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Physiologically-based pharmacokinetic (PBPK) models are increasingly finding
use in risk assessment applications of data-rich compounds. However, it is a
challenge to determine the chemical-specific parameters for these models,
particularly in time- and resource-limiting situations. In this regard, SARs,
QSARs and QPPRs are potentially useful for computing the chemical-specific
input parameters of PBPK models. Based on the frequency of occurrence of
molecular fragments (CH3, CH2, CH, C, C¼C, H, benzene ring and H in benzene
ring structure) and exposure conditions, the available QSAR-PBPK models
facilitate the simulation of tissue and blood concentrations for some inhaled
volatile organic chemicals. The application domain of existing QSARs for
developing PBPK models is limited, due to lack of relevant data for diverse
chemicals and mechanisms. Even though this approach is conceptually applicable
to non-volatile and high molecular weight organics as well, it is more challenging
to predict the other PBPK model parameters required for modelling the kinetics
of these chemicals (particularly tissue diffusion coefficients, association constants
for binding and oral absorption rates). As the level of our understanding of the
mechanistic basis of toxicokinetic processes improves, QSARs to provide a priori
predictions of key chemical-specific PBPK parameters can be developed to
expedite the internal dose-based health risk assessments in data-poor situations.
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1. Introduction

Molecular structure-based prediction of the temporal change in the concentration of
environmental chemicals or their metabolites in blood and organs of exposed organisms is
a challenge. Even though several investigators reported the development of quantitative
structure–property relationship (QSPR) models for certain pharmacokinetic parameters
(e.g. volume of distribution, half-life) of anaesthetics and pharmaceuticals [1–3], there are
few efforts on the QSAR-based prediction of the pharmacokinetic or toxicokinetic profiles
of chemicals. The pharmaceutical literature consists of numerous examples of 2-D QSARs,
3-D QSARs and expert systems for modelling the individual components or phases of
drug disposition and pharmacokinetics (i.e. absorption, distribution, metabolism and
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elimination; ADME). Several reviews and reports present the advantages and limitations

of the currently available algorithms and software for in silico modelling of the drug

dissolution/bioavailability, oral absorption rate/fraction, volume of distribution, path-

ways, affinities or rates of metabolism, renal excretion rate as well as affinity for specific

transporters [3–20]. These QSPRs for pharmacokinetic parameters and individual ADME

processes could not be and have not been used in predictive toxicology, particularly in risk

assessment, for providing a priori predictions of the time-course of the tissue or blood

concentrations of the toxic moiety in intact animals and humans exposed to varying doses

of chemicals by various routes and scenarios. Furthermore, the development of QSARs for

each sampling point, dose, route and species would be an arduous task. However, a priori

predictions can be obtained by developing QSPRs for the chemical-specific input

parameters of mechanism-based models such as the physiologically-based pharmacoki-

netic (or toxicokinetic) models.
Physiologically-based pharmacokinetic (PBPK) modelling refers to the development

and evaluation of mathematical descriptions of the ADME of chemicals in biota based on

proven/hypothetical mechanistic determinants [21]. PBPK models essentially represent a

systems biology approach to the study of ADME and are increasingly finding use in

screening-level as well as quantitative risk assessments to reduce the uncertainties

associated with interspecies, route-to-route, and high-dose to low-dose extrapolations of

tissue dose of chemicals [21–24]. These models represent the organism as a set of several

tissue compartments interconnected by blood flows (Figures 1 and 2). The compartments

correspond to individual organs or groups of organs exhibiting the same time-course

behaviour, as simulated by solving sets of mass-balance differential equations [21].

Examples of equations commonly used in PBPK models for simulating the pharmaco-

kinetics of inhaled volatile organic chemicals (VOCs) are listed in Table 1. The input

parameters required for solving the set of PBPK model equations are either species-specific

or chemical-specific. The species-specific parameters, for example, relate to alveolar

ventilation rate (Qp), cardiac output (Qc), tissue blood flow rates (Qt) and tissue volumes

(Vt). The chemical-specific input parameters include partition coefficients (blood:air (Pba),

tissue:air (Pta) or tissue:blood (Ptb)) as well as metabolic parameters such as the maximal

Figure 1. Conceptual representation of a PBPK model for an inhaled toxicant in rats and humans.
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velocity (Vmax) and Michaelis affinity constant (Km) or the intrinsic clearance (Vmax/Km).

The species- and age-specific values of several physiological parameters (Qp,Qc,Qt,Vt)

are available in the biomedical and physiology literature [21,25,26]. However, the

physicochemical (Pba,Pta,Ptb) and biochemical (Vmax/Km) parameters need to be

determined experimentally or predicted using animal-replacement methods for each

chemical individually.
Even though in vivo and in vitro methods for determining blood:air, tissue:air,

tissue:blood partition coefficients exist (e.g. equilibrium dialysis, vial equilibration,

ultrafiltration, steady-state kinetic studies) [21], they are time- and resource-consuming,

particularly for chemicals for which analytical method development has not been achieved.

Similarly, the metabolic constants can be determined experimentally in vivo using the

kinetic data from invasive sampling (parent chemical or metabolite), closed/open chamber,

Table 1. Equations used in PBPK models to simulate the pharmacokinetics of inhaled volatile
organic chemicals (VOCs) [21].

Compartment Input parameters Equations

Arterial blood Qc, Qp, Pba, Cinh Ca ¼
Qc � CvþQp � Cinh

QcþQp=Pba

Metabolizing tissue (liver) Ql, Vmax, Km
dAl

dt
¼ Ql � Ca� Cvlð Þ �

Vmax � Cvl

Kmþ Cvl

Non-metabolizing tissues Qt
dAt

dt
¼ Qt � Ca� Cvtð Þ

Venous blood Qt, Qc Cv ¼

P
Qt � Cvt

Qc

Qc: cardiac output (L h�1); Qp: alveolar ventilation rate (L h�1); Pba: blood:air partition coefficient;
Ql: blood flow rate to liver (L h�1); Qt: blood flow rate to tissue t (L h�1); Cvl(Cvt): concentration of
chemical in venous blood leaving liver (tissue) (mgL�1 or mmol L�1); Ca: arterial blood
concentration (mgL�1 or mmol L�1); Cinh: inhaled air concentration (mgL�1 or mmol L�1); Cv:
venous blood concentration (mgL�1 or mmol L�1); Al: amount in liver (mg or mmol); Vmax:
Maximal velocity of enzymatic reaction (mg h�1 or mmol h�1); Km: Michaelis–Menten affinity
constant (mgL�1 or mmolL�1).

Figure 2. Conceptual representation of a fish PBPK model.
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gas uptake, or exhaled chamber methods; in vitro data collected from isolated organ, tissue
slices, cells, microsomes, etc. can be used to scale to in vivo conditions based on careful
considerations of differences in determinants between the in vitro and in vivo systems
[21,27,28]. As the experimental evaluation of the absorption, distribution and clearance
parameters for each chemical is time- and resource-consuming, it has led to exploratory
work on in silico methods for parameterizing PBPK models [29,30].

If SARs, QSARs, QSPRs or QPPRs (referred to hereafter as QSARs) can be developed
for predicting the numerical values, or for generating at least some initial estimates or
bounds, of the chemical-specific parameters such as Pba, Pta, Ptb, Vmax and Km, then it will
be feasible to make a priori predictions of the in vivo kinetics of new and untested
chemicals. Integration of structure- or property-based algorithms with animal anatomy
and physiology information could provide a logical and scientifically-sound means of
generating first-cut estimates of the pharmacokinetic behaviour of data-poor chemicals.
Basically, in the case of a chemical for which pharmacokinetic parameter database is either
incomplete or lacking, the internal dose cannot be reliably estimated (Figure 3A); at the
outset, the internal dose measure associated with a particular exposure scenario could vary
from anywhere between zero (theoretical minimum) and the potential dose (theoretical
maximum). This large uncertainty is due to the fact that there is a lack of precise
knowledge regarding the key chemical-specific determinants of ADME (e.g. Ptb, Pta, Pba,
CLint). Since these parameters, together with the physiology of the animal species,
determine the pharmacokinetics (particularly the internal dose) of chemicals in biota,
integrated QSAR-PBPK models can effectively predict or identify the possible
range of internal dose (Figure 3B). The level of accuracy required for the QSARs then
would depend not only upon the intended end-use purpose(s) but also on the sensitivity
of the specific input parameters with respect to the model outcome, i.e. predicted
internal dose.

This article presents (1) an overview of the QSARs available for predicting the
chemical-specific pharmacokinetic determinants, specifically, the partition coefficients
(PCs) and metabolic constants, as well as (2) the state-of-the-art for their integration
within PBPK models to provide predictions of pharmacokinetics of environmental
contaminants in biota.

2. QSARs of PCs for PBPK models

The tissue:plasma PCs along with the volumes of tissues and blood determine the apparent
volume in which a chemical is distributed in the exposed organism [31]. On the other hand,
the plasma:air or blood:air PC along with the alveolar ventilation rate determines the lung
clearance of volatile chemicals [21]. Partition coefficients for PBPK modelling can be
predicted following diverse approaches ranging from linear regression to biologically-
based algorithms incorporating QSARs [29,30].

Several investigators have explored and established the feasibility of predicting the
tissue:blood PCs or the Ostwald solubility from measurements of liposolubility such as Pow

and solubility in n-octanol or vegetable oil using the linear free energy (LFE) approach
[32–48]. The LFE-type QSARs have mainly focused on using steric or hydrophobic
descriptors. For example, Abraham et al. [47] developed equations for predicting
hydrophobic descriptors (i.e. octanol:water, hexadecane:water, alkane:water and cyclo-
hexane:water PCs) based on properties including the McGowan volume, an indicator of
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compound bulkiness:

logSP ¼ cþ rR2 þ s�H2 þ a�H2 þ b�H2 þ vVX ð1Þ

logP ¼ 0:088þ 0:562R2 � 1:054�H2 þ 0:034�H2 � 3:460�H2 þ 3:814VX ð2Þ

n ¼ 613, r ¼ 0:9974, sd ¼ 0:116, F ¼ 23161:6

Figure 3. Uncertainty in internal dose calculations for an inhaled toxicant (e.g. target tissue
concentration vs. time) as a function of the knowledge of pharmacokinetic processes and
determinants. (A) A situation characterized by a total lack of experimental or modelled data on
pharmacokinetic processes. (B) A situation characterized by the availability of QSAR-based
estimates of input parameters and animal physiology, which are integrated within a PBPK modelling
framework.

