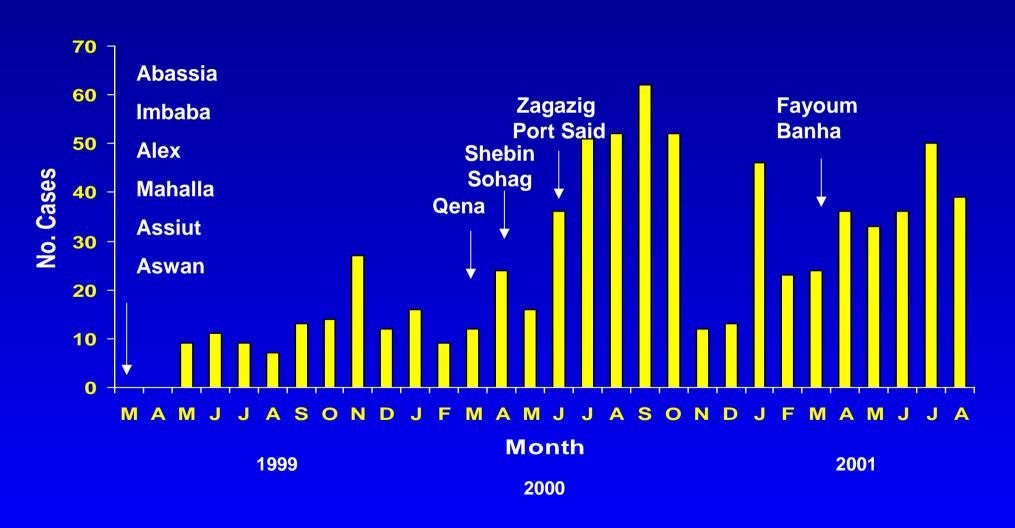
Results: Other Etiology of AFI

3330 Patients Diagnosed clinically March 99- August 01

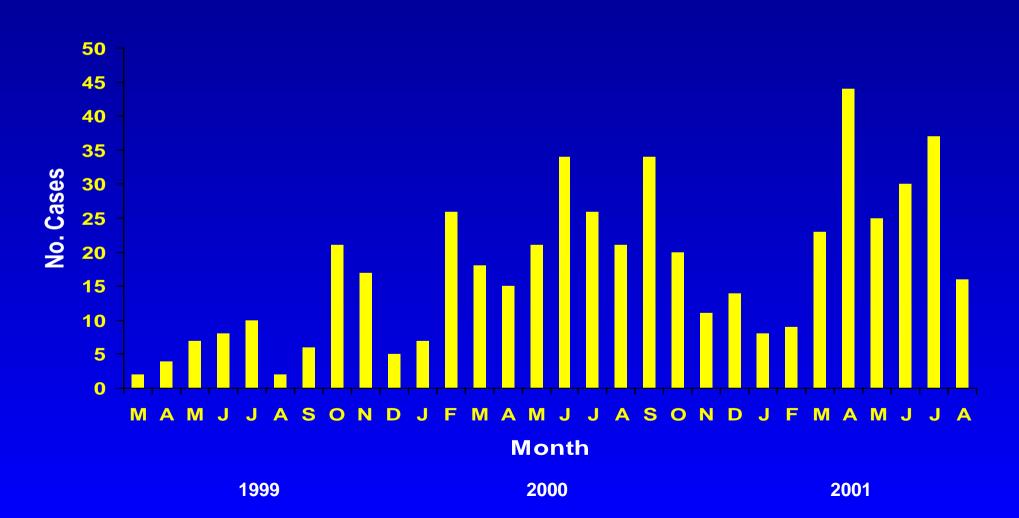


Characteristics of Patients with Typhoid Fever and Brucellosis

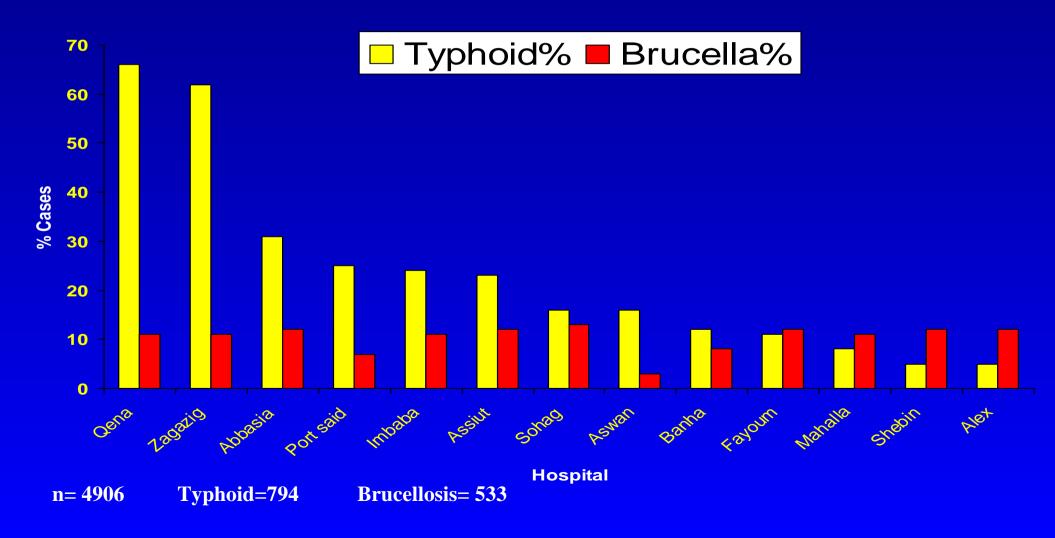
Characteristics	Typhoid	Brucellosis	Others
Median age (yrs)	19.8	32.2	25
% Males	49.6	64.8	58
% Case fatality	0.5	1	5
Mean Days of Hospitalization	10.1	8.6	6.9
Mean Interval (onset-admission)	9.3	13	9
% received AB prior to admission	53	54	59


Typhoid and Brucellosis Age groups

Acute Febrile Illness Surveillance (AFI) -- Egypt, March 99- August 01


Typhoid Seasonal Distribution

Acute Febrile Illness Surveillance (AFI) -- Egypt, March 99- August 01



Brucellosis Seasonal Distribution

Acute Febrile Illness Surveillance (AFI) -- Egypt,
March 99- August 01

Percent of AFI Patients with Typhoid Fever or Brucellosis by Hospital

Typhoid and Brucellosis Symptoms

Symptom	No. typhoid (%	%) No. Brucella (%)
Fever	792 (100°	%) 532 (100%)
Undulant fever	294 (37%	389 (73%)
Headache	655 (83%	476 (89%)
Arthralgia	249 (31%	359 (67%)
Myalgia	302 (38%	355 (67%)
Vomiting	384 (48%	212 (40%)
Convulsions	231 (31%	175 (34%)
Pharyngitis	256 (32%	143 (27%)

Exposures associated with Brucellosis Age adjusted Prevalence Ratio (I)

Animal Contact	No. ex Brucel n= 511	llosis	Non- Bruc	% ellosis n= 4246	Age Adjusted PR	Confidence limit
Camel	21	4%	36	1%	5	2.5 – 7.7
Sheep	191	37%	657	16%	3.3	2.8 – 4.1
