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A panel of experts in physiologically based pharmacokinetic

(PBPK) modeling and relevant quantitative methods was convened

to describe and discuss model evaluation criteria, issues, and choices

that arise in model application and computational tools for

improving model quality for use in human health risk assessments

(HHRAs).Althoughpublication of a PBPKmodel in a peer-reviewed

journal is amark of good science, subsequent evaluation of published

models and the supporting computer code is necessary for their

consideration for use in HHRAs. Standardized model evaluation

criteria and a thorough and efficient review process can reduce the

number of review and revision iterations and hence the time needed

to prepare a model for application. Efficient and consistent review

also allows for rapid identification of needed model modifications to

address HHRA-specific issues. This manuscript reports on the

workshop where a process and criteria that were created for PBPK

model reviewwere discussed alongwith other issues related tomodel

reviewandapplication inHHRA.Other issues include (1)model code

availability, portability, and validity; (2) probabilistic (e.g., popula-

tion-based) PBPKmodels and critical choices in parameter values to

fully characterize population variability; and (3) approaches to

integrating PBPK model outputs with other HHRA tools, including

benchmark dose modeling. Two specific case study examples are

provided to illustrate challenges that were encountered during the

review and application process. By considering the frequent

challenges encountered in the review and application of PBPK

models during themodel development phase, scientistsmay be better

able to prepare their models for use in HHRAs.

Key Words: PBPK; benchmark dose; risk assessment; Markov

chain Monte Carlo; ontology.

Pharmacokinetics (PKs) involves the study of the movement

over time of parent chemical and its metabolite(s) in biological

fluids, tissues, and excreta (Wagner, 1981); mathematical

models, such as physiologically based pharmacokinetic

(PBPK) models, are often constructed to interpret PK data.

The disposition of the parent chemical and its metabolite(s) is

dependent on rates of absorption, distribution, metabolism, and

excretion (ADME). In turn, ADME rates are used in

mathematical constructs to develop quantitative estimates for

temporal concentrations of chemicals in target tissues where

pharmacological or toxicological responses are observed.

Human health risk assessments (HHRAs) use the dose-

response relationship to characterize and quantify potential health

risks. Using target tissue, dose estimates, instead of external or

applied doses, can improve the characterization of dose-response

relationship and subsequent characterization of potential health

risks. This improvement results from a direct relationship between

internal dosimetry to biological response. When relevant and

reliable estimates of internal dose of a compound or a key

metabolite are available, the results of toxicology studies can

often be better understood and evaluated in terms of the internal

dose. Using an administered dose to characterize a dose-response

relationship bypasses many critical ADME processes. Addition-

ally, understanding ADME leads to a more complete use of

biological and toxicological data to support route-to-route and

animal-to-human extrapolation of dose-response information.

The selection of a dose metric is a key element to establishing an

appropriate dose-response relationship. The dose metric is used to

estimate the point of departure (POD) for the critical effect, and the

POD is the dose at which the low-dose extrapolation begins in the

HHRA (U.S. Environmental Protection Agency [EPA], 2011).

Adjustments to the POD are made to account for uncertainties and

to protect the most sensitive human population at risk of exposure

to the chemical(s). This process frequently involves the conduct of

interspecies, intraspecies, high to low dose, duration, and exposure

route extrapolations from experimental data. In almost all cases,

dose metric data associated with human exposures to environ-

mental chemicals are not available. Additionally, available animal

PK data may not correspond to the active toxic moiety relevant to
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route or duration of exposure. In the absence of this type of data,

PK models provide a quantitative format to evaluate extrapolation

questions. PK models are classified as compartmental and

noncompartmental (Renwick, 1994). Compartmental models that

include physiological descriptions of biological tissues and

processes describing ADME of chemicals (where key parameters,

such as tissue volumes, are measured independent of chemical-

specific PK data) are usually referred to as PBPK models. By

integrating chemical-specific dosimetry data with physiological

data and constraints, the uncertainty that exists regarding these

extrapolations, and hence the resulting human risk estimates, can

be reduced.

The increased use of PBPK modeling in HHRA, particularly

in a regulatory context, has resulted in the need for expanded

formal guidance on the use of PBPK models in these HHRAs.

Several guidance documents have been released in an attempt

to standardize the review and implementation of PBPK models

in regulatory HHRAs (U.S. EPA, 2006; World Health

Organization, 2010). The following areas of PBPK model

evaluation with respect to use in HHRA have been delineated:

model purpose, model structure, mathematical representation,

parameter estimation, computer implementation, predictive

capacity, statistical analyses, and model documentation (U.S.

EPA, 2006). Because of their potential regulatory impact, it is

critical that the PBPK models be systematically and fully

evaluated and the model application in the HHRA be carefully

considered and executed. Determination of model applicability

for a given chemical and endpoint should consider what is

known about the mode of action and relevant dose metrics. The

decision as to whether or not to use a model is specific to the

context for which the model application is being considered.