SAR and QSAR in Environmental Research 133

D
ow

nl
oa

de
d 

by
 [

M
on

ta
na

 S
ta

te
 U

ni
ve

rs
ity

 B
oz

em
an

] 
at

 0
8:

07
 2

0 
A

ug
us

t 2
01

4 



where SP is the solute property (e.g. solute octanol:water PC); logP is the logarithm of

n-octanol:water PC; R2 is the solute excess molar refraction; �H2 is the solute dipolarity/

polarizability; �H2 is the sum of hydrogen-bond acidity of the solute; �H2 is the sum of

hydrogen-bond basicity of the solute and VX is the solute McGowan’s volume.
Abraham and Weathersby [48] used a multilinear equation combining the solute excess

molar refraction, the solute dipolarity/polarizability and the overall hydrogen bond acidity

or basicity along with the log hexadecane PC to predict the oil (n¼ 88), water (n¼ 75),

blood (n¼ 82), plasma (n¼ 32), brain (n¼ 41), muscle (n¼ 41), lung (n¼ 36), liver (n¼ 29),

kidney (n¼ 36), heart (n¼ 24), and fat (n¼ 36):air PCs for several inorganic and organic

chemicals including helium, neon, argon, krypton, xenon, hydrogen, oxygen, nitrogen,

nitrous oxide, alkanes, haloalkanes, ketones, alkenes, alcohols and aromatic

hydrocarbons:

logL ¼ cþ rR2 þ s�H2 þ a�H2 þ b�H2 þ l logL16 ð3Þ

where L is the Ostwald solubility (media:air PC); R2 is the solute excess molar refraction;

�H2 is the solute dipolarity/polarizability; �H2 is the sum of hydrogen-bond acidity of the

solute; �H2 is the sum of hydrogen-bond basicity of the solute; and L16 is the Ostwald

solubility of hexadecane at 298K.
In this study, the resulting models performed better for water (n¼ 75; r¼ 0.9974;

sd¼ 0.182; F¼ 912.8) and olive oil (n¼ 88; r¼ 0.9985; sd¼ 0.082; F¼ 7079.0), rather than

for kidney (n¼ 36; r¼ 0.9753; sd¼ 0.266; F¼ 117.1) and heart (n¼ 24; r¼ 0.9784;

sd¼ 0.172; F¼ 117.1). Abraham and Weathersby [48] observed that non-polar solutes

only needed hexadecane:air partitioning (a lipophilic descriptor) to predict the human

tissue:air PCs, whereas electrostatic descriptors (i.e. solute dipolarity/polarizability, and

hydrogen bond acidity or basicity) were important for functionally substituted compounds

such a 1-propanol.
The development of LFE-type QSARs for blood and tissue partitioning was initially

based on data for anaesthetic gases [46,49–52]. Since these compounds are relatively

lipophilic, the best regression equations were observed for those containing hydrophobic

parameters or measures of solubility in lipids and water. Batterman et al. [53] developed

quantitative relationships between the human blood:air PCs of four trihalomethanes

(chloroform, bromodichloromethane, chlorodibromomethane, and bromoform) and

various descriptors including molecular weight and number of bromine atoms in the

compound:

logKba ¼ 0:0072MWþ 0:197 r2 ¼ 0:994 ð4Þ

where Kba is the blood:air PC and MW is the molecular weight;

logKba ¼ 0:321Nþ 1:06 r2 ¼ 0:994 ð5Þ

where N is the number of bromine atoms.
Since the above descriptors tend to be correlated with lipophilicity (i.e. increases in

molecular weight or number of bromine tend to increase Pow), these types of correlations,

especially for such a reduced dataset, are also to be expected. DeJongh et al. [54],

Meulenberg and Vijverberg [55] and Meulenberg et al. [56] used the hydrophobic

descriptors Pow, Poa, and Pwa to relate to rat and human blood:air and tissue:air PCs

of VOCs.
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Meulenberg and colleagues [55,56] used the following regression for the tissue:air PCs:

Pta ¼ aoPoa þ asPsa þ c ð6Þ

where Pta is the tissue:air PC; Poa is the oil:air PC and Psa is the saline:air PC.
This resulting model exhibited r2 values of 0.99, 0.92, 0.98, 0.88, 0.99, and 0.98 for

blood, fat, brain, liver, muscle, and kidney, respectively. However, contrary to the

regression with tissue:air PCs these authors could only derive adequate regressions for

blood:air PCs when a significant intercept was included. Since partitioning into lipids and

water was taken into account by the hydrophobic descriptors, presence of an intercept was

interpreted as being the result of significant binding to blood proteins.
Basak et al. [57] developed QSPRs to predict the human blood:air PCs using principal

component regression, partial least squares and ridge regression methods for 31 low-

molecular weight VOCs (18 haloalkanes, four haloalkenes, two nitroalkanes, two aliphatic

hydrocarbons and five aromatic hydrocarbons) characterized by 221 topostructural

(including information on distances; degree complexity; path, cluster, and chain

connectivity indices; Wiener index; Balaban’s index; triplet indices), topochemical

(information theoretic and neighbourhood complexity indices, bond connectivity indices;

triplet indices; number of non-hydrogen atoms, number of elements in a molecule;

molecular weight; Wiener number; hydrogen bond donor indices, E-state descriptors) and

geometrical (Kappa zero, Kappa simple and alpha indices) molecular descriptors. The

regression analyses were conducted using one or more (combined) classes of molecular

descriptors and with all the chemicals or with only the haloalkanes. In general, the ridge

regression that used only the topochemical parameters (i.e. molecular weight, quantifying

molecular size, triplet indices, encoding information about the nature of atoms,

electrotopological state indices, valence and bonding connectivity indices hydrogen

bonding parameter) was found to be superior to the other QSPRs (Q2 leave-one-

out¼ 0.874; PRESS¼ 7.79). This study also reported a comparison between the QSPRs

and the quantitative property–property relationships (QPPR) based on saline:air along

with oil:air PCs or rat blood:air PCs. The QSPRs were found to be comparable or superior

to the QPPRs using oil and saline:air PCs; furthermore the rat blood:air PC was shown to

be the best predictor of the human blood:air PC. Since the value of rat blood:air PC is not

routinely measured, the ridge regression QSPRs were developed to permit the prediction of

the human blood:air PC based on quickly calculable molecular descriptors. A similar

approach was used by these authors to develop QSPRs for predicting the tissue:air (fat,

brain, liver, muscle, kidney) PCs in rats and humans [58]. The QSPRs included

topostructural, topochemical, three-dimensional, and ad initio quantum chemical molec-

ular descriptors as independent variables for 131 chemicals (alkanes, haloalkanes,

nitroalkanes, alcohol, ketones, acetates, ethylenes, cycloalkanes, halogenated and non-

halogenated aromatic hydrocarbons). Again, the ridge regression compared to the

principal component regression and partial least squares provided the best results and the

most significant types of molecular descriptors in the QSPRs were: hydrogen bonding

descriptors (number of hydrogen bond donors and acceptor, hydrogen bond donor and

acceptor indexes), the polarity descriptor, and the molecular size and shape indices (bond

and valence connectivity indexes, number of paths of length of order 1 and 2).
There have been only limited efforts towards the development and evaluation of

QSARs for computing PCs of non-volatile, environmental chemicals. In this regard,

Parham et al. [59] developed QSARs using steric descriptors, for estimating adipose
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tissue:plasma and adipose tissue:blood PCs of a congeneric series of 24 polychlorinated

biphenyls (PCBs) (from bichlorophenyl to octachlorophenyl). The descriptors included in

the model reflected aspects such as the planarity, the number and position of chlorines, as

well as the effect of the chlorines on the adjacent carbons. After a stepwise analysis, the

following QSPR (r2¼ 0.77) for the logarithm of the adipose tissue:plasma PC (logKfp) was

obtained:

logKfp ¼ 1:9988� 0:5004 UNSþ 0:1793 NPLþ 0:05931 DIFF2 ð7Þ

where UNS¼ 1 if the number of adjacent non-chlorine-substituted ortho-meta carbon

pairs is higher than 0, UNS¼ 0 otherwise; NPL is the non-planarity index, equal to the

number of ortho (2,6,20, or 60) chlorines if the number is less than 2, otherwise equal to 2;

and DIFF is the difference between the number of chlorines on the most-substituted ring

and the number of chlorines on the least-substituted ring (measure of polarity).
The fat:blood PC was in turn calculated based on the fat:plasma PC and the fraction of

PCBs in the blood cells ( fcr), which in turn was calculated using the following QSPR

(r2¼ 0.94):

fcr ¼ 0:1954ð�0:0586Þ þ 0:1513ð�0:0352ÞNUNMP ð8Þ

where NUNMP is the number of adjacent non-chlorine-substituted ortho-meta carbon

pairs.
It was shown that the PCs depended mostly on the presence or absence of adjacent

non-chlorine-substituted meta and para carbons. Since PCB congeners without

unsubstituted meta-para pairs tended to be more slowly eliminated than those with such

pairs, it was suggested that the reason for this slower elimination might be the higher

adipose tissue:blood PC, leading to a greater storage of PCBs in this tissue [59].
Gargas et al. [60] used connectivity indexes and ad hoc descriptors in order to correlate

structure with the rat tissue:air PCs of a series of 25 haloalkanes (methanes, ethanes,

ethylenes with log olive oil:water PC values between 0.56 and 3.43). The following QSARs

for the fat:air PC, based on higher order connectivity indices and ad hoc descriptors (QH:

polar hydrogen factor; NCl, NBr, NC, NF: number of chlorine, bromine, carbon, and

fluorine atoms, respectively) were obtained in this study:

logPfa ¼ 0:734 �0:096ð Þ
1�v � 0:029 �0:003ð Þ �vs

� �
� 1:570 �0:284ð Þ 1=1�

� �
� 0:559 �0:167ð Þ 1=1�v

� �
� 0:098 �0:038ð Þ3�v

v

c þ 2:213 �0:365ð Þ

r2 ¼ 0:9779, s ¼ 0:1348 ð9Þ

logPfa ¼ 0:563ð�0:028ÞNCl þ 1:028ð�0:065ÞNBr þ 0:467ð�0:060ÞNC

þ 0:270ð�0:036ÞQH � 0:199ð�0:034ÞNF � 0:097ð�0:121Þ

r2 ¼ 0:9781, s ¼ 0:1341 ð10Þ

These authors reported that fluorine substitution reduced the tissue solubility, with the

greatest effect being observed in biological matrices with the greatest volume fraction of

water (e.g. blood). On the contrary, the chlorine and bromide substituents increased

solubility in all tissues. Because of the electronegativity of these atoms (F5Cl5Br), it

was suggested that these atoms increased the solubility in the media via dispersion

interactions. Their study results indicate that it is challenging to evaluate the ‘steric’
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influence independent of the ‘hydrophobic’ influence, as they relate to tissue solubility of

environmental chemicals [60]. More recent work focused on evaluating the contribution of

each molecular fragment to the tissue and blood partitioning processes in a global manner.

