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BSTRACT

 

: A significant data base has been assembled on human variability
in parameters representing a series of steps in the pathway from external ex-
posure to the production of biological responses: contact rate (e.g., breathing
rates/body weight, fish consumption/body weight); uptake or absorption (mg/
kg)/intake or contact rate; general systemic availability net of first pass elimi-
nation and dilution; systemic elimination or half-life; active site availability/
general systemic availability; physiological parameter change/active site avail-
ability; functional reserve capacity—change in baseline physiological parame-
ter needed to pass a criterion of abnormal function or exhibit a response. This
paper discusses the current results of analyzing these data to derive estimates
for distributions of human susceptibility to different routes of exposure and
types of adverse effects. The degree of protection is tentatively evaluated by
projecting the incidences of effects that would be expected for a tenfold lower-
ing of exposure from a 5% incidence level if the population distribution of sus-
ceptibility were truly log-normal out to the extreme tails, and if the
populations, chemicals, and responses that gave rise to the underlying data
were representative of the cases to which traditional uncertainty factor is ap-
plied. The results indicate that, acting by itself, a tenfold reduction in dose
from a 5% effect level is associated with effect incidences ranging from slightly
less than one in ten thousand, for a median chemical/response, to a few per
thousand, for chemicals and responses that have greater human interindivid-
ual variability than 19 out of 20 typical chemicals/responses. In practice, for
many of the cases where the traditional tenfold factor is applied, additional
protection is provided by other uncertainty factors. Nevertheless, the results
generate some reason for concern that current application of traditional safety
or uncertainty factor approaches may allow appreciable incidences of respons-
es in some cases.
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INTRODUCTION

 

This paper is one of several efforts

 

1–7

 

 that are attempting to help build the basis
for improved quantitative assessment of the noncancer effects of chemicals. Much
has changed since the landmark paper of Lehman and Fitzhugh

 

8

 

 in 1954, which set
the paradigm for traditional analyses with the original 

 

100-fold safety factor

 

 (of
which 1/10 is allocated to possible differences in sensitivity among people). Today
we have the experience and the computational capabilities to employ distributional
approaches in place of simple rule-of-thumb formulæ. We also have the benefit of an
enormous flowering of biomedical science over the last few decades from which we
can draw helpful data (although many of the data are not ideal for our purposes).
Finally, we live in an age where the questions for analysis have broadened beyond
the main issues confronting the U.S. Food and Drug Administration of 1954. In con-
texts as diverse as occupational safety and health, general community air pollution,
drinking water contaminants, and community exposures from waste sites decision
makers and the public ask questions like “does exposure to 

 

X

 

 at fraction 

 

Y

 

 of an
estimated no-adverse-effect level really pose enough of a risk of harm as to merit
directing major resources to prevention?” On the other hand, are questions such as
“would it not be more prudent to build in additional safety factors to protect against
effects to people who may be more sensitive than most because of young or old age,
particular pathologies, or other causes of special vulnerability?” In the U.S., the
Occupational Safety and Health Administration may only promulgate a new permis-
sible exposure level for a chemical if can produce a credible estimate that the risk
under the pre-existing standard is 

 

significant

 

 by some broadly defined quantitative
criteria. To address these questions, we need to make at least quantitative estimates
of the risks that result from current approaches.

One basic concept that lies at the heart of this analysis has not changed from the
time of Lehman and Fitzhugh; the idea that many toxic effects result from placing a
chemically-induced stress on an organism that exceeds some homeostatic buffering
capacity. From this follows an expectation that there should be individual thresholds
for such effects. An individual will show a particular response (or a response at a spe-
cific level of severity) only when the individual threshold exposure level for the
chemical in question has been exceeded.

Now consider a population of individuals, each of whom has a different threshold
for a particular response. How many people in a mixed group are affected depends
on the fraction of people whose individual thresholds are exceeded at each exposure
level. The broader the distribution of thresholds in the population—the greater the
individual variability of the thresholds—the more gradual will be the decrease in the
proportion of people showing a specific response as dose is lowered below the levels
where effects can be readily observed in small test populations. For this reason,
quantifying the functional form and degree of spread (interindividual variability) for
individual threshold exposure levels is a key issue in quantitative risk assessment for
this kind of biological response.