Buffalo	161	32%	637	32%	2.6	2.1 – 3.1
Cattle	152	30%	635	15%	2.4	1.9 – 2.9
Donkey	98	19%	430	10%	2.1	1.7 – 2.8

Exposures associated with Brucellosis Age adjusted Prevalence Ratio (II)

Risk Factor	No. ex Bruce n= 5		Non- Brue n= 43		Age adjusted PR	Confidence limit
Handling animal abortus	99	19%	260	6%	3.2	2.5 – 4.1
Slaughtering animal	72	14%	271	6%	2.4	1.6 – 2.8
Handling raw meat	87	16%	388	9%	2.0	1.4 – 2.3
Drink unpasteurized milk	166	31%	855	20%	1.9	1.4 – 2.1
Eating soft cheese	395	74%	2830	65%	1.6	1.3 – 1.9

Conclusion

- Laboratory-based surveillance is important for proper diagnosis of patients with AFI
- S. typhi infection as a cause of AFI varies by region
 - most common in school-aged children
 - more common in summer months
- Brucellosis- as a cause of AFI does NOT vary by region
 - more common in adults, males, and animal handlers
 - more common in summer months
 - risk factors include exposure to animals, eating unpasteurized dairy products

Limitations

- Widal test is unreliable for diagnosis of typhoid fever
- Lab capacity, performance and supply availability at study sites is not constant
- Hospital based surveillance captures only a fraction of cases

Recommendation

- Institutionalize the surveillance system for AFI to include all infectious disease hospitals
- Enhance lab based surveillance in the participating sites
- Enforce food supervision regarding milk and milk products
- Health education for animal handlers