Accordingly, the Free–Wilson approach was used, reflecting the working hypothesis that

each substituent in the molecular structure had an additive and constant contribution to

the PC of interest [61]:

PC ¼
Xn
i¼1

Cfi � fi ð11Þ

where Cfi is the contribution of the fragment i to the value of the PC and fi corresponds to

the frequency of occurrence of the fragment in the molecule.
Using the above approach, Béliveau et al. [62] carried out linear regression analysis

based on the frequency of occurrence of 11 different structural fragments (CH3, CH2, CH,

C, C¼C, H, Cl, F, Br, benzene ring (AC) and H in benzene ring (H on AC)) and the

logarithm of published data on tissue:air and blood:air PCs. The experimental data

corresponded to the blood:air, fat:air, muscle:air and liver:air PCs of 46 low molecular

weight VOCs (16 chloroalkanes, five alkanes, five chloroethylenes, five aromatic

hydrocarbons, four bromoalkanes, three bromochloroalkanes, three bromochloroalkanes,

two chlorofluoroalkanes, difluoromethane, 2-bromo-2-chloro-1,1,1-trifluoroethane, vinyl

bromide, chlorobenzene, allyl chloride and isoprene). All the chemicals were described

using combinations of the eleven molecular fragments listed above. Table 2 summarizes

the contributions of the molecular fragments to rat blood:air, liver:air, muscle:air and

fat:air PCs of low molecular weight VOCs, as determined by Béliveau et al. [62]. These

QSPRs were developed using data for alkanes, haloalkanes, haloethylenes, and aromatic

hydrocarbons with logP ranging between 0.56 and 5.44. Some classes of haloalkanes,

particularly the fluorinated hydrocarbons, were poorly represented in the calibration

dataset and thus the predictions of the log PCs using the group contribution represented in

Table 2 can have large uncertainty for such chemicals. However, the chlorinated

Table 2. Fragment contribution to rat partition coefficients.a

Fragment

Fragment contribution to

Blood:air Liver:air Muscle:air Fat:air

CH3 0.072 0.016 �0.020 0.366
CH2 0.109 0.234 0.122 0.435
CH 0.079 0.359 0.266 0.330
C �0.606 0.032 �0.105 �0.285
C¼C �0.494 0.257 �0.707 0.327
H 0.236 �0.031 0.081 0.155
Br 0.834 0.700 0.622 1.170
Cl 0.481 0.384 0.322 0.735
F 0.020 �0.113 �0.911 0.075
AC 2.850 3.760 3.650 2.920
H on AC �0.292 �0.408 �0.446 �0.056

aAC: benzene ring; the fragment contributions times the frequency of their occurrence
gives the logarithm of the particular partition coefficient. Based on Béliveau et al. [62].
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hydrocarbons are well represented in the dataset; therefore the QSPR model may be more

adequate for application to this sub-class of VOCs. Based on these data, for example, the

predicted logarithm of the blood:air PC of the 1,2-dichlorethane would equal:

(2� 0.481)þ (2� 0.109)¼ 1.18.
Using a similar methodology, Kamgang et al. [63] developed QSPRs for predicting

fat:air and blood:air PCs of VOCs. The linear regression analysis was conducted with

published in vitro data of fat:air and blood:air PCs for 20 non-halogenated VOCs (alkanes,

alkenes and aromatic hydrocarbons). The eight fragments used in the regression were the

same as those listed in Table 2 (i.e. without the three halogens). Table 3 summarizes the

fragment contributions to the rat blood:air PCs and the fat:air PCs, as obtained by these

authors. Interestingly, the group contributions that were significant in the analysis of

Kamgang et al. [63] (CH2, H, AC H on AC for blood:air PC; and CH3, CH2, CH, H, AC

for fat:air PC) were comparable to those reported by Béliveau et al. [62] (Table 2).
Contributions of individual fragments to the model parameters are expected to be

dependent on the tissue composition of the species of interest and would vary from one

species to another. Accordingly then, several Free–Wilson type QSARs would be required

for computing the PCs in multiple tissues and species [62–64]. Should the nature and

concentrations of lipids, proteins and water be the same in two tissues of the species of

interest, then the calculated molecular fragment contributions are expected to be identical

in these species. Ideally then, the strategy would be to incorporate species-specific

differences in tissue composition along with chemical-specific parameters reflective of

liposolubility. In this regard, a number of tissue composition-based algorithms are

potentially of particular use.
The mechanistic, tissue composition-based algorithms for predicting PCs for PBPK

modelling were developed by considering ionization, solubility and binding in the various

matrices (i.e. intracellular, interstitial, vascular) [65–79]. The fundamental principle of

these mechanistic algorithms is that the concentration (or solubility) of a chemical in a

biological matrix can be expressed as the sum of its concentration in the key components

of the matrix (i.e. water, neutral lipids, charged phospholipids, haemoglobin and/or

Table 3. Fragment contributions to rat fat:air and blood:air PCs.a

Fragment

Fragment contribution to

Blood:air Fat:air

CH3 �0.024 0.277
CH2 0.105 0.369
CH 0.186 0.395
C 0.129 0.276
H 0.065 0.267
AC 2.747 3.295
H on AC �0.252 �0.120

AC: benzene ring.
aThe group contributions times the frequency of their occurrence
gives the logarithm of the particular partition coefficient. Based on
Kamgang et al. [63].

138 T. Peyret and K. Krishnan

D
ow

nl
oa

de
d 

by
 [

M
on

ta
na

 S
ta

te
 U

ni
ve

rs
ity

 B
oz

em
an

] 
at

 0
8:

07
 2

0 
A

ug
us

t 2
01

4 



plasma proteins). Accordingly, for environmental chemicals, the tissue:air PCs have been

computed as follows [72]:

Pta ¼ Poa � Fnlt þ Pwa � Fwt ð12Þ

where Pta is the tissue:air PC; Poa is the olive oil:air PC; Fnlt is the fractional content of

neutral lipids equivalent in tissue; Pwa is the water:air PC; and Fwt is the fractional content

of water equivalent in tissue.
Equation (12) for predicting matrix:air PC are adequate only for VOCs that do not

bind significantly to macromolecules. For chemicals that bind significantly to biological

macromolecules in blood or tissues, the bound concentrations should be taken into

account in computing the apparent PCs [71,80]. In such cases, the prediction of PCs from

molecular structure information is compounded by the difficulty of predicting the binding

association constants. Béliveau et al. [81], based in the work of Poulin and Krishnan [71],

used the following equation to calculate the blood:air PC:

Pba ¼ Poa � ðFnlb þ 0:3 � FplbÞ þ Pwa � ðFwb þ 0:7 � FplbÞ þ fb � Ppa � Fpb ð13Þ

where Poa is the n-octanol:air or oil:air PC predicted from molecular structure

information; Pwa is the water:air PCs predicted with molecular structure information;

Ppa is the protein:air PCs predicted with molecular structure information; Fnlb is the

fraction of neutral lipids in blood; Fplb is the fraction of phospholipids in blood; Fwb is the

fraction of water in blood; Fpb is the fraction of proteins in blood and fb is the fraction of

proteins involved in binding.
In the above algorithms, the solubility of the chemical in blood and tissue is described

as the sum of its solubility in neutral lipids, phospholipids and water. Here, the

phospholipids are assumed to behave as a mixture of neutral lipids (30%) and water

(70%), based on literature evidence of the hydrophobicity characteristics of commercial

lecithin [70]. According to this approach, the numerical values of Pba and Pta can be

predicted with knowledge of (1) blood and tissue lipid, water and protein levels (Fnlb, Fnlt,

Fplb, Fplt, Fwb, Fwt and Fpb) and (2) the numerical values of Poa, Pwa and Ppa. Species-

specific data on the levels of lipids, water and proteins are available in the literature

[42,69,70,73,81–83] (e.g. Table 4). Once the numerical values of these species-specific

parameters are included in the above equations, Pta and Pba can be predicted solely from

Table 4. Fractional content of the key components in blood and tissues of rats and
humans.

Species Componenta Blood Fat Liver Muscle

Rat Neutral lipids 0.002 0.8536 0.0425 0.0117
Water 0.8423 0.1215 0.7176 0.7471
Proteins 0.156 – – –

Human Neutral lipids 0.004 0.7986 0.0473 0.0378
Water 0.8217 0.1514 0.74 0.7573
Proteins 0.174 – – –

a‘Neutral lipids’ represent the sum of neutral lipid content and 30% of phospholipids in
the biological matrix. ‘Water’ represents the sum of water content and 70% of
phospholipids in the biological matrix. Based on data compiled/reported by Poulin and
Krishnan [69,70], Béliveau et al. [81] and Krishnan and Peyret [82].
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knowledge of Pwa and Poa (and additionally Ppa in the case of rat). Here, Poa, the

n-octanol:air or oil:air partition coefficient, is reflective of the chemical partitioning into
the tissue lipids whereas the tissue water:air PC is considered to be the same as the inverse
of the Henry’s law constant.

Thus, the tissue composition-based algorithms account for both physiological and

physicochemical characteristics. For example, in the algorithms for predicting tissue:air
and blood:air PCs (Equations (12) and (13)), the physiological input parameters
correspond to the composition of the tissue or the blood, whereas the physicochemical

parameters are the oil:air PC, the water:air PC and, additionally, protein:air PC for the
blood:air PC [71,72,81]. QSARs for predicting oil:air (or n-octanol:air), water:air and
blood protein:air PCs are available in the literature [35,81,84–86], facilitating the

computation of PCs for different species for the purpose of PBPK modelling. In this
regard, Béliveau et al. [81] developed QSPRs for oil, water, and protein:air PCs, and then

integrated the results with the tissue and blood composition data for rats and humans to
predict the tissue:air (i.e. muscle, liver, and fat), and blood:air PCs, as per Equations (12)
and (13). Table 5 summarizes the findings of this QSPR analysis, specifically the

contributions of the fragments to the numerical values of olive oil:air, water:air and
protein:air PCs, for computing tissue and blood:air PCs. These fragment contributions

and QSARs are not specific to any species because they are only used to predict the
chemical-specific input parameters of the algorithm. In turn, upon inclusion of the tissue
and blood composition data specific to the species (Table 4), predictions of PCs for various

tissues and species become feasible – solely from the molecular structure information.
The mechanistic algorithms for predicting PCs have evolved over the years. Tables 6

and 7 summarize the input parameters and the characteristics of the compounds
underlying the development of these algorithms. Most of the refinements of the PC

algorithms as well as QSARs for binding to albumin have been accomplished based on
data for pharmaceutical substances [65,74–76,87–97]. These advances would potentially be

informative for guiding further development of QSARs for PCs of metabolites and other

Table 5. Fragment contributions to oil:air, water:air and protein:air PCa.