Recently, a panel of experts in PBPK modeling and relevant

quantitative methods for application of models in HHRAs was

convened (This manuscript is a report on the workshop held at the

Society of Toxicology 2011 Annual Meeting [Washington, DC; 7–

10 March 2011] on the topic of PBPK model use in risk

assessment.) to discuss recurring challenges faced by PBPK model

reviewers and risk assessors when attempting to utilize a PBPK

model in an HHRA. Overall, the availability of model code was

determined to be a key factor in determining whether a published

PBPK model may be applied in an HHRA. When the expert

reviewers acquire and review the code, several additional challenges

may be encountered, including machine interpretability, model

parameterization, and integration of the PBPK model with other

HHRA methodologies, such as benchmark dose (BMD) modeling.

The following sections describe these issues in more detail. Figure 1

highlights the key components of the continuum from model

development to evaluation and application in an HHRA.

A Process for the Evaluation and Implementation of PBPK
Models in HHRAs

PBPK models are developed to generate or test hypotheses and

may be developed for a potential risk assessment application.

However, these applications are frequently unknown at the time

of model development. Thus, it is important for models that

are developed and published in the peer-reviewed literature to

undergo a rigorous review and evaluation process so that their

suitability for a specific application in an HHRA can be

determined.

To evaluate PBPK models, knowledge of the modeling

process and approach as well as biology and the toxicity of the

chemical in question are useful. The process for evaluating

PBPK models for application in HHRA begins with extensive

discussions with a scientist(s) knowledgeable about the biology

and toxicology related to the compound. Specifically, these

discussions aim to identify toxicity endpoints of concern,

experimental data available for the endpoint of concern, and the

choice of dose metric(s) and its relationship to mode of action.

These discussions are critical for the review of the available

PBPK models and the evaluation of their appropriateness for

application in the risk assessment process. In general,

publication of a PBPK model does not necessarily deem it

usable for risk assessment if the extent or impact of its

application is found to be problematic. For example, if a model

is developed for one route of exposure while the risk

assessment may be focused on a different route, modifications

to the model may be needed. Other examples include when an

older PBPK model does not include up-to-date information on

metabolic pathways or includes fitted parameters where newer

experimental data may provide different parameter values. In

other situations, a review of the model may reveal a need for

refinements or revisions to the published model to justify its

FIG. 1. This figure shows examples of key considerations during model

development, evaluation, and application that are necessary before a PBPK

model may be adopted for use in a HHRA.
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application for the HHRA. During this first stage of model

review, the model reviewers and the scientist leading the

HHRA for the chemical(s) in question may work together to

identify the extent of modifications needed for the model to be

applied, the resources needed to complete the modifications,

and the duration needed for completion of these modifications

to aid management in making a decision to move forward with

additional model evaluation and potential application.

The second tier of model evaluation is the in-depth analysis

the model. The focus of the in-depth evaluation is based on the

applicability of the model for the specific risk assessment use

rather than its scientific validity. For the in-depth analysis, in

addition to published model simulations, the model code

mathematical descriptions and parameters need to be publicly

available to the evaluating agency.

In general, a PBPK model is made up of set of mathematical

equations describing in vivo ADME of the chemical in question.

Each mathematical equation (such as Equation 1 below) is based

on the biology (e.g., first order uptake and/or removal, saturable

metabolism) and quantitative parameter estimation (e.g., phys-

iological, physiochemical, and biochemical).

dAt

dt
¼ Qt 3Cart � Qt 3

�
At

Vt 3Pt

�
�
�
Vmax 3Ct

Km þ Ct

�
ð1Þ

The form of the mathematical equation is based on

understanding of the physiological behavior of the chemical.

For example, a saturable Michaelis-Menten (MM) equation for

metabolism is based on the knowledge of receptor-binding

mechanisms. The MM equation can be modified to allow for

biological processes of inhibition or induction of metabolism.

Another example is a Hill equation, which can also be based on

receptor-binding mechanism but includes parameters represent-

ing the extent of positive or negative biological cooperativity in

the binding process. Both equations have parameters that need

to be identified quantitatively so that the overall model can be

used for simulating and predicting data.

The initial step in the PBPK model structure evaluation is

reviewing the choice of model compartments. Questions such

as number of compartments, type of tissue compartments, and

flow-limited or diffusion-limited choice of compartments are

assessed against knowledge of the physiochemical properties

of the chemical and physiological determinants of its

distribution. This is usually followed by in-depth analysis of

the choice of equation form in relationship to knowledge of the

mode of action of the chemical. For this reason, questions

regarding metabolism pathways are raised and checked against

the mathematical description of the model. Once the structure

of the model is evaluated, the model parameterization and

behavior are reviewed. Parameters that are obtained or

calculated from literature are checked and ones that are fitted

against available data are examined using original and more

recent data if available.