 

3

 

Imagine, for purposes of illustration, that the distribution is log-normal; that is,
that the logarithms of the individual thresholds have a normal Gaussian distribution.
(This is the standard assumption that we use in our analysis below. Such a distribu-
tion would be expected if there are many factors, each contributing modestly to the
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individual variability in threshold doses, and if each factor tends to act multiplica-
tively to affect individual thresholds. This assumption of log-normality of population
distributions of thresholds is by no means new—it is the basis for traditional probit
analysis of toxicological data that predates Lehman and Fitzhugh.

 

9

 

) For example,
consider a log-normal distribution with a Log

 

10

 

(geometric standard deviation) of
0.5. (We abbreviate variability estimates in this form to Log(GSD).) This means that
one standard deviation of the threshold dose population distribution corresponds to
10

 

0.5

 

 or just over a threefold change in dosage, and of course two standard deviations
would correspond to a tenfold change in dosage. If 1 mg/kg of such a chemical caus-
es an effect in 5% of the population (corresponding to a point in a cumulative log-
normal distribution that is 1.645 standard deviations below the mean) then a tenfold
reduction in dosage to 0.1 mg/kg would place us at a point 1.645 

 

+

 

 2 

 

=

 

 3.645 standard
deviations below the mean. From normal curve area tables (or, in Microsoft Excel,
by using the 

 

normsdist

 

 function) one can easily determine that in this case the 0.1-
mg/kg dose would be expected to affect about one in ten thousand of the popula-
tion—again assuming that the distribution of thresholds is log-normal. If there were
much less variability than this, a Log(GSD) of 0.25, the same tenfold reduction in
dose to 0.1 mg/kg would yield a 1/0.25 

 

=

 

 4 standard deviation difference in the pop-
ulation distribution, to a point 5.645 standard deviations below the mean. In this case
the calculated risk would be very small; much less than one in a million. By a similar
calculation, a higher Log(GSD) of 0.75 would imply a risk of 1.4 per thousand at
0.1 mg/kg.

To further illustrate the significance of log-normal variability, T

 

ABLE

 

 1 shows the
implications of various Log(GSD) variability values for the multiplicative difference

 

TABLE 1. A scale for understanding log-normal variability differences between particular
percentiles of log-normal distributions

 

a

 

a

 

Adapted from Hattis.

 

10

 

Log

 

10

 

(GSD) Probit slope
1/Log

 

10

 

(GSD)
Geometric 
standard 
deviation

5%–95% Range 
(3.3 standard 
deviations)

1%–99% Range 
(4.6 standard 
deviations)

0.1 10 1.26 2.1-fold 2.9-fold

0.2 5 1.58 4.5-fold 8.5-fold

0.3 3.33 2.0 10-fold 25-fold

0.4 2.5 2.5 21-fold 73-fold

0.5 2 3.2 44-fold 210-fold

0.6 1.67 4.0 94-fold 620-fold

0.7 1.43 5.0 200-fold 1800-fold

0.8 1.25 6.3 430-fold 5,300-fold

0.9 1.11 7.9 910-fold 15,000-fold

1 1.0 10.0 1,900-fold 45,000-fold

1.1 0.91 12.6 4,200-fold 130,000-fold

1.2 0.83 15.8 8,900-fold 380,000-fold
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spanned by 3.3 standard deviations. If human susceptibility distributions were truly
log-normal out to the extreme tails, then 3.4 standard deviations would be expected
to be the difference between 20% and a 10

 

–5

 

 incidence of effect; 3.1 standard devi-
ations would be expected to be the difference between a 5% and a 10

 

–6

 

 incidence of
effect. Thus, the dosage spreads shown in T

 

ABLE

 

 1 can be used as a crude first guess
at the dose reduction that would be needed to take a typical LOAEL or NOAEL
effect incidence (not incompatible with a 5% incidence of effect in typical cases)
down close to or into the frequency region that has been considered 

 

acceptable

 

 for
some general population exposures for the serious outcome of cancer.

Making calculations of this type, of course, begs the question of how well log-
normal distributions actually describe real variability distributions out to the extreme
tails. In this paper we do not examine the possible effects of departures from log-
normality. However F

 

IGURE

 

 1A shows a comparison of 2700 individual data points
from our pharmacokinetic data base with expectations under a log-normal distribu-
tion. In this figure, the 

 

ordinal Z-score

 

 is the inverse of the cumulative normal distri-
bution calculated solely from the order statistics of the data using the formula of
Cunane.