Fragment

Fragment contribution to

Oil:air Water:air Protein:air

CH3 0.354 �0.038 0.306
CH2 0.441 �0.223 0.182
CH 0.377 �0.477 �0.111
C �0.354 �1.490 �1.060
C¼C 0.197 �1.940 �0.877
H 0.134 0.555 0.492
Br 1.174 0.622 1.150
Cl 0.776 0.468 0.764
F 0.136 0.229 0.241
AC 3.729 0.650 1.970
H on AC �0.190 �0.062 �0.028

aAC: benzene ring; the fragment contributions times the frequency of their
occurrence gives the logarithm of the particular partition coefficient. Based on
Béliveau et al. [81].
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m
a
n
d
a
ta

th
a
n
in

ra
ts
.
T
h
e
te
rm

B
m
a
y

a
cc
o
u
n
t
fo
r
ch
em

ic
a
l-

sp
ec
if
ic

b
in
d
in
g
to

p
ro
te
in
s.

r2
¼
0
.9
9
(l
iv
er
)
to

1
(o
th
er

ti
ss
u
es
)
fo
r
h
u
m
a
n
P
C
s,
a
n
d

r2
¼
0
.2
4
(m

u
sc
le
),
0
.5
8

(l
iv
er
),
0
.9
8
(f
a
t)
fo
r
ra
t
P
C
s.

F
o
r
m
o
st

ch
em

ic
a
ls
,
th
e

p
re
d
ic
te
d
/e
x
p
er
im

en
ta
l

ra
ti
o
s
w
er
e
0
.5
–
2
.

[6
6
]

P
fb
¼

F
n
ef

F
n
eb

P
fb
:
fa
t:
b
lo
o
d
P
C
;

F
n
e
f:
fr
a
ct
io
n
a
l
co
n
te
n
t
o
f
n
eu
-

tr
a
l
li
p
id
s
eq
u
iv
a
le
n
t
in

fa
t;

F
n
e
b
:
fr
a
ct
io
n
a
l
co
n
te
n
t
o
f

n
eu
tr
a
l
li
p
id
s
eq
u
iv
a
le
n
t
in

b
lo
o
d

F
o
r
h
ig
h
ly

h
y
d
ro
p
h
o
b
ic

co
m
-

p
o
u
n
d
s
(i
.e
.
w
it
h
lo
g
P
4

6
),

th
e
p
re
d
ic
te
d
ti
ss
u
e:
b
lo
o
d

P
C

is
a
co
n
st
a
n
t,
b
u
t

sp
ec
ie
s-
sp
ec
if
ic
.

[8
9
]

P
tp
¼

f w
t
�
1
þ
� 1

t
�
1
0
� 2

t
lo
g
P
o
w

�
�

P
tp
:
ti
ss
u
e:
u
n
b
o
u
n
d
p
la
sm

a
P
C
;

f w
t:
fr
a
ct
io
n
a
l
co
n
te
n
t
o
f
w
a
te
r

in
ti
ss
u
e;

� 1
a
n
d
� 2
:
em

p
ir
ic
a
l
te
rm

s;
P
o
w
:
n
-o
ct
a
n
o
l:
w
a
te
r
P
C

� 1
a
n
d
� 2

fi
tt
ed

to
d
a
ta
.

M
ea
n
p
re
d
ic
ti
o
n
er
ro
r
(M

E
)

b
et
w
ee
n
�
2
2
.4
8
a
n
d

6
1
.1
4
%

.
S
q
u
a
re

ro
o
t
o
f
th
e

m
ea
n
sq
u
a
re

p
re
d
ic
ti
o
n

er
ro
r
(R

M
S
E
)
b
et
w
ee
n

2
8
.3
3
a
n
d
8
5
.2
%

.

[8
7
]

lo
g
P
tb
¼

lo
g
�
�
f m

t

f w
t
þ
�
�
f p
t

f w
t

�
� �P

�
t

o
w
þ
1

�
�
f m

b

f w
b
þ
�
�
f p
b

f w
b

�
� �P

�
b

o
w
þ
1
þ
lo
g
f w

t

f w
b

P
tb
:
ti
ss
u
e:
b
lo
o
d
P
C
;

�
�P
�
:
m
em

b
ra
n
e:
w
a
te
r
P
C
;

�
�P
�
:
a
ss
o
ci
a
ti
o
n
co
n
st
a
n
t
to

p
ro
te
in
s
(K

a
p
r)
;

f
:
fr
a
ct
io
n
a
l
co
n
te
n
t;

�
a
n
d
�
a
re

ch
em

ic
a
l
sp
ec
if
ic

w
h
er
ea
s
�
is
m
o
re

sp
ec
if
ic
to

th
e
ti
ss
u
e.
�
,
�
a
n
d
�
w
er
e

fi
tt
ed

to
ex
p
er
im

en
ta
l
d
a
ta
.

W
o
rs
t
fi
t
fo
r
h
ea
rt

P
C
s

(C
o
n
ti
n
u
ed

)
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T
a
b
le

6
.
C
o
n
ti
n
u
ed
.

R
ef
er
en
ce

E
q
u
a
ti
o
n

D
ef
in
it
io
n
o
f
th
e
p
a
ra
m
et
er
s

C
o
m
m
en
ts

t:
ti
ss
u
e;

b
:
b
lo
o
d
;

m
:
m
em

b
ra
n
e;

w
:
w
a
te
r
;

p
:
p
ro
te
in
;

(n
¼
1
4
;
r
¼
0
.8
3
7
;
s
¼
0
.0
8
0
;

F
¼
2
8
.1
),
a
n
d
b
es
t
fi
t
fo
r
fa
t

P
C
s
(n
¼
3
6
;
r
¼
0
.9
8
;

s
¼
0
.1
9
8
;
F
¼
1
8
8
)

[8
1
]

P
b
a
¼

P
o
a
�
f n
le
þ
P
w
a
�
f w

e
þ
fb
�
f p
�
P
p
a

P
b
a
:
b
lo
o
d
:a
ir
P
C
;

P
o
a
:
o
il
:a
ir
P
C
;

P
w
a
:
w
a
te
r:
a
ir
P
C
;

P
p
a
:
p
ro
te
in
:a
ir
P
C
;

f n
le
:
fr
a
ct
io
n
o
f
n
eu
tr
a
l
li
p
id

eq
u
iv
a
le
n
t
in

b
lo
o
d
;

f w
e
:
fr
a
ct
io
n
o
f
w
a
te
r
eq
u
iv
a
-

le
n
t
in

b
lo
o
d
;

f p
:
fr
a
ct
io
n
o
f
p
ro
te
in
s
in

b
lo
o
d
;

fb
:
fr
a
ct
io
n
o
f
to
ta
l
p
ro
te
in
s

in
v
o
lv
ed

in
th
e
p
a
rt
it
io
n
in
g

Q
S
P
R
s
w
er
e
d
ev
el
o
p
ed

fo
r
P
o
a
,

P
w
a
,
a
n
d
P
p
a
.
T
h
e
p
re
d
ic
te
d
/

ex
p
er
im

en
ta
l
ra
ti
o
w
a
s

0
.8
7
�
0
.4
4
(r
a
n
g
e:

0
.2
1
–

1
.8
8
)
in

h
u
m
a
n
s
a
n
d

1
.1
0
�
0
.5
3
(r
a
n
g
e:

0
.2
4
–
2
.6
9
)
in

ra
ts
.

[6
5
]

P
tp
¼

P
vo
w
�
ðV

n
lt
þ
0
:3
�
V

p
lt
Þ
þ
1
�
ðV

w
t
þ
0
:7
�
V

p
lt
Þ

P
vo
w
�
ðV

n
lp
þ
0
:3
�
V

p
lP
Þ
þ
1
�
ðV

w
p
þ
0
:7
�
V

p
lp
Þ
�
fu

p

fu
t

P
tp
:
ti
ss
u
e:
p
la
sm

a
P
C
;

P
v
o
w
:
o
il
:w
a
te
r
P
C
;

V
n
l:
v
o
lu
m
e
o
f
n
eu
tr
a
l
li
p
id
s;

V
p
l:
v
o
lu
m
e
o
f
p
h
o
sp
h
o
li
p
id
s;

V
w
:
v
o
lu
m
e
o
f
w
a
te
r;

t:
ti
ss
u
e;

p
:
p
la
sm

a

F
o
r
a
ll
ti
ss
u
es

a
n
d
sp
ec
ie
s

st
u
d
ie
d
p
re
d
ic
te
d
/e
x
p
er
i-

m
en
ta
l
ra
ti
o
w
a
s
1
.2
6
�
1
.4
0

(n
¼
2
6
9
)

[9
0
]

P
fp
¼

P
vo
w
�
V

n
lf
þ
0
:3
�
V

p
lf

�
� þ

1
�
V

w
f
þ
0
:7
�
V

p
lf

�
�

P
vo
w
�
V

n
lp
þ
0
:3
�
V

p
lp

�
� þ

1
�
V

w
p
þ
0
:7
�
V

p
lp

�
� �fu

p 1
P
tp
:
fa
t:
p
la
sm

a
P
C
;

V
n
l:
v
o
lu
m
e
o
f
n
eu
tr
a
l
li
p
id
s;

V
p
l:
v
o
lu
m
e
o
f
p
h
o
sp
h
o
li
p
id
s;

V
w
:
v
o
lu
m
e
o
f
w
a
te
r;

f:
fa
t;

p
:
p
la
sm

a

O
v
er
a
ll
p
re
d
ic
te
d
/e
x
p
er
im

en
ta
l

ra
ti
o
w
a
s
1
.1
7
�
0
.4
4

(n
¼
1
4
)
u
si
n
g
P
v
o
w
co
rr
ec
te
d

fo
r
th
e
io
n
iz
a
ti
o
n
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[8
8
]

P
tp
¼

P
vo
w
�
f n
lt
þ
0
:3
�
f p
lt

�
� þ

0
:7
�
f p
lt
þ
f w

t=
fu

t

P
vo
w
�
f n
lp
þ
0
:3
�
f p
lp

�
� þ

0
:7
�
f p
lp
þ
f w

p
=f
u
p

P
tp
:
ti
ss
u
e:
p
la
sm

a
P
C

P
v
o
w
:
o
il
:w
a
te
r
P
C
;

f n
l:
fr
a
ct
io
n
o
f
n
eu
tr
a
l
li
p
id
s;

f p
l:
fr
a
ct
io
n
o
f
p
h
o
sp
h
o
li
p
id
s;

f w
:
fr
a
ct
io
n
o
f
w
a
te
r;

t:
ti
ss
u
e;

p
:
p
la
sm

a

S
u
g
g
es
te
d
co
rr
ec
ti
o
n
o
f
th
e

a
lg
o
ri
th
m

o
f
P
o
u
li
n
a
n
d

T
h
ei
l,
co
n
si
d
er
in
g
th
a
t
th
er
e

a
re

n
o
m
a
cr
o
m
o
le
cu
le
s
to

in
te
ra
ct

w
it
h
in

p
h
o
sp
h
o
li
p
id
s

[7
5
]