A frequent problem with PBPK model parameterization is

identifiability. This is a problem when more than one set of

parameter values can be used to provide similar predictions. In

this case, a judgment call can be made on model behavior

based on the extent to which unique determination of

a parameter has an impact on predicting the dose metric of

interest. This call is supported by sensitivity analysis of the

parameters. For instance, if the parameter of interest is not

sensitive to the outcome but cannot be uniquely identified, then

its individual impact on the dose metric may not be

problematic. If the opposite case is true, i.e., a parameter is

very sensitive to outcome but not uniquely identifiable, then

a range of dose metric determinations are reported based on the

range of biologically plausible values for this parameter. In

such situations, formal statistical analysis, which is always

appropriate but often difficult to perform, may be informative.

With the understanding that there is no complete PBPK

model that can describe all relevant ADME biological process

of a chemical accurately, the model reviewers are usually faced

with judging and balancing the uncertainty inherent in every

model against its possible application. Quantitative uncertainty

analysis in the form of Bayesian analysis of models is time

consuming and resource and data exhaustive. In many

situations, a determination of uncertainty must be made based

on qualitative criteria derived from in-depth evaluation of the

structure and model parameterization. In some cases, demon-

stration of the model’s ability to simulate data that were not

used in its calibration/parameterization adds confidence in the

model behavior. Table 1 contains some example information

that can add to or subtract from the confidence of the

application of a PBPK model to a health risk assessment.

TABLE 1

Information or Items That May Contribute to or Reduce

Model Uncertainty

Contribute to model uncertainty Reduce model uncertainty

Biological basis of

model development is

questionable

Model is based on ‘‘known’’

biological mechanisms

Flow/diffusion or active

transport mechanisms,

could all fit data

Toxic metabolites

Extrahepatic metabolism

(other tissues or by

other enzymes).

Route of exposure

Species differences Physiological determinants

of tissue dose

Parameter identifiability Parameters have biological

relevance: they can be tested

or calculated

Calibration data are

not sensitive to parameters

Calibration data are helpful in

identifying parameters

Model behavior outside

calibration data are questionable

Model is able to simulate data

outside of calibration range

Acute versus chronic exposures

PBPK MODEL USE IN RISK ASSESSMENT 7
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Explicit PK Modeling: Tools for Documentation,
Verification, and Portability

PBPK models vary in complexity, blending detail for

biological subsystems for which there are rich data and/or

need for mechanistic insight with abstraction for subsystems

about which there are little data or influence upon the key

systems. For example, the Blancato and Bischoff (1985) model

for 2,5-hexanedione and its metabolite uses seven compart-

ments to describe the brain and only two for the rest of the

body, whereas the Timchalk et al. (2002) model for

chlorpyrifos and its metabolite includes 20 compartments,

albeit only two for the brain. Perhaps, because of this wide

variation in complexity, PBPK models can be difficult to fully

describe in publications. In general, the evaluator is often left

wondering if all the parameters and their values were reported

by the authors, whether the initial and dosing conditions were

sufficiently described and was anything else (including

equations) left out that would prevent the work from being

reproduced. This can cause challenges and delays in the review

and application of a PBPK model in an HHRA.

In addition, complex models are often interpreted by a wide

community of scientists and policy makers. For this reason, it is

important that the language used to communicate the model be

precise and coherent. Formal ontologies provide a modern

computer science mechanism to achieve this goal (Gruber,

1995). An ontology is a system explicitly describing the

entities that exist (e.g., tissue compartments), how the entities

can be related to each other (e.g., subcompartments for cellular

space), how the entities can be grouped and subdivided (e.g.,

perfusion-limited vs. diffusion-limited compartments), and

organizational hierarchies of these groups (both perfusion-

and diffusion-limited compartments are physiologic compart-

ments). Ontologies have been developed to describe many

fields allied with toxicology, including chemistry (Ennis, 2004)

and mathematical models for engineering (Gruber et al., 1992).

Ontology for PBPK modeling should be sufficiently broad to

describe all useful model structures. For instance, including

a steady-state equation for gas exchange as opposed to

a compartment model for the lung, or even more elaborately,

considering dynamic breathing modes. Once a sufficiently broad

ontology is established, a markup language can be prescribed for

documenting the objects within the ontology. All models covered

by the ontology can then be expressed with this language.

Coupled with ontologies, the extensible markup language

(XML) approach is another modern computer science tool that

could be used with PBPK models (Bray et al., 1998). An XML

code is long, precise, and very verbose—it is intended to be

analyzed algorithmically. XML allows one to describe some-

thing in a language that is machine-readable and therefore

machine translatable from one programming language to

another. The ability to automatically translate the description

into running code makes model documentation independent of

specific hardware and software. Machine translation provides

automatic checking of description completeness. An incomplete

description is referred to as ‘‘junk’’; DNA junk does not translate

into a protein (Makalowski, 2000) and analogously an in-

complete model description does not translate into a working

model. Machine readability is the key advantage of XML.