 

10

 

where 

 

N

 

 is the number of data points in the data set, and 

 

i

 

 is the order of each data
point in the data set (1 for the lowest and 

 

N

 

 for the highest). The log-normal 

 

Z

 

-score
for each data point is

In all cases shown in F

 

IGURE

 

 1 the data points have been arranged so that the points
to the right indicate relatively greater potential for toxicity (e.g., longer half-lives,
smaller distribution volumes). F

 

IGURE

 

 1B shows an analogous comparison under the
hypothesis that the data are normally distributed. It can be seen that the log-normal
distribution provides a much better description of the data than does a normal distri-
bution. Nevertheless, there appears to be some tendency for the data points at the ex-
treme right of F

 

IGURE

 

 1A to be above, rather than below the line, indicating the log-
normal expectation. This suggests that there may be some tendency toward bimodal-
ity, or other departures from log-normality for the larger data sets in the direction of
having somewhat larger numbers of high risk values than would be expected. The
statistical significance of this apparent tendency and possible implications for risk
will be explored in future work. It is clear, however, that these data exhibit no ap-
parent tendency for the distributions to be truncated at the high risk end, as might be
expected if the variability in susceptibility due to these parameters were to be con-
strained to a defined upper limit.

We first briefly describe our data base of variability observations. Then we give
our approaches for estimating the statistical uncertainties in our estimates of vari-
ability from individual data sets. These estimates of uncertainty are used in the fol-
lowing section to develop a set of statistically weighted estimates of the median
amounts of variability associated with various steps in the causal pathway from ex-
ternal exposure to end-effects. From these estimates we derive estimates for the
overall variability in susceptibility for median chemicals, with responses of different
types and with different modes of exposure. Subsequently, we assess the spread of

i 3 8⁄–
N 1 4⁄+
--------------------

Log(data value) – mean of all Log(data values)
standard deviation of all Log(data values)

----------------------------------------------------------------------------------------------------------------- .
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variability values for individual chemicals from the median-chemical predictions,
after control for toxicity type, route of exposure, and statistical uncertainties in the
derivation of the Log(GSD) estimates. Finally, based on the spread of likely
Log(GSD) variability among chemicals/responses of a given type, we draw inferenc-
es about the degree of protection likely to be provided by the standard tenfold uncer-
tainty factor, and arithmetic mean 

 

expected value

 

 estimates of risk at various
fractions of a dose that produces a 5% response in a mixed human population. These
results update those in a previous report

 

11

 

 to the U.S. Occupational Safety and
Health Administration based on unweighted analyses of a portion of the present data
base.

FIGURE 1. Comparison of 2700 pharmacokinetic data points with expectations:
A. log-normal distribution; B. normal distribution.
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DESCRIPTION OF THE DATA BASE

 

Screening criteria and basic approaches for analyzing many of the individual ob-
servations of variability have been described in previous papers,

 

2–4,11–16

 

 of which
the most comprehensive and recent summary can be found in Reference 16. By an

 

observation

 

 of variability, we do not mean a single measurement of a relevant pa-
rameter in an individual, but the variability within a data set of separate values for at
least five people, summarized by a Log(GSD) value. The full data base, including
detailed analyses and references, is available in the form of Microsoft Excel spread-
sheets from the first author of this paper. Documentation can also be obtained via our
website, www.clarku.edu/~dhattis.

For cases for which the data were in the form of individual measurements of a
continuous parameter, Log(GSD) values were calculated directly as the standard de-
viations of the Log

 

10

 

–transformed parameter values. This was done for all the phar-
macokinetic data and for a few cases where parameters with pharmacodynamic
information were presented in the form of continuous parameter values (e.g., inter-
nal concentrations causing 50% of some specified maximal effect). Additionally, for
pharmacokinetic observations where the same parameter had been measured in more
than one independent study for a particular chemical, we pooled the observed
within-study variances to derive a combined estimate of a Log(GSD). Thus, some of
the individual 

 

observations

 

 reflect information from several different data sets.