K
p
u
¼

f E
W
þ
X
�
f I
W

Y
þ
P
o
w
�
F
N
L
þ
ð0
:3
�
P
o
w
þ
0
:7
Þ
�
f N

P

Y

þ
K
a
P
R
�
½P
R
� T

K
p
u
:
ti
ss
u
e:
u
n
b
o
u
n
d
p
la
sm

a
P
C
;

P
o
w
:
n
-o
ct
a
n
o
l
(o
r
o
il
fo
r
a
d
i-

p
o
se

ti
ss
u
e)
:w
a
te
r
P
C
;

f E
W
:
fr
a
ct
io
n
o
f
ex
tr
a
ce
ll
u
la
r

w
a
te
r
in

th
e
ti
ss
u
e;

f I
W
:
fr
a
ct
io
n
o
f
in
tr
a
ce
ll
u
la
r

w
a
te
r
in

th
e
ti
ss
u
e;

f N
L
:
fr
a
ct
io
n
o
f
n
eu
tr
a
l
li
p
id
s
in

th
e
ti
ss
u
e;

f N
P
:
fr
a
ct
io
n
o
f
n
eu
tr
a
l
p
h
o
s-

p
h
o
li
p
id
s
in

th
e
ti
ss
u
e;

K
a
P
R
:
a
ss
o
ci
a
ti
o
n
co
n
st
a
n
t
to

p
ro
te
in
s;

[P
R
] T
:
co
n
ce
n
tr
a
ti
o
n
o
f
p
la
sm

a
p
ro
te
in
s
in

th
e
ti
ss
u
e;

X
a
n
d
Y

a
re

io
n
iz
a
ti
o
n
co
rr
ec
-

ti
o
n
te
rm

s
fo
r
th
e
in
tr
a
ce
l-

lu
la
r
a
n
d
p
la
sm

a
w
a
te
r,

re
sp
ec
ti
v
el
y

K
a
P
R
d
er
iv
ed

fr
o
m

fr
a
ct
io
n

u
n
b
o
u
n
d
in

p
la
sm

a
.
U
si
n
g

ex
p
er
im

en
ta
l
v
a
lu
es

o
f
P
o
w

a
n
d
p
K
a
th
e
p
re
d
ic
te
d
/

ex
p
er
im

en
ta
l
ra
ti
o
w
a
s

1
.6
2
�
2
.1
7
fo
r
a
ci
d
s,

1
.0
9
�
1
.3
2
v
er
y
w
ea
k
b
a
se
s,

a
n
d
0
.9
1
�
0
.7
9
fo
r
a
ll
th
e

st
u
d
ie
d
d
ru
g
s

(C
o
n
ti
n
u
ed

)
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T
a
b
le

6
.
C
o
n
ti
n
u
ed
.

R
ef
er
en
ce

E
q
u
a
ti
o
n

D
ef
in
it
io
n
o
f
th
e
p
a
ra
m
et
er
s

C
o
m
m
en
ts

[7
7
–
7
9
]

lo
g
P
C
¼

lo
g
1
0
lo
g
F
lþ

lo
g
P
lb
þ
1
0
lo
g
F
p
þ
lo
g
P
p
b
þ
1
0
lo
g
F
w
þ
lo
g
P
w
b

�
�

P
C
:
ti
ss
u
e:
b
lo
o
d
P
C
;

F
l:
fr
a
ct
io
n
o
f
li
p
id
s;

F
w
:
fr
a
ct
io
n
o
f
w
a
te
r;

F
p
:
fr
a
ct
io
n
o
f
p
ro
te
in
s;

P
lb
:
li
p
id
:b
lo
o
d
P
C
;

P
p
b
:
p
ro
te
in
:b
lo
o
d
P
C
;;

P
w
b
:
w
a
te
r:
b
lo
o
d
P
C

Q
S
A
R
s
w
er
e
d
ev
el
o
p
ed

to
p
re
d
ic
t
P
lb
,
P
p
b
a
n
d
P
w
b
o
f

n
eu
tr
a
l
(n
¼
1
6
6
,
r2
¼
0
.8
5
1
,

s
¼
0
.2
6
0
,
Q

2
¼
0
.8
3
3
)
[7
7
],

n
eu
tr
a
l
a
n
d
io
n
iz
ed

(n
¼
2
0
1
,

r2
¼
0
.9
0
5
,
s
¼
0
.2
9
1
,

Q
2
¼
0
.8
9
0
)
[7
8
]
a
n
d
d
iv
er
se

co
m
p
o
u
n
d
s
(n
¼
2
4
8
,

r2
¼
0
.8
7
7
,
s
¼
0
.3
5
2
)
[7
9
]

[7
4
]

K
p
u
¼

f E
W
þ
1
þ
1
0
p
K
a
�
p
H
iw

1
þ
1
0
p
K
a
�
p
H
p
�
f I
W
þ

K
a
�
A
P
�

½
� T
�1
0
p
K
a
�
p
H
iw

1
þ
1
0
p
K
a
�
p
H
p

þ
P
o
w
�
f N

L
þ

0
:3
�
P
o
w
þ
0
:7

ð
Þ
�
f N

P

1
þ
1
0
p
K
a
�
p
H
p

K
p
u
:
ti
ss
u
e:
u
n
b
o
u
n
d

p
la
sm

a
P
C
;

P
o
w
:
n
-o
ct
a
n
o
l
(o
r
o
il
fo
r
a
d
i-

p
o
se

ti
ss
u
e)
:w
a
te
r
P
C
;

f E
W
:
fr
a
ct
io
n
o
f
ex
tr
a
ce
ll
u
la
r

w
a
te
r
in

th
e
ti
ss
u
e;

f I
W
:
fr
a
ct
io
n
o
f
in
tr
a
ce
ll
u
la
r

w
a
te
r
in

th
e
ti
ss
u
e;

f N
L
:
fr
a
ct
io
n
o
f
n
eu
tr
a
l
li
p
id
s
in

th
e
ti
ss
u
e;

f N
P
:
fr
a
ct
io
n
o
f
n
eu
tr
a
l
p
h
o
s-

p
h
o
li
p
id
s
in

th
e
ti
ss
u
e;

K
a
:
a
ss
o
ci
a
ti
o
n
co
n
st
a
n
t
fo
r

K
a
d
er
iv
ed

fr
o
m

er
y
th
ro
-

cy
te
:w
a
te
r
P
C
.
O
v
er
a
ll
p
re
-

d
ic
te
d
/e
x
p
er
im

en
ta
l
ra
ti
o

w
a
s
1
.2
7
�
1
.3
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a
ci
d
ic

p
h
so
p
h
o
li
p
id
s;

[A
P
�
] T
:
a
ci
d
ic

p
h
o
sp
h
o
li
p
id
s

co
n
te
n
t
in

th
e
ti
ss
u
e

[7
6
]

K
tp
¼

F
in
t�

fu
in
t
þ
K

ce
ll

:p
la
sm

a
�
F
ce
ll

fu
ce
ll

�
	 �f

u
p

�
1

fu
in
t
¼

F
W
in
t
þ

F
p
in
t

F
p
p
�

1 fu
p
�
F
W
p
l

�
	

�
1

fu
ce
ll
¼

F
W
þ
K

N
L
�
F
N
L
þ
K

N
P
�
F
N
P

þ
K

A
P
L
�
F
A
P
L
þ
K

P
�
F
P

K
tp
:
ti
ss
u
e:
p
la
sm

a
fu

in
t:
u
n
b
o
u
n
d
fr
a
ct
io
n
in

in
te
rs
ti
ti
u
m
;

fu
c
e
ll
:
u
n
b
o
u
n
d
fr
a
ct
io
n
in

ce
l-

lu
la
r
sp
a
ce
;

fu
p
:
u
n
b
o
u
n
d
fr
a
ct
io
n
in

p
la
sm

a
;

p
:
p
la
sm

a
;

in
t:
in
te
rs
ti
ti
u
m
;

F
W
,
w
a
te
r
fr
a
ct
io
n
;

F
N
L
:
n
eu
tr
a
l
li
p
id

fr
a
ct
io
n
;

F
N
P
:
n
eu
tr
a
l
p
h
o
sp
h
o
li
p
id
s

fr
a
ct
io
n
;

F
A
P
L
:
a
ci
d
ic

p
h
o
sp
h
o
li
p
id
s

fr
a
ct
io
n
;

F
p
:
p
ro
te
in

fr
a
ct
io
n

K
N
L
:
n
eu
tr
a
l
li
p
id
s:
w
a
te
r
P
C
;

K
N
P
:
n
eu
tr
a
l
p
h
o
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non-volatile environmental chemicals that are hydrophilic or that bind extensively to
proteins.

3. QSARs of metabolic parameters for PBPK models

Metabolism in PBPK models is often described as a first order, second order or saturable
process [3] (Table 8). The frequently employed description of enzymatic metabolism
requires the knowledge of the maximum velocity of reaction (Vmax) and the Michaelis
constant (Km, i.e. the affinity of the substrate for the metabolizing enzyme). In most
situations of human exposure to environmental contaminants, the first order description,
based on the use of intrinsic clearance (CLint¼Vmax/Km) or hepatic clearance (CLh), is
sufficient. The hepatic clearance CLh is equal to the hepatic extraction ratio (i.e. the
fraction of quantity of chemical extracted by the liver) times the volume of blood perfusing
the liver per unit time (QL) [31]. The hepatic extraction ratio, E, in turn can be calculated
on the basis of the intrinsic clearance (CLint) and QL as follows [31]:

E ¼
CLh

QL
¼

CLint

QL þ CLint
ð14Þ

where CLint ¼
Vmax

KmþCv
and Cv is the free concentration of chemical at the site of metabolism.

The in silico approaches for predicting metabolic rates generally focus on two aspects:
(1) identification of substrate specificity and (2) prediction of Vmax, Km, CLint or CLh.
Much of the activity so far has focused on CYP-mediated metabolism. The literature is
abundant with approaches and results regarding the modelling of protein structures and
pharmacophores [3,5,12]; however, very little progress has been made in terms of QSARs
for predicting metabolism parameters (e.g. CLh, E, CLint, Vmax, or Km) required for PBPK
modelling of environmental chemicals. Whereas the lessons learnt with (Q)SAR modelling
of drug metabolism are useful for orienting work on the development of (Q)SARs for
environmental contaminants, there are some obvious limitations. A fundamental one

Table 8. Descriptions of the rate of metabolism
in PBPK models.