Although new languages and hardware inevitably replace what

was used to develop the model, if there is sufficient information

in an XML file to translate to one language, a translator could

hypothetically be created for any computer or software package.

In systems biology publications, the systems biology markup

language (SBML) provides a standard model description

format that can be translated into working models (Hucka

et al., 2003). Both MATLAB (Schmidt and Jirstrand, 2006)

and acslX (Aegis, 2008) have the ability to translate to and

from SBML. In order to standardize the syntax of mathematics

and documentation, allowing PK models to be disseminated as

supplemental material in articles or through online databases,

we propose a formal declarative description of PBPK models:

PhLexicOn (Pharmacokinetics Lexicon and Ontology).

PhLexicOn consists of both a language and an ontology. The

XML language for describing PK models is derived from

a new ontology for PK concepts developed in the web ontology

language (McGuinness and van Harmelen, 2004). As an XML-

based language, functionality from other languages (e.g.,

SBML and MathML, Ausbrooks et al., 2010) could be easily

added. Likewise, functionality from PhLexicOn could be added

to other XML descriptions.

Although demonstrating completeness of a model through

machine translation would be a boon to model documentation,

completeness of a model is not sufficient. A PBPK model must

be plausible in terms of the relationship among tissue volumes,

blood flows, and other fundamental biology. Plausibility is

assessed though the ontology: it defines the appropriate

constituents of physiologically based systems. First and foremost

is the consideration of physical units—specifying an ontology

allows some values to be required and, in this case, all parameter

values are forced to have a unit. The machine translation step can

then automatically check for unit consistency.

In addition to bounds on values (e.g., amounts must be

positive, compartments must contain at least one compound), an

ontology can specify additional rules for complete PBPK

models; for instance, the sum of all arterial flows must equal

cardiac output unless noncardiac flows (e.g., lymph) are included

in the model. Mass balance can be strictly enforced (the rate of

change of total amount of compound must equal its elimination

and metabolism) and in a physiologic compartment, arterial flow

must equal venous flow (again excepting alternative flows such

as lymph). A final example rule would be to force all parameters

tagged as ‘‘species specific’’ to match the species being

simulated. Using an XML-based model description and proper

ontology, all these rules can automatically be checked, allowing

the modeler and/or model evaluator to immediately determine if

rules have been violated. This does not prevent rule violations

but does provide a tool to clearly flag them.
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As important as software engineering is, the social

engineering component cannot be overlooked, i.e., how to

motivate researchers to document their models in a manner that

benefits the community without an immediate benefit to the

individual. Further complicating this is explicit, machine-

interpretable documentation is not for humans (we have peer-

reviewed journals)—the document produced is not well suited

to human eyes. Although direct methods—such as convincing

journals to require machine-readable model documentation to

accompany any journal article based on those models—might

work, incentivizing by taking advantage of the machine-

interpretable format will also encourage wide acceptance. In

particular, generation of publication-quality figures depicting

the PBPK model schematic as well as compilation tables of

relevant parameters could both performed algorithmically

using a properly documented model.

The advantages of a machine-translatable language for

assuring completeness and accuracy of PBPK models are

many. Ongoing work is evaluating the structures that have been

created for describing a model (the grammar) and developing

rules to relate these structures and evaluate appropriateness (the

semantics). The proof of concept will be to show that

a complete PhLexicOn description can be automatically

interpreted into a computable model. To generate PhLexicOn

code, it could be an export option for modeling software such

as acslX, and even Microsoft Word handles XML. PhLexicOn

is a framework for documenting, verifying, and translating

legacy and state-of-the-art models for reusability and efficient

dosimetry estimation of chemicals for use in HHRAs.

Characterization of Population Distributions for
Physiological Parameters

One of the more challenging issues that must be considered

in performing an HHRA is the heterogeneity among humans.

This heterogeneity is produced by interindividual variations in

physiology, biochemistry, and molecular biology, reflecting

both genetic and environmental factors. Heterogeneity in these

characteristics results in differences among individuals in the

biologically effective tissue dose associated with a given

environmental exposure (PKs) as well as in the response to

a given tissue dose (pharmacodynamics). It is useful in this

context to consider the total variability among humans in terms

of four contributing sources: (1) the variation across a pop-

ulation of ‘‘normal’’ individuals at roughly the same age, e.g.,

adults (Clewell and Andersen, 1996); (2) the variation across

the population resulting from their different ages, e.g., infants

or the elderly (Clewell et al., 2004, 2002); (3) the variation

resulting from the existence of subpopulations that differ in

some way from the ‘‘normal’’ population, e.g., due to genetic

polymorphisms in metabolizing enzymes (Gentry et al., 2002;

Haber et al., 2002); and (4) the health status of a population.

Health status should be considered, although it is frequently not

characterized in HHRAs.