For the great majority of observations of pharmacodynamic variability, the data
were given in the form of the fraction of an exposed group that met some criterion
of physiological parameter change or response. In these cases we used a spreadsheet
system described by Haas

 

17

 

 to make maximum likelihood Log(GSD) estimates from
a probit

 

4,9

 

 population dose-response model. Where the data included a control group
with a finite incidence of the effect being studied, the models included a background
term whose value was also estimated by likelihood maximization. In addition, where
age-related information was given that seemed to be important in determining the re-
sponse, the background response term was made dependent on the average age of
each group in the analysis. Finally, for some large data sets of the variability of con-
tact rates (e.g., breathing rates and tap water ingestion rates), where the original data
were presented as the values at various percentiles of a population distribution,
Log(GSD) values were calculated as the slopes of regression lines from probability
plots.

 

16

 

The different parameters whose variability has been measured incorporate vari-
ability for different portions of the pathway, from external exposure to end effects.
Therefore each parameter is assigned a set of 

 

dummy

 

-variable classifications of (0 or
1) that indicate the kinds of variability that are included. For example, measurement
of the integrated area under the curve (AUC)—the product of internal concentration
and time per mg/kg of administered dose, includes variability in steps #2-#5 in the
following schema:

1. Contact rate: breathing rates/body weight; fish consumption/body weight
(subclassified by oral, inhalation, or other route).

2. Uptake or absorption (mg/kg)/intake or contact rate (subclassified by oral,
inhalation, or other route).
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3. General systemic availability net of first pass elimination and dilution via
distribution volume (subclassified by oral versus inhalation/other route).

4. Dilution via distribution volume.
5. Systemic elimination/clearance or half-life.
6. Active site availability/general systemic availability.
7. Physiological parameter change/active site availability.
8. Functional reserve capacity: change in baseline physiological parameter

needed to pass a criterion of abnormal function.
Measurements of the fraction of people who experience a given percentage change
in the amount of air they can exhale in one second (

 

FEV

 

1

 

) in relation to an exposure
to ozone in external air, are classified as having variability types 1–7; whereas, mea-
surements of the fraction of patients who suffer dose-limiting toxic symptoms in re-
lation to plasma concentrations of an administered drug, are considered to include
variability types 6–8.

In addition to these sources of real variability in items that are relevant to suscep-
tibility distributions, some data sets implicitly included variability and/or uncertain-
ty of other types. Four observations resulted from epidemiological studies of
occupational or community groups for which there was considerable uncertainty
about individual exposure levels. For these cases we included a dummy variable, in-
dicating the additional source of apparent variability in order to isolate uncertainty
in individual dosimetry from the estimates of real variability affecting estimates of
risk. In a few other cases, 

 

C

 

max

 

 (maximum blood or plasma concentrations) and AUC
pharmacokinetic parameters were measured after administering a dose of a drug ex-
pressed in weight units (e.g., a 200 mg pill), but there was no accompanying infor-
mation about individual body weights to permit normalization of the results per dose
in mg/kg body weight. In these cases we included an additional dummy variable to
represent the fact that the data set included variability in body weights in the test
population. Although this variable is needed to help explain the aggregate variability
seen in some of the observations, it is not relevant to the variability in susceptibility
per unit mg/kg dose and will not be included in later summary calculations of risks
related to the usual application of the tenfold uncertainty factor.

Given this classification, T

 

ABLE

 

 2 offers a simple unweighted summary of the
variability data for pharmacokinetic and contact rate parameters. T

 

ABLE

 

 3 does the
same for parameters that include pharmacodynamic variability. As noted in the table
footnotes, the 10%–90% ranges in each cell are calculated by assuming that the
Log(GSD) observations within each grouping are themselves log-normally distrib-
uted. F

 

IGURES

 

 2–4 show probability plots that indicate rough correspondence of the
distributions of LogLog(GSD) values to regression lines for log-normal expecta-
tions.

Of these types, pharmacodynamic variability data are by far the most difficult to
find. To convey a clearer impression of the nature of pharmacodynamic observations,
T

 

ABLES

 

 4 and 5 list the individual measurements included in this group. T

 

ABLE

 

 4
gives observations of variability in parameter change and response susceptibility at
sites of direct contact with an agent (e.g., eye, skin, and respiratory system irrita-
tion). T

 

ABLE

 

 5 shows cases where the toxicant travels systematically before reaching
the site of action. (Derivation of the confidence limits for individual data points is
described in the next section.) It can be seen that the pharmacodynamic observations
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TABLE 2. Summary of unweighted Log(GSD) variability observations for different
types of uptake and pharmacokinetic parameters in adults (data for groups including
children under 12 excluded)

 

Parameter type Oral Intravenous Inhalation Other routes All routes 

 