Metabolic constants Description

Vmax and Km
Vmax � Cvl

Kmþ Cvl

CLint CLint � Cvl
CLh CLh � Ca
E Ql � E � Ca

Vmax: maximal velocity of enzymatic reaction
(mgh�1 or mmol h�1); Km: Michaelis–Menten
affinity constant (mgL�1 or mmol L�1); CLint:
intrinsic clearance (L h�1); CLh: hepatic clearance
(L h�1); E: hepatic extraction ratio; Ql: blood flow
rate to liver (L h�1); Cvl: concentration of chem-
ical in venous blood leaving liver (mgL�1 or
mmol L�1); Ca: arterial blood concentration
(mgL�1 or mmol L�1).
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relates to the major isoforms of CYP involved in metabolism. Contrary to the major
isozymes involved in the metabolism of pharmaceuticals (CYP2D6, CYP3A4, CYP2C19,
CYP1A2), the metabolism of environmental chemicals is principally mediated by:
CYP1A1 (e.g. polycyclic aromatic hydrocarbons), CYP1B1 and CYP1A2 (e.g. aromatic
amines), CYP2E1 (trichloroethylene, chloroform) as well as CYP3A4 to a limited extent
(e.g. larger molecules) [98]. This aspect might be critical with regard to both qualitative
predictions and quantitative prediction of the metabolism of environmental chemicals
in biota.

For identifying substrates that can bind to or be metabolized by a given isozyme, a
SAR component is often used. Basically, the intent here is to use the information on
the active site of the enzyme (protein) and/or molecular structure or features of known
substrates to infer about whether or not a particular chemical would be a substrate for
a given isozyme. In this regard, visual inspection of the crystal structure, protein
homology models and other descriptions of the active site are useful in understanding
the structural requirements of molecules that fit into the enzymes or binding sites [99].
Mackman et al. [100] reported that the active site of CYP2E1 (an isozyme involved in
the metabolism a number of low molecular weight air and water pollutants) is open to
a height of 10 Å directly above the iron atom, and that the active site cavity
(topologically congruent in both rats and humans) is primarily located above the
pyrrole rings A and D, with the region above the pyrrole ring D being the most
accessible. Lewis [101,102] proposed decision trees to identify the human CYP isozymes
that can metabolize a given substrate (mostly drugs) using selected molecular
descriptors (logP, HOMO-LUMO, molecular area, depth or volume), and these are
likely to be a useful starting point for identifying isozyme specificity of the metabolism
of environmental chemicals.

The results of the step above, i.e. identification of pathways(s) and/or enzyme(s)
involved in the metabolism of a set of chemicals, would be useful in guiding the
development of QSARs for enzymic metabolism, induction or inhibition, as learnt from
past work with drugs [1,20,99–105]. QSARs have been developed to predict the hepatic
clearance of benzodiazepines in humans on the basis of physicochemical, electrostatic and
steric molecular descriptors such as the difference between the lowest unoccupied and
highest occupied molecular orbital energies, the ionization potential, the number of
potential hydrogen bond donor atoms in the molecule, the geometry-optimized minimum
internal energy, and logP [101]. The in vitro intrinsic clearance and human hepatic
clearance of drugs have been modelled using 10 or more molecular descriptors calculated
by specialized software [106,107]. The QSAR developed by Li et al. [106] predicted the
human hepatic clearance from 13 molecular descriptors (cosmic torsional energy; inertia
moment 2 length; dipole moment Z component; Kier ChiV4 (cluster) index; number of H-
bond acceptors; six-membered rings; group count for methyl; ADME violations; energy of
the lowest unoccupied molecular orbital (VAMP LUMO); energy of the highest occupied
molecular orbital (VAMP HOMO); VAMP total dipole; VAMP dipole Z component;
VAMP octupole ZZZ). Nikolic and Agababa [107] used partial least squares regression
(PLSR) to select most relevant molecular descriptors for QSAR modelling of human
microsomal intrinsic clearance and half-life of drugs (model 1: r2¼ 0.84, Q2 leave-seven-
out¼ 0.62; model 2: r2¼ 0.808, Q2 leave-seven-out¼ 0.63). The models were calibrated
using experimental data from 29 drugs. Model 1 used 10 molecular descriptors (molecular
polarizability; bond information content; mean topological charge index of order 6; radial
distribution function-4.5/weighted by atomic masses of the ligands; 3D-MoRSe-signal
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24/weighted by atomic Sanderson electronegativities; third component symmetry direc-

tional weighted holistic invariant molecular (WHIM) index/unweighted; third component

symmetry directional WHIM index/weighted by atomic masses; third component

symmetry directional WHIM index/weighted by atomic Sanderson electronegativities;

number of tertiary aromatic amines and atom centre¼CR2 fragments), whereas model 2

used the same input parameters with the exception of the number of tertiary aromatic

amines.
Binding to microsomal binding is another determinant that needs to be evaluated and

modelled, particularly when metabolism data from in vitro test systems are used for

extrapolating to in vivo situations. In this regard, Austin et al. [108] have developed a

model that predicts the extent of non-specific binding to microsomal proteins using a

modified lipophilicity descriptor (logP/D) that accounts for the enhanced microsomal

binding of basic compounds. This equation was calibrated for 37 drugs (20 bases,

�6.35� logP� 6.34; 12 neutrals, 0.36� logP� 3.75; and five acids, 2.86� logP� 4.81)

with less than 90% of compound unbound to microsomal proteins. Austin et al. [109]

similarly modelled the extent of binding to hepatocytes based on data for 17 drugs (six

bases, 1.99� logP� 5.14; seven neutrals, 1.34� logP� 3.75; and four acids, 3.21�

logP� 4.81) using either logP/D (r2¼ 0.65) or logD (r2¼ 0.55).
Even though there has historically been a general interest in the relationship between

chemical structure and metabolic pathways of closely-related chemicals, there are only a

few attempts to develop QSARs of CLh, CLint, Vmax and Km of environmental

pollutants. For example, Yin et al. [110] reported excellent correlations between

biotransformation rates and calculated activation energies (DHact) of CYP-mediated

hydrogen abstractions for six halogenated alkanes (1-fluoro-1,1,2,2-tetrachloroethane,

1,1-difluoro-1,2,2-trichloroethane, 1,1,1-trifluoro-2,2-dichloroethane, 1,1,1,2-tetrafluoro-

2-chloroethane, 1,1,1,2,2-pentafluoroethane, and 2-bromo-2-chloro-1,1,1-trifluoroethane)

in both rat and human enzyme preparations. Loizou et al. [111] reported correlations

between the rate of metabolism, logP, polarizability and the activation enthalpy for

four 1,1,1-trihaloethanes (1,1,1-trichloroethane, 1,1-dichloro-1-fluoroethane, 1-chloro-

1,1-difluoroethane, and 1,1,1-trifluoroethane). Gargas et al. [112] studied the metabo-

lism of 14 chlorinated organic volatile compounds (methanes, ethylenes and ethanes)

using the gas uptake inhalation technique. They observed a ranking of the metabolic

activity of methanes as a function of their degree of chlorination (CHCl34
CH2Cl24CCl4). Such a trend was also observed with the ethylenes and the ethanes.

Mortensen et al. [113] determined the in vitro metabolism rates and affinities for 25

hydrocarbons (aromatics, cycloalkanes, n-alkanes, 2-methylalkanes and 1-alkenes)

containing 6 to 10 carbons. This study reported that the aromatic compounds were

metabolized faster than the aliphatic hydrocarbons in terms of CLint. The CLint of the

hydrocarbons decreased with increasing number of carbons with no generalizable

relationship between metabolic rate and the solubility of the alkanes in water [113]. The

lack of more robust analyses of metabolism rates of environmental chemicals may be

due to the fact that an exhaustive database on these parameters (i.e. Vmax and Km

together) obtained using the same in vivo or in vitro protocol is essentially unavailable,

and that it is worse when focusing on Vmax and Km of chemicals metabolized by a

specific pathway and/or isozyme. A summary of selected quantitative analysis between

chemical structure or properties and metabolism rates of environmental chemicals is

provided below.
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. Galliani et al. [114] reported that Vmax for the microsomal N-demethylation of

para-substituted N,N-dimethylanilines could be modelled as follows:

logVmax ¼ 0:39�� 0:94� � 1:56

n ¼ 12, r2 ¼ 0:89, s ¼ 0:23
ð15Þ

where Vmax is the maximal velocity of the microsomal N-demethylation of para-

substituted N,N-dimethylaniline; � is the Hansch hydrophobic constant and � is the

Hammett constant.
The above relationship indicates that the Vmax increases with the substituent

lipophilicity and electron-donating capacity of the substituent [99]. Further, this work

also developed a QSAR for Km values essential for describing saturable metabolism

associated with these Vmax values.

. Csanady et al. [115], analysing the apparent metabolism (epoxidation) rate

(mg g�1 per h) of a series of alkenes (ethene, 1-fluoroethene, 1,1-difluoroethene,

1-chloroethene, 1,1-dichloroethene, cis-1,2-dichloroethene, trans-1,1-dichlor-

oethene, 1,1,1-trichloroethene, perchloroethene, propene, isoprene, 1,3-buta-

diene and styrene), reported that it can be explained by the following

molecular parameters: ionization potential, dipole moment and �-electron
density, obtained either using a quantum chemical method or from the

literature.
. Parham and Portier [116] developed a QSAR model for predicting the rate of

metabolism of PCBs. The resulting linear regression model contained seven

independent variables describing the steric properties of PCBs (ortho, para, meta

positions of the chlorine in different carbon pairs). Using step-wise regression

analysis of first order metabolism (hydroxylation) rates of PCBs in rats, either

obtained from PBPK models (n¼ 9) or rat liver microsomes (n¼ 25), these

authors reported the following quantitative relationship (r2¼ 0.9606):

Log rate ¼ 0:4861ð�0:2034Þ � 0:1364ð�0:0267ÞPL�NSIDEþ 0:5694ð�0:1638ÞUNS

� 0:2433� ð�0:0487ÞNOM�NOC� 0:1544ð�0:0384ÞNOM�NMC

þ 0:001227ð�0:000236ÞMW�NUNSTOTþ 0:8242ð�0:1297ÞIND

� 1:1493ð�0:1438ÞMOD ð16Þ

where PL is a descriptor of noncoplanarity; NSIDE is the number of meta (3, 5, 30or

50) chlorines plus the number of para (4 or 40) chlorines; UNS is an indicator variable

that is equal to 1 if there are any adjacent unsubstituted meta and para carbons; NOM

is the number of adjacent unsubstituted ortho-meta carbons pairs; NOC is the number

of ortho (2,6,20 or 60) chlorines; NMC is the number of meta (3, 5, 30 or 50) chlorines;

MW is the molecular weight; NUNSTOT is equal to the sum of NUNMP and

NUNOM; NUNMP is the number of adjacent non-chlorine-substituted meta-para

carbon pairs; NUNOM is the number of adjacent non-chlorine-substituted ortho-meta

carbon pairs; IND is equal to 1 if the data point is from Aroclor-induced experiments

and otherwise equal to 0; and MOD is equal to 1 if the data point is from model fit,

otherwise equal to 0.
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. Gargas et al. [60] attempted to develop a QSAR for the Vmax of 16 halogenated

methanes, ethanes and ethylenes using higher order molecular connectivity indices

as follows:

logVmax ¼ 1:676 �0:049ð Þ4�vc þ 0:424 �0:110ð Þ3�vc � 0:134 �0:045ð Þ4�vpc

þ 1:622 �0:049ð Þ: ð17Þ

The use of first-order connectivity indexes gave relatively better results for the

prediction of logVmax (r
2
¼ 0.905, s¼ 0.1355, n¼ 16, p5 0.0001) but the predictive power

and robustness of the QSAR were questionable. Furthermore, since Km values were not

successfully modelled in this study, the Vmax alone could not be used for PBPK modelling.