There has sometimes been a tendency in HHRA to use

information on the variability of a specific parameter, such as

inhalation rate or the in vitro activity of a particular enzyme, as

the basis for expectations regarding the overall variability in

dosimetry for in vivo exposures. However, whether or not the

variation in a particular physiological or biochemical parameter

will have a significant impact on in vivo dosimetry is a complex

function of many interacting factors. In particular, the structures

of physiological and biochemical systems frequently involve

parallel processes, leading to compensation for the variation in

a single factor. Moreover, physiological constraints may limit the

in vivo impact of variability observed in vitro (Johanson et al.,
1999). For instance, high affinity intrinsic clearance can result in

essentially complete metabolism of all the chemical reaching the

liver in the blood; under these conditions, variability in amount

metabolized in vivo would be more a function of variability in

liver blood flow than variability in metabolism in vitro
(Lipscomb et al., 2003). Thus, it is often true that the whole

(the in vivo variability in dosimetry) is less than the sum of its

parts (the variability in each of the PK factors). Because the

parameters in a PBPK model have a direct biological

correspondence, they provide a useful framework for determin-

ing the impact of observed variations in physiological and

biochemical factors on the population variability in dosimetry

within the context of a risk assessment for a particular chemical

(Clewell and Andersen, 1996; Price et al., 2003).

The distinction between uncertainty and variability is

important. Uncertainty represents imprecise or inadequate

information and can be reduced through additional experimen-

tation. Variability is an intrinsic property of a population that

can be better characterized, but not reduced, by additional

experimentation. Early attempts to distinguish the contributions

of uncertainty and variability can be found in Bogen and Spear

(1987) and Allen et al. (1996). Several studies have attempted

to estimate the impact of parameter uncertainty and variability

in PBPK models on risk assessment predictions using the

Monte Carlo approach (Allen et al., 1996; Clewell, 1995;

Clewell and Andersen, 1996; Clewell et al., 1999; Clewell and

Jarnot, 1994; Portier and Kaplan, 1989).

Markov chain Monte Carlo (MCMC) simulation provides

a computational method to perform a hierarchical Bayesian

analysis by refining prior estimates of parameter uncertainty

and variability based on experimental data. This approach is

increasingly being used to refine and characterize PBPK

models intended for use in risk assessments (Bois, 1999, 2000,

2001; Bois et al., 1996a, 1996b; Chiu and Bois, 2006; Chiu

and Ginsberg, 2011; Chiu et al., 2009; Johanson et al., 1999;

Jonsson et al., 2001a, 2001b; Jonsson and Johanson, 2001a,

2001b; Marino et al., 2006; Qiu et al., 2010).

Because analysis of PBPK models using MCMC is still

a relatively new HHRA tool, using MCMC has many

complicated practicalities involving much professional judgment

in order to set up the model and interpret the results correctly.

Thus, several important issues should be considered when

PBPK MODEL USE IN RISK ASSESSMENT 9
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conducting or reviewing a Bayesian analysis performed via

MCMC for use in a risk assessment. One important consideration

is the necessity of evaluating whether the posterior parameter

distributions obtained from the evaluation of specific datasets

(those included in the MCMC simulation) should be used directly

in the estimation of dose metrics. For example, data from a small

number of young adult subjects in a controlled setting may not be

reflective of the diversity of the population for which the risk

assessment is being performed. Therefore, it is often necessary to

substitute a suitable general population distribution for the

posterior obtained from the experimental subjects.

A second consideration is whether there is adequate

information content in the datasets used in the Bayesian analysis

to identify a particular parameter. This is a more problematic

issue because it is difficult to objectively evaluate the

identifiability of multiple parameters estimated jointly from

multiple datasets. One ad hoc way to evaluate the identifiability

of a parameter from the data included in the Bayesian analysis is

a posterior analysis of the correlation between each parameter

and the model predictions for each data point. Another way to

evaluate the identifiability of a parameter from the data in the

Bayesian analysis is to compare the prior and posterior

distributions. For example, a simple t-test can be performed to

determine whether the difference between the prior and posterior

means for a given parameter is statistically significant.

The third consideration is the difficulty of separating

parameter variability/uncertainty from data and model error.

Data error refers to measurement errors or bias arising from the

limitations of instrumentation or techniques; model error is

simply the result of less than perfect homeomorphic correspon-

dence of the model structure to reality (which is always true). An

important consequence of the existence of data and model error

is that the parameter estimates obtained by the MCMC analysis

may not be valid. That is, the algorithm may estimate a value for

a model parameter that provides an adequate model prediction

for the data, but due to data and model error, the estimated

parameter may no longer represent the intended physicochemical

entity. In particular, for a model in which a number of parameters

are to some extent collinear, a combination of changes in

parameters could compensate for data and model error, but the

resulting parameter values would no longer represent the

underlying physicochemical quantities (Vmax, Km, etc).