+

 

 
route-

nonspecific 
data

 

Blood concentration 
for toxicant delivered 
mainly by indicated 
route

0.322

 

a

 

(3)
0.295–0.351

 

a

 

Within each cell of this table, the geometric mean of the Log(GSD) observations is given on
the first line, the number of observations appears on the second line, and the third line gives a
10%–90% range of the observations calculated assuming that the Log(GSD) values themselves
are log-normally distributed. Each 

 

observation

 

 consists of one or more data sets where the vari-
ability of a particular parameter was measured. In cases where the same pharmacokinetic param-
eter was measured for the same chemical in different groups of people, the variance was pooled
to form a single 

 

observation

 

.

0.322
(3)

0.295–0.351

Body weight (adults 
only)

0.086
(2)

0.065–0.113

Contact rate/body 
weight

0.257
(1—tap water 
daily intake)

0.108
(2—daily)

0.094–0.125

0.168
(1) (time 

showering)

0.150
(4)

0.088–0.256

Volume of distribu-
tion/body weight

0.128
(16)

0.058–0.284

Volume of distribu-
tion with no control 
for body weight

0.092
(1)

C

 

max

 

/(dose/body 
weight)

0.147
(20)

0.059–0.367

0.154
(1)

0.071
(1)

0.224
(1)

0.145
(23)

0.060–0.350

C

 

max

 

/dose with no 
control for body 
weight

0.225
(2)

0.133–0.379

0.177
(1)

0.238
(3)

0.169–0.334

0.222
(6)

0.156–0.315

Elimination half-life 
or clearance/body 
weight

0.112
(70)

0.058–0.214

Clearance with no 
control for body 
weight

0.116
(2)

0.046–0.289

AUC/(dose/body 
weight)

0.147
(20)

0.072–0.301

0.118
(9)

0.071–0.197

0.149
(1)

0.132
(4)

0.052–0.336

0.137
(34)

0.070–0.269

AUC/dose with no 
control for body 
weight

0.187
(11)

0.107–0.326

0.073
(1)

0.271
(2)

0.200–0.367

0.184
(14)

0.099–0.344

Total adult uptake and 
pharmacokinetic 
observations

(57) (12) (4) (11) (175)
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TABLE 3. Summary of unweighted Log(GSD) variability observations for different
types of pharmacodynamic parameters

 

N

 

OTE

 

: Within each cell of this table, the geometric mean of the Log(GSD) observations is
given on the first line, the number of observations appears on the second line, and the third line
gives a 10%–90% range of the observations calculated assuming that the Log(GSD) values
themselves are log-normally distributed. For example, differences in the internal concentration
needed to produce a specific fraction of an individual’s maximal response in a measured param-
eter, such as specific changes on an electroencephalograph.

GI Tract Nervous 
system

Respiratory 
system

Cardiovascular 
renal system 

 

+

 

 
receptor-based 

effects

Other (e.g., 
eye, skin 
irritation)

All effects

Local (contact 
site) parameter 
change/external 
exposure or dose

0.357
(4)

0.272–0.468

0.357
(4)

0.272–0.468

Local (contact 
site) response/
external expo-
sure or dose

0.325
(1—stom-
ach pH)

0.475
(7)

0.208–1.087

0.481
(6)

0.238–0.972

0.465
(14)

0.226–0.959

Physiological 
parameter 
change/internal 
concentration 
after systemic 
delivery

0.252
(5)

0.191–0.331

0.056
(2—Na

 

+

 

 or K

 

+

 

 
excret./drug 

excret.)
0.042–0.075

0.164
(7)

0.062–0.434

Physiological 
parameter 
change/external 
(IV) systemic 
dose

0.195
(1—cispl-

atin 

 

signifi-
cant

 

 hearing 
loss)

0.195
(1)

Response/blood 
level or internal 
concentration 
after systemic 
delivery

0.206
(7)

0.103–0.412

0.519
(3)

0.375–0.720

0.502
(1— cata-

racts)

0.288
(11)

0.128–0.647

Response/exter-
nal dose (IV or 
oral admin.) 
without large 
dosimetric uncer-
tainty

0.497
(1—halo-

peridol dose 
limiting tox)

0.546
(1—ibu-

prophen den-
tal pain 

analgesia)

0.521
(2)

0.479–0.568

Response/exter-
nal dose with 
large dosimetric 
uncertainty (e.g., 
workplace epide-
miology)

1.33
(1—talc 
lung dis-

ease)

0.684
(3)

0.430–1.09

0.807
(4)

0.456–1.43

Total observa-
tions including 
pharmacody-
namic variability

(1) (14) (12) (9) (7) (43)
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FIGURE 2. Log-normal plots of 23 Cmax/body weight and 16 volume of distribution/
body weight interindividual variability observations.