. QSARs were also developed for the Vmax (three models) and Vmax/Km of a series

of seven alkylbenzene compounds (toluene, o-, m, p-xylene, ethylbenzene, 1,2,4-

trimethylbenzene, styrene), all substrates of CYP2E1 [117]. The input parameters

used in the QSARs were the logP for logVmax/Km, the DE (i.e. the difference

between the energy of the highest unoccupied molecular orbital, ELUMO, and

the energy of the lowest unoccupied molecular orbital, EHOMO) for the logVmax

(model versions 1 and 3) or the ionization potential (IP) of the compound for

logVmax (model 2):

model 1: logVmax ¼ 18:799� 1:632 �0:324ð ÞDE

r2 ¼ 0:929, s ¼ 0:1197, F ¼ 19:08, n ¼ 6
ð18Þ

model 2: logVmax ¼ 18:955� 1:741 �0:345ð ÞIP

r2 ¼ 0:930, s ¼ 0:1195, F ¼ 19:14, n ¼ 6
ð19Þ

model 3: logVmax ¼ 44:301 �7:803ð ÞDE� 2:369 �0:413ð ÞDE2 � 203:75

r2 ¼ 0:954, s ¼ 0:0986, F ¼ 40:41, n ¼ 7
ð20Þ

. Knaak et al. [118], based on an initial analysis of the Vmax and Km for the

metabolism of dialkyl p-nitrophenyl phosphorothioates and phenyl substituted

phosphorothioates to their oxons, reported the following relationships:

Vmax ¼ �0:05142ðMVÞ þ 18:63ðxp10Þ þ 0:279ðSdsOÞ þ 15:9665

r2 ¼ 0:981, n ¼ 11, F ¼ 118:4, cross� validation RSS ¼ 13:44
ð21Þ

where MV is the molecular volume; xp10 is the simple connectivity index (10th-order path

chi index); and SdO is the atom type E-state, sum of all (¼0) in the molecule;

Km ¼ �56:63ðABSQÞ þ 24:19ðSsCH3Þ þ 2:222ðSsFÞ þ 40:3213

r2 ¼ 0:9522, n ¼ 11, F ¼ 46:48
ð22Þ

where ABSQ is the 3D descriptor, sum of the absolute values of charges on each atom of

molecule, in electrons; SsCH3 is the atom type E-state, sum of all (CH3) E-state values in
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the molecule; and SsF is the atom type E-state, sum of all (F) E-state values in the

molecule.
In this study, however, cross-validation of the Km model was not possible even though

the overall database included relevant pesticides such as parathion, chlorpyrifos, methyl

parathion and isofenphos.

. Waller et al. [119] observed that there has been little success in the use of the

energy of the LUMO or the energy of the HOMO, to predict the rates of oxidative

or reductive metabolism, even though the propensity of chemicals metabolized by

these process is indicated by the electron affinity or the ionization potential.

Applying a CoMFA analysis to a set of 12 VOCs metabolized principally by

CYP2E1 (chloromethane, dichloromethane, chloroform, carbon tetrachloride,

chloroethylene, 1,1-dichloroethylene, cis-1,2-dichloroethylene, trans-1,2-dichlor-

oethylene, trichloroethylene, chloroethane, 1,2-dichloroethane, 1,2-dichlor-

oethane), these authors reported that the combination of steric, electrostatic,

LUMO and HINT hydropathicity fields was essential to adequately model the

CLint of this small set of environmental chemicals (r2¼ 0.953, q2¼ 0.527) [119].

Developing QSARs for CLh in this regard would be particularly relevant, given

that for highly metabolized chemicals, it is the blood flow rate and not the

intrinsic clearance that would limit or determine the extent of hepatic metabolism

[120–122].
. Béliveau et al. [62] developed a simpler, group contribution method to compute

the in vivo CLh of several relatively lipophilic VOCs (alkanes, haloalkanes,

haloethylenes, and aromatic hydrocarbons) in rats. Similarly, Kamgang et al. [63]

used the group contribution method to develop QSARs based on the enzyme-

content normalized values of CLint of alkanes, alkenes and aromatic hydrocar-

bons based on in vitro data of Mortensen et al. [113]. Table 9 presents the

published values of group contributions to the hepatic and intrinsic clearance

Table 9. Fragment-specific contributions to the hepatic and
intrinsic clearance for VOCs.a

Fragment

Contribution to

CLh CLint

CH3 0.388 �0.005
CH2 �0.186 0.039
CH �0.464 0.042
C �1.440 �1.735
C¼C �1.710 0
H 0.813 0.039
Br 0.523 –
Cl 0.537 –
AC 0.128 0.825
H on AC 0.061 0.353

aThe fragment-specific contributions times the frequency of
their occurrence gives the particular metabolic constant. Based
on Béliveau et al. [62] and Kamgang et al. [63].
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for VOCs. The intrinsic clearance normalized for P450 2E1 facilitates the
extrapolation of the hepatic clearance between species by substituting the species-
specific data (i.e. cytochrome P-450 content, volume of liver, hepatic blood flow)
in the following equation [81]:

CLh ¼ QL �
CLint , P450 � P450½ � � VL

QL þ CLint , P450 � P450½ � � VL
ð23Þ

where [P450] corresponds to the concentration of cytochrome P-450 in the liver; VL is the
liver volume; QL is the blood flow to liver; and CLint, P450 is the intrinsic clearance
normalized for P-450 content.

Limited efforts have focused on the integration of the QSARs for partition coefficients
and metabolism constants described in the preceding sections along with human or animal
physiology information to predict the pharmacokinetics of environmental chemicals using
the PBPK model framework, as discussed below.

4. QSAR-PBPK modelling

The bottleneck for developing PBPK models for emerging or known environmental
contaminants is the chemical-specific input parameters. At the present time, based
primarily on research and development in the pharmaceutical arena, a number of QSAR
tools have become available to facilitate the prediction of drug absorption, distribution
and clearance but not the actual time-course of the drug or metabolite concentration in the
target site or blood for various dosing regimens and species. In this context, Blakey et al.
[123] developed PBPK models for a homologous series of barbiturates in the rat, focusing
on the change in pharmacokinetics and increase in lipophilicity of the congeners due to the
addition of methylene group. Regarding environmental chemicals, however, there does not
exist a suite of adequate in silico approaches to generate a priori the values of ADME
parameters to facilitate high-throughput PBPK modelling.

Overall, the use of the PBPK modelling framework for simulating pharmacokinetics of
a given chemical requires the numerical values of physiological, physicochemical and
biochemical parameters [62,63,81,86,120,124]. Whereas the physiological parameters can
be obtained from the literature, the other parameters can be estimated using QSARs as
detailed above. The PCs required for PBPK modelling can be estimated from molecular
structure information but reliable estimates of metabolic constants for environmental
chemicals are often unavailable. In such cases, a pragmatic approach involves setting the
numerical value of hepatic extraction ratio, E, to 0 or 1 in PBPK models, along with
QSAR-driven estimates of PCs. This approach, based on the use of the theoretical
physiological limits of metabolism (i.e. zero and liver blood flow), has been demonstrated
to be useful for inhaled environmental toxicants [120]. The resulting simulations reflect
‘bounds’ of the blood concentrations of chemicals reflective of the fact that the liver
cannot remove more than what is delivered by the blood flowing to the tissue (i.e. the value
of hepatic extraction ratio, E, cannot exceed 1) and that the E value cannot be lower than
0. The strategy here involves the specification of the values of physiological parameters
and QSARs for PCs in the PBPK model and setting of E value to 0 or 1 in the metabolism
equation. The envelope of blood concentration profiles predicted by such an approach
will, in principle, encompass all experimental data [120]. For example, using the human
QSAR-PBPK model [81,120], the envelope of blood concentration of trichloroethylene (1
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C¼C, 1 H, 3 Cl) following 7 h exposure to 12.1 ppm was simulated by setting the value of E
equal to 0 and then to 1 (Figure 4). The use of the range of E is also justified by the fact
that metabolic rates might be variable among individuals but will necessarily be within the
range of 0 to 1. Further, this approach implicitly considers the impact of pharmacokinetic
interactions during mixed exposures. When the hepatic metabolism of a chemical is
reduced (or enhanced) due to enzyme inhibition (or induction), the E value will change but
never exceed 1 or be lower than 0. Introducing the QSARs for computing route-specific
absorption rates can extend the current capability of this QSAR-PBPK modelling
approach, which is limited to the inhalation route. In this regard a number of algorithms
and commercial software are available to provide estimates of skin permeability coefficient
as well as oral absorption rates (e.g. [125–131]).

