

Dose Reconstruction
Template Review for
the Peek Street
Facility, Schenectady,
New York

Doug Farver, CHP

Advisory Board on Radiation and Worker Health, Subcommittee for Procedure Reviews February 18, 2021

Review chronology of Peek Street Facility dose reconstruction methodology

- No technical basis document (TBD) for Peek Street Facility (PSF). Instead, NIOSH developed:
 - "Dose Reconstruction Methodology for the Peek Street Facility" ("PSF guideline")
 - DR template with facility-specific data, assumptions, and references that provide basis for data and assumptions
- 12/3/2018: SC&A tasked to review DR template/methodology for PSF
- ◆ 1/29/2019: SC&A submitted review of PSF DR template, "DR Draft PSF 3.0.doc" and the PSF guideline (2009)
- ◆ 12/7/2020: NIOSH issued revised template, "DR Draft PSF 4.0.doc" (issuance of PSF 4.0 did not address SC&A's findings/observation from review of PSF 3.0)

PSF description

- Located in Schenectady, NY
- Was a temporary location for the work of the Knolls Atomic Power Laboratory (KAPL) until facilities constructed at the KAPL Site in Niskayuna, NY
- Used for two basic purposes:
 - the design of an intermediate breeder reactor concept, later converted to the design of the S1G/S2G submarine reactor plan for the Navy
 - the design of a chemical process for the recovery of uranium and plutonium from irradiated nuclear reactor fuel
- Operated during 1947–1954

The assumption of 100% 30–250 keV for the photon energy distribution is unsupported and inconsistent with assumptions used in the Hanford TBD

- DR template states more than one photon energy distribution associated with PSF photon radiation source terms
- PSF used Hanford-type, twoelement film dosimeters during the operational period
- Hanford TBD specifies 25% 30– 250 keV and 75% >250 keV photon energy distribution for reactor and plutonium processing facilities
- OCAS-IG-001 recommends using 30–250 keV for unknown fields, which should be referenced if basis for assumption

A dosimeter uncertainty factor of 1.3 for penetrating photon dose is unsupported and inconsistent with Hanford TBD

- PSF guideline states there is no site-specific information for dosimeter limits of detection, uncertainty, and bias; therefore, NIOSH assumed Hanford Site's information
- Hanford TBD specifies systematic uncertainty for twoelement film dosimeter as 1.2

SC&A unable to verify the neutron-to-photon ratio of 1.2 using the cited references

- DR template states neutron-tophoton ratio determined from facilities with similar neutronproducing activities
- SC&A reviewed neutron-tophoton ratios in external TBDs for Hanford, Savannah River Site, Oak Ridge National Laboratory (ORNL), and Los Alamos National Laboratory
- SC&A calculated an average neutron-to-photon ratio of 1.29

PSF DR template does not specify dosimeter LOD

- Based on NIOSH's calculations, it appears an LOD of 0.050 rem was assumed
- This value is not consistent with Hanford dosimeter information
- PSF guideline does not address dosimeter exchange frequency or LOD

SC&A unable to verify the PSF annual maximum ambient dose value of 0.423 rem using the cited references

- PSF DR template states onsite ambient dose based on radiation levels at other sites with similar activities and cites ORAUT-PROC-0060
- SC&A reviewed onsite ambient doses reported in PROC-0060 for Hanford, ORNL, and Idaho National Laboratory
- SC&A calculated an average 0.342 rem from the 3 sites and an average from ORNL and Hanford of 0.433 rem

PSF DR template occupational medical dose basis contains incorrect information and outdated references

- DR template states occupational medical doses based on table 6-5 of ORAUT-OTIB-0006, rev. 04. Table 6-5 does not exist in rev. 04 of OTIB-0006
- DR template states x-ray doses incorporate 1.3 uncertainty factor based on ORAUT-PROC-0061, rev. 03, which is inconsistent with current approved guidance in PROC-0061, rev. 04

Fission product information in the PSF DR template is not consistent with current guidance

- DR template cites fission products intakes from ORAUT-OTIB-0054, rev. 00 PC-1 (2007)
- Current version of OTIB-0054, rev. 04 (2015), does not contain information used in template

PSF DR template contains no reproducible basis or reference for recycled uranium (RU) activity fractions

- DR template does not provide a basis for RU radionuclides and ratios
- SC&A reviewed Hanford data/TBD and Feed Materials Production Center TBD and was unable to verify RU activity fractions
- PSF guideline cites ORAUT-OTIB-0053 as basis for RU radionuclides and ratios
- SC&A was unable to locate a draft, issued, or archived version of OTIB-0053

Observation 1

SC&A did not locate a PSF-specific tool containing preprogrammed plutonium dose conversion factors (DCFs)

- PSF DR template specifies use of OCAS-IG-001 special DCFs for plutonium, calculated assuming AP geometry and 20 keV mono-energetic photons
- Template states plutonium DCFs programmed into the tool that was created for the PSF

Observation 2

Natural uranium physically significant level (PSL) in the DR template is not consistent with values cited in referenced document

- PSF DR template lists PSL of 5 μg/day for natural uranium and cites reference as "Excerpts from the KAPL Radiological History Report" (1997)
- "Excerpts from the KAPL Radiological History Report" (1997) states PLS of 3 µg/day for natural uranium

Observation 3

PSF DR template provides correct radionuclide composition for plutonium; however, cites outdated reference

- Reference cited for weaponsgrade plutonium mixture is Hanford Occupational Internal Dose TBD, rev. 04 (2010)
- Current version of Hanford Occupational Internal Dose TBD is rev. 07 (2020), which lists plutonium composition and should be referenced

Questions?