Approaches and Issues in Integrating PBPK With Benchmark
Dose Modeling

Which to apply first: BMD or PBPK modeling? Once

a PBPK model is reviewed and appropriately parameterized,

a choice is needed regarding how to integrate it into a dose-

response analysis and human extrapolation. A common animal-

to-human dose-response extrapolation approach is to first select

a POD, often the lower bound dose for an estimated incidence or

level of response (U.S. EPA, 2011). The PODanimal is then

extrapolated to estimate a human equivalent dose (HED) or

concentration (HEC), based on known or assumed species

differences in dosimetry. Before the BMD methodology and

software became available, the PODanimal for noncancer effects

was simply selected as the lowest no-observed adverse effect

level (NOAEL) among all the dose-response datasets available;

however, now, BMD analysis is the preferred approach for

identifying a candidate POD from a given dose-response dataset.

There are two approaches to integrate PBPK models with BMD

analysis to estimate HECs or HEDs:

(1) Conduct the BMD modeling first, using the exposure

concentration or applied dose as the dose metric (e.g., mg/kg/d by

the oral route), to obtain an exposure-level PODanimal, then use

the animal and human PBPK models to conduct the

interspecies extrapolation;

(2) Use the animal PBPK model to estimate internal doses

for each exposure or applied dose, then conduct BMD

modeling using the internal dose metric to obtain an internal

dose PODanimal, and finally use the human PBPK model to

conduct the interspecies extrapolation.

Because dosimetry is often nonlinear due to metabolic

saturation and the toxic response is expected to correlate better

with an internal dose metric (e.g., the concentration of a toxic

metabolite in the tissue where an effect occurs), the second

approach (2) may be preferred. However, if the relationship

between internal dose and exposure level is linear, then the HEC

or HED will be the same whether BMD analysis is done first (1)

or second (2).

The set of BMD models currently available in U.S. EPA’s

Benchmark Dose Software (BMDS; v2.1.2; http://www.epa.gov/

NCEA/bmds/) provides a range of flexibility in fitting bioassay

data, but if some of the dose-response nonlinearity arises from

dosimetry and is accounted for by a PBPK model, use of internal

doses for BMD modeling could significantly improve model fit.

Use of the right internal dose metric could result in one or both of the

following improvements: (1) a greater goodness of fit as quantified

by a model-independent metric such as the sum of square errors

(SSE) between model predictions and observations and a lower

Akaike information criterion (AIC; Akaike, 1974) for the model,

which best fits the external dose-response data and (2) A shorter

95% confidence interval on the BMD, quantified as a Benchmark

Dose lower confidence limit (BMDL):BMD ratio closer to unity.

An example BMD analysis was conducted using a sample

dataset (Supplementary table 1, where a second example is also

shown). When a BMD analysis was run using BMDS (v2.1.2)

with the internal dose metric from Supplementary table 1, the

logistic model had the lowest AIC (although the SSE for the

logistic model was higher than the log logistic) (Table 2).

However, using the external metric, applied dose, the model

with the lowest AIC was the log-logistic model (Table 2).

Model fits to the data are illustrated in Supplementary figure 1.

In fact, for both models, both the SSE and the AIC were lower

when using the internal compared with the same model using

external dose metrics. However, the absolute difference in the

10 MCLANAHAN ET AL.

 at Stephen B
. T

hacker C
D

C
 L

ibrary on A
ugust 19, 2014

http://toxsci.oxfordjournals.org/
D

ow
nloaded from

 

http://www.epa.gov/NCEA/bmds/
http://www.epa.gov/NCEA/bmds/
http://www.toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfr295/-/DC1
http://www.toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfr295/-/DC1
http://www.toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfr295/-/DC1
http://toxsci.oxfordjournals.org/


SSE and AIC between internal and external metrics for the log-

logistic model is less than for the logistic model. Furthermore,

the choice of metric has little impact on the degree of uncertainty

as quantified by the BMDL10/BMD ratio for either model.

The most appropriate comparison to illustrate the impact of

analyzing internal versus external dose would be to compare the

best-model results when internal doses are used (logistic model)

to the best-model results when external doses are used (log-

logistic) (bolded columns in Table 2). This comparison still

shows that use of the internal dose leads to a lower improved

AIC (183.6 vs. 185.4). Furthermore, the internal dose equivalent

of the BMDL10 is lower when the log-logistic model is applied

to external doses, whereas the BMDL10/BMD ratio is almost

four times lower. Thus, this comparison illustrates how use of the

PBPK-derived internal dose metrics can improve statistical

goodness of fit and confidence and result in a higher POD (i.e.,

the BMDL10). If one has a low amount of biological information

(i.e., in the absence of a PBPK model), one would like the BMD

analysis to provide a greater margin of safety, hence a lower

POD. In this case, that ‘‘ideal’’ scenario is actually produced.