A logical and more refined alternative to the prediction of the envelope of the range of
blood concentrations would involve the use of QSARs to specify an appropriate or
approximate value of the rate of metabolism for a given chemical in the PBPK model.
When QSARs for both partition coefficients and metabolism rates are available, the
prediction of the pharmacokinetic profiles and internal dose of chemicals has been
accomplished with the PBPK modelling framework using one of two approaches
(Figure 5). The first approach involves the development of ‘species-specific’ QSARs for
blood:air, tissue:blood and hepatic clearance parameters, and their integration within the
PBPK model such that the numerical values of these input parameters are generated
automatically during simulations only from molecular structure provided as input
[62,86,120]. According to this approach, then, instead of providing experimentally-
determined PCs or metabolic constants as input to the PBPK model, all one has to do is to
change the number and/or nature of fragments in the molecule to estimate chemical-
specific input parameters required for modelling its pharmacokinetics in a specific species
(i.e. rat or human). This QSAR-PBPK approach has been investigated by Béliveau et al.
[62] using inhaled VOCs in the rat. These authors used Free–Wilson type QSPR models to
predict the chemical-specific input parameters (liver:air, richly perfused tissues:air, poorly
perfused tissues:air, and fat:air PCs and hepatic clearance), and incorporated them with
the PBPK model to predict the inhalation pharmacokinetics of eight VOCs (four from the

Figure 4. Comparison between the experimental data (symbols) and the envelope of trichloroeth-
ylene venous blood concentration simulated by human QSAR-PBPK model (exposure condition:
12.1 ppm, 7 h) [120] using values of 0 and 1 for the hepatic extraction ratio (E).
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calibration set: toluene, dichloromethane, trichloroethylene, and 1,1,1-trichloroethane;

four outside the calibration set: 1,2,4-trimethylbenzene, ethylbenzene, 1,3-dichloropro-

pene, and 2,2- dichloro-1,1,1-trifluoroethane). For example, to simulate the kinetics of

toluene in rat with this QSAR-PBPK model, the frequency of occurrence of molecular

fragments (i.e. 1�CH3, 1�AC, and 5�H on AC) was entered as input to the model

along with their respective contributions to PCs (Table 2). The Free–Wilson model then

yields the following blood:air and tissue:blood partition coefficients for toluene in the

rat [62]:

. Blood:air PC¼ 10[1�0.072þ1�2.850þ5�(�0.292)]¼ 29;

. Liver:blood PC¼ 10[1�0.016þ1�3.760þ5�(�0.408)]/29¼ 1.88; and

. Muscle:blood PC¼ 10[1�(�0.020)þ1�3.650þ5�(�0.446)]/29¼ 0.87.

Similarly, the metabolic clearance of toluene can be computed using the molecular

fragments contained in toluene (i.e. 1�CH3, 1�AC, and 5�H on AC) along with the

group contributions listed in Table 9, as follows [62]:

. CLh¼ 1� 0.388þ 1� 0.128þ 5� 0.061¼ 0.82Lh�1.

Using the above chemical-specific parameters along with rat physiological parameters

(volumes of liver, fat, richly perfused tissues, and poorly perfused tissues respectively equal

0.012, 0.022, 0.012, and 0.174L; blood flow to liver, fat, richly perfused tissues, and poorly

perfused tissues equal 1.31, 0.47, 2.68, and 0.79Lh�1, respectively; cardiac output and

alveolar ventilation¼ 5.25Lh�1), the QSAR-PBPK model simulated the toluene kinetics

in blood in rats exposed to 50 ppm for 4 h (Figure 6) [62]. Since the metabolic input

Figure 5. Illustration of the two approaches (A, B) for the development of PBPK models based on
QSARs for chemical-specific input parameters.
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parameters did not correspond to Vmax and Km, this model is of use only under first order
conditions, i.e. it is not useful for conducting high dose to low dose extrapolation, to
simulate the impact of metabolic saturation on internal dose of toluene.

Another methodological approach in QSAR-PBPK modelling relates to developing
chemical-specific parameters that are independent of the species and then integrating them
with species-specific parameters (e.g. tissue composition data) such that distribution
volume and pharmacokinetic profiles can be predicted (Figure 5B). This approach is
exemplified by the work of Béliveau et al. [81]. These authors conducted interspecies
extrapolations of the inhalation toxicokinetics of VOCs using the same PBPK model for
which the input parameters were predicted using QSARs along with species-specific
biological data. Thus, the results of the QSARs for oil:air, water:air and protein:air PCs
were used as input for the computation of the blood:air and tissue:blood PCs whereas the
QSAR for intrinsic clearance was incorporated along with CYP content and volume of
liver in an algorithm for computing hepatic clearance. For toluene, as example, the use of
occurrence of fragments in the molecule (i.e. 1 CH3, 1 AC, and 5 H on AC) along with the
group contributions listed in Table 5, the oil:air, water:air and protein:air PCs are
computed as follows [81]:

. Oil:air PC¼ 10[1�0.354þ1�3.729þ5�(�0.190)]¼ 1358;

. Water:air PC¼ 10[1�(�0.038)þ1�0.650þ5�(�0.062)]¼ 2; and

. Protein:air PC¼ 10[1�0.306þ1�1.970þ5�(�0.028)]¼ 136.6.

Then, incorporating these partition coefficients along with rat tissue and blood
composition (Table 4) in the tissue composition-based algorithms (Equations (12)
and (13)), the following values of PCs are obtained within the QSAR-PBPK model:

. Blood:air PC¼ 1358� 0.002þ 2� 0.8423þ 137� 0.156¼ 26;

. Liver:blood PC¼ (1358� 0.0425þ 2� 0.7176)/26¼ 2.3; and

. Muscle:blood¼ (1358� 0.0117þ 2� 0.7471)/26¼ 0.68

Figure 6. Comparison between the experimental data (symbols) and the QSAR-PBPK model
predictions (solid line) of toluene venous blood concentration for 50 ppm, 4 h inhalation exposure in
rat. Based on Béliveau et al. [62].
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The intrinsic clearance, normalized to CYP2E1 content in liver, can be calculated using the

occurrence of fragments in toluene molecule and the corresponding fragment contribu-

tions (Table 10) as follows [81]:

. CLintCYP2E1¼ 10[1�1.552þ1�(�7.646)þ5�1.535]¼ 38Lh�1 per mmol CYP2E1.

The QSAR-based intrinsic clearance (2.19L h�1) was then obtained by multiplying the

above CLintCYP2E1 value with the hepatic concentration of CYP2E1 (4.8 mmolL�1) and

the volume of liver (0.012L) in rats.
The blood:air and tissue:blood PCs computed using QSARs and species-specific

biological data feed into the various equations to provide pharmacokinetic simulations

(Figure 5B). The QSAR-PBPK model was initially used to predict the blood kinetic profile

of inhaled toluene in rats (50 ppm, 4 h) (Figure 7A); thereafter by changing only the

species-specific physiological data (human tissue and blood compositions reported in

Table 4; hepatic concentration of cytochrome P450 2E1¼ 2.482mmolL�1; volumes of

liver, fat, richly perfused tissues, and poorly perfused tissues¼ 1.82, 13.3, 3.5, and 43.4L,

respectively; blood flows to liver, fat, richly perfused tissues, and poorly perfused

tissues¼ 108, 20.9, 184, and 104Lh�1, respectively; cardiac output and alveolar

ventilation¼ 417Lh�1), simulations of kinetics in humans (17 ppm, 7 h) were obtained

with the same QSPR-PBPK model (Figure 7B) [81].
The QSAR-PBPK models developed for rats and humans can also be adopted for

other species. In this regard, for example, the chemical-specific parameters of the PBPK

model for chloroethanes developed for fish [42] can be replaced with the results of QSAR

modelling. The logP as well as tissue composition data can be used together to compute

PCs of 1,1,2,2-tetrachloroethane (logP¼ 2.39, blood:water¼ 7.8, fat:blood¼ 37.3,

liver:blood¼ 1.17, muscle:blood¼ 1.37) in rainbow trout [42,83]. Incorporating

these results with data on fish physiology within a PBPK model, it becomes possible to

generate a first-cut simulation of the kinetic profile of 1,1,2,2-tetrachloroethane in fish

(Figure 8).

Table 10. Fragment-specific contributions to intrinsic clear-
ance normalized to P450 CYP2E1 content in liver.a

Fragment in molecule
Contribution to

logCLint (CYP2E1)

CH3 1.552
CH2 0.514
CH 0.078
C �0.871
C¼C 0.591
H 0.383
Br 1.000
Cl 0.522
F 0.000
AC �7.646
H on AC 1.535

aBased on Béliveau et al. [81].
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5. Conclusions

The current paradigm shift in toxicology and risk assessment would benefit from the
availability of tools and approaches for generating pharmacokinetic and internal dose
information. For data-poor chemicals and situations, it is relevant to explore the use of
QSAR-based approaches to provide simulations of pharmacokinetics. The development of
SARs and QSPRs for the input parameters of PBPK models will not only facilitate the
prediction of the internal dose of a given chemical but also the development of internal
dose-based toxicodynamic QSARs of relevance to risk assessment (e.g. [132]).
Importantly, all of this can be done solely with knowledge of molecular structure or
properties and understanding of the underlying mechanisms. Until now, physicochemical
and biochemical parameters required for PBPK modelling have mostly been obtained by
conducting in vivo or in vitro studies. With the more recent advances and algorithms

Figure 7. Comparison between the experimental data (symbols) and the QSAR-PBPK model
predictions (solid line) of toluene venous blood concentration for inhalation exposures. (A) 50 ppm,
4 h in the rat; (B) 17 ppm, 7 h in humans. Based on Béliveau et al. [81].
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reviewed in this article, it is clear that chemical-specific parameters such as physicochem-

ical and biochemical constants can be estimated from information on molecular structure.

In silico approaches for estimating PBPK model parameters have mainly centred on

LFE-type QSARs and mechanistic algorithms. The application of LFE QSARs, however,

is limited to the biological species in which the data are collected. It is important that

mechanistic relevance of the structural descriptors used in these types of equations to the

in vivo pharmacokinetics of chemicals be developed. The emerging mechanistically-based

algorithms offer the potential of being applicable to multiple chemical families as well as

multiple levels of organization (e.g. cells, organs, species, populations). However, these

approaches should further evolve to account for the uncertainty and variability in input

parameters, by applying a distributional rather than a deterministic approach to QSAR-

PBPK modelling. Even though the development of QSAR-PBPK approaches has largely

been limited to inhaled VOCs, they are conceptually applicable to non-volatile organics as

well, but it becomes more challenging to predict the other PBPK model parameters

required for modelling the kinetics of the latter (i.e. tissue diffusion coefficients,

association constants for binding, oral absorption rates, and dermal permeability

coefficients). As our level of understanding of the mechanistic determinants of each of

these parameters improves, we can be optimistic of being able to develop mechanistic

QSARs to provide a priori predictions of these parameters and ultimately the in vivo

pharmacokinetics of new chemicals, ahead of laboratory evaluations.
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Figure 8. Comparison between the experimental data (symbols) and the QSAR-PBPK predictions
(solid line) of arterial blood concentration in rainbow trout exposed to 1.06mg 1,1,2,2-
tetrachloroethane/L water during 48 h. Data from Nichols et al. [42].
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