This example illustrates that using internal doses from a PBPK

model for BMD analysis can change the resulting BMDL and at

least in some cases improve the level of confidence as quantified

by the BMDL/BMD ratio. However, in the development of an

HHRA, one drawback from applying BMD analysis to internal

dosimetry is that the PBPK model may be revised multiple times

throughout the iterative peer-review process, and each such change

would subsequently require revisions to the BMD analysis. The

added effort could be substantial, as compared with performing the

BMD analysis once using applied or external doses.

Statistical issue: combined risk from cancer response in
multiple tissues. When a PBPK model is to be integrated

with a BMD analysis into a cancer risk assessment, a second

challenge arises in estimating total cancer risk when the cancer

response occurs in multiple tissues for which the best dose

metric differs.

Unlike using PBPK-derived internal dose metrics for BMD

modeling of single effects, there is no straightforward approach

to calculating combined tumor risk from multiple tissues using

internal dosimetry information in the BMD analysis. A relatively

simple approach to estimate the combined cancer risk can be

considered, but it involves assuming that the probability density

of BMD values is normally distributed—an assumption which is

questionable and difficult to test—and that both the exposure-

dose and the dose-response relationship are linear below the

HED or BMDL.

A more complex approach involves Monte Carlo sampling,

which requires expertise in Bayesian methods and can be used to

rigorously estimate the combined tumor risk from multiple tissues

with differing internal doses. An outline of the method is provided

here with additional details in the Supplementary Data. A key

assumption for combining tumor risks is that except for correlation

between exposure and internal doses, the tumor response in two

tissues is independent. The National Research Council considered

the issue of independence and concluded that this is a sound

assumption (National Research Council (NRC), 1994). This

approach also effectively assumes that cancer risk is directly

proportional to internal dose below the BMDL values for each

tissue. A human exposure level (E) must also be selected such that

relationship between exposure level and internal dose is linear

belowE, but this can be lower than the human equivalent exposure

level for the BMDLs, so the exposure-internal dose relationship

can be nonlinear between the internal dose BMDLs and the

internal dose equivalents of E. The procedure is as follows:

(1) Generate BMD sample distributions for the cancer slope

factor (CSF) in each tissue (CSFi) using tissue-specific internal

dose metrics:

a. These can be generated using a probabilistic PBPK model,

if available

b. The distributions for BMD models (parameters) can be

generated by the Bayesian approach described by Kopylev

et al. (2007)

(2) Use the human PBPK model to generate a human internal

dose (HID) for each tissue, i (HIDi), for a fixed, low exposure, E:

a. These can be generated using a probabilistic PBPK model,

if available

b. E should be low enough that internal doses are linear with

exposure below E
(3) Monte Carlo sampling from the distribution of CSFi

values (and, independently from HIDi values) is then used to

generate a distribution for the combined cancer slope factor:

CSFcomb ¼ ½ðHID13CSF1Þ þ ðHID23CSF2Þ�=E:

(4) Calculate the 95% upper confidence limit of that sample

The U.S. EPA BMDS (v2.1.2) does not yet have the

capability of estimating the combined tumor risk from tumors

arising in multiple tissues ‘‘when a different internal dose metric

is associated with each tissue-specific response.’’ Simple

TABLE 2

BMD Analyses of Oral Ingestion Dataseta

BMD fit metric

Logistic model Log-logistic model

Internal dose External dose Internal dose External dose

AIC 183.6 186.3 184.8 185.4

SSEb 8.1 12.1 2.8 5.4

BMDL10 (mg/l/d)c 65 (122) 35 (27)

BMDL10/BMD 0.72 0.68 0.17 0.19

aThe dataset used for this BMD analysis is shown in Supplementary table 1.
bSum of squared errors between model predicted and observed total number

of animals affected.
cThe BMDL10 was converted to the equivalent internal dose metric using the

PBPK model; value shown in parentheses to indicate additional calculation.
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approaches to consider for calculating the combined tumor risk

rely on assumptions about the distribution of BMD levels (given

the underlying data) whose accuracy has not been determined.

The limited dose-response data available for most chemicals are

not sufficient to test these assumptions. The rigorous approach,

which does not rely on these assumptions, requires significant

computational effort and statistical expertise.

Application-Specific Considerations in Evaluation of PBPK
Model Certainty

A risk assessor who is considering using an available PBPK

model in an HHRA to develop toxicity reference values may ask,

‘‘Is this model acceptable?’’ Without any context, the answer is

unlikely to be an unqualified ‘‘yes.’’ More likely, the answer to

the question will be another question: ‘‘Acceptable for what?’’

One of the criteria of PBPK model evaluation, as noted above, is

model ‘‘purpose.’’ Because a model may fulfill multiple

purposes, evaluations should take this into consideration. The

two case studies below illustrate some aspects of PBPK model

evaluation and application in a risk assessment context.

Case study #1: ethylene dichloride (1,2-dichloroethane,
EDC). A PBPK model describing the disposition of inhaled

or orally dosed EDC in rats was published by Sweeney et al.
(2008). As no human model was published, this model has no

utility for interspecies extrapolation ‘‘as is.’’ However, the

purpose of this model was to meet a need for route-to-route

extrapolation of existing and planned toxicology studies

(U.S. EPA, 2003a); a similar approach was used for 1,1,2-

trichloroethane (U.S. EPA, 2003b).

One of the model applications specified was to develop

inhalation equivalents of NOAELs and lowest observed

adverse effect levels (LOAELs) for the subchronic study of

Daniel et al. (1994), which used gavage dosing in corn oil.

Several potential PBPK-derived dose metrics were suggested

as potential bases for route-to-route extrapolation: parent

compound (peak, average, or area under the concentration vs.

time curve [AUC]) and amount metabolized (U.S. EPA,

2003a). A change from earlier versions of the EDC model

included an alteration in the location of extrahepatic metabo-

lism from the lung (D’Souza et al., 1987; D’Souza et al., 1988)

to a pooled venous blood compartment whose blood flow is

collected from the kidney, slowly perfused and other well

perfused tissues (Sweeney et al., 2008). Metabolism in the lung

could lead to a reduction of EDC that enters systemic

circulation (‘‘first pass’’ effect). Concerns existed over the

effect of this on model application. When simulations were

conducted with different placement of extrahepatic metabo-

lism, it was observed that the location had essentially no impact

at higher doses and concentrations and a minimal impact at

lower doses and concentrations. Thus, the effect on route-to-

route extrapolation is expected to be minimal (Supplementary

tables 4 and 5) and the model is acceptable for route-to-route

extrapolations of subchronic studies in this context.

Case study #2: perchloroethylene (tetrachloroethylene,
Perc). Controversy exists as to cancer mode of action for perc

and the structurally similar compound trichloroethylene, partic-

ularly the identity of the responsible metabolite(s) (Evans et al.,
2009; Sweeney et al., 2009). Noncancer endpoints of concern for

perc may include neurological/neurobehavioral effects that are

likely related to levels of parent compound. Studies deemed to be

candidates to serve as the basis of oral and inhalation toxicity

reference values were identified by an epidemiologist (John

Bukowski, personal communication). These studies relied on

observations of workers exposed via inhalation. The candidate

internal dose metrics to serve as the basis for extrapolating from

LOAELs in occupational studies to toxicity reference values for

continuous inhalation or episodic ingestion were peak and AUC

for concentration of perc in the brain. The PBPK model used was

by Covington et al. (2007), which provided good simulations of

the available human datasets. The model was adapted to account

for the exposure scenarios (continuous inhalation and episodic

dietary exposure) useful for this assessment.

Sensitivity analysis can highlight key parameters for

evaluation of model confidence. For the perc example (Table

3), the values of the internal dose metrics of interest for the

noncancer assessment were generally sensitive only to

parameters that would be expected to be well characterized.

In particular, it should be noted that none of these dose metrics

are sensitive to the rate of metabolism, a parameter that is

frequently uncertain and/or variable within the human

population. Model confidence for disposition of the parent

compound is often greater than for metabolites. Based on the

sensitivity evaluations, default uncertainty factors (UFs) for PK

variability in the noncancer assessment could potentially be

replaced with chemical-specific adjustment factors; at a mini-

mum, this analysis indicates that there is no need to increase

the UF based on concern for intraspecies variability.

CONCLUSIONS

Published PBPK models are very useful for HHRAs because

there is rarely time to develop a model de novo for use in an

assessment. Although a thorough review of the model is warranted

prior to deciding upon its possible application in an HHRA,

a continued dialogue between the model developer and the model

evaluator is essential during this review process to ensure critical

assumptions and parameters, which may not have been laid out in

the publication, are well understood. In addition, when the model

is being considered for use in HHRA, the review must include

a complete quality assurance check of the computer code, which

can be more demanding and require different information than the

review process for publication in a scientific journal. This rigorous

PBPK model review process is important to ensure the model used

in the HHRA is well understood and documented is applicable to

the specific needs of the HHRA. Ultimately, the final values from

PBPK models and hence the dose-response assessments may be
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used in the completed HHRA to impact legislation. The use of

a standardized syntax for mathematical and descriptive model

documentation, such as PhLexicOn, could help to expedite the

review process and provide an additional level of machine-

conducted review, which would help reduce reliance on humans to

check computer code and its implementation.

In conclusion, though not two PBPK models or HHRAs are

alike, several steps are always required before a PBPK model

may be used in such an assessment: (1) acquisition of publicly

available PBPK model and computer code; (2) thorough review

of model code (including computer implementation of

equations, biological fidelity, parameterization, and sensitiv-

ity/uncertainty analysis); and (3) consideration of integration

with other HHRA methods, including BMD analysis.

SUPPLEMENTARY DATA

Supplementary data are available online at http://toxsci.

oxfordjournals.org/.
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