FIGURE 3. Log-normal plots of 34 AUC/body weight and 70 T1/2 or clearance/body
weight interindividual variability observations.
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tend to include much larger estimates of interindividual variability than the pharma-
cokinetic observations. Furthermore, among the pharmacodynamic observations,
cases for which 

 

response

 

 is measured tend to show more variability than do cases for
which the endpoint is some degree of change in a physiological parameter. In our
schema, this difference is interpreted as indicating variability among people in func-
tional reserve capacity; the amount of change in a physiologic parameter needed to
cause different individuals to show a response—Step 8 in the outline given above.

 

STATISTICAL UNCERTAINTY IN THE ESTIMATES 
OF INTERINDIVIDUAL VARIABILITY

 

For continuous parameters, a standard statistical text

 

33

 

 gives a formula for 95%
confidence limits on the variance, 

 

σ

 

2

 

, of a normally distributed parameter as:

 and ,

where 

 

n

 

 is the number of data points, 

 

a

 

 and 

 

b

 

 are the 0.025 and 0.975 fractiles, re-
spectively, of a chi-squared distribution with 

 

n

 

 

 

−

 

 1 degrees of freedom, and  is the
observed unbiased estimator of the variance—the square of the ordinary standard de-
viation with 

 

n

 

 

 

−

 

 1 weighting. In general, any fractile of the confidence distribution
for 

 

σ

 

2

 

 can be calculated similarly by adjusting the fractile of the chi-squared distri-
bution.

n 1–( )Ŝ2

a
---------------------- n 1–( )Ŝ2

b
----------------------

Ŝ2

FIGURE 4. Log-normal plots of Log(GSD) values for three types of parameters that
include pharmacodynamic variability.
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TABLE 4. Detailed listing of pharmacodynamic variability observations at sites of direct
contact with the toxicant

Parameter and reference Chemical Route Log(GSD) 5%–95% conf. 
limits on 
Log(GSD)

Statistical 
weight = 
1/variance of 
LogLog(GSD)

Long term FEV1 change/
pack-year of smoking3

cigarette 
smoking

inhalation 0.279 0.25–0.31 1101

Specific airway resistance—
conc. needed for 100% 
increase in individual base-
line value18

methacholine inhalation 0.421 0.39–0.46 1986

FEV1 change in relation to 
CXT of ozone exposure 
(clinical)4

ozone inhalation 0.321 0.28–0.37 761

FEV1 increase by 
antiasthmatic15

salbutamol inhalation 0.431 0.31–0.61 120

Lowering of gastric pH 
below 219

pantoprazole oral 0.325 0.09–1.20 8

Nasal dryness20 ammonia inhalation 0.340 0.18–0.64 36

Throat irritation20 ammonia inhalation 0.156 0.10–0.25 67

Olfactory cognition—air 
concentrations needed to pro-
duce three levels of smell 
perception21

diallylamine inhalation 0.369 0.27–0.51 142

Nose irritation—slight or 
moderate21

diallylamine inhalation 0.803 0.49–1.33 57

Nose irritation—slight or 
moderate21

mono-
allylamine

inhalation 0.459 0.26–0.82 42

Nose irritation—slight or 
moderate21

triallylamine inhalation 0.735 0.59–0.91 310

Pulmonary discomfort—
slight and moderate or 
more21

triallylamine inhalation 1.038 0.78–1.38 180

Eye irritation—external air 
concentration causing four 
levels21

acrolein air—direct 
contact

0.301 0.23–0.39 229

Eye irritation20 ammonia air—direct 
contact

0.243 0.13–0.45 39

Skin hypersensitivity to chro-
mium (VI)3

chromium VI skin 0.989 0.84–1.17 511

Eye irritation—slight or 
moderate and above21

diallylamine air—direct 
contact

0.398 0.28–0.56 122

Skin irritation response to 
sodium laurel sulfate applied 
via skin patch22

sodium lauryl 
sulfate 

skin 0.797 0.53–1.20 87

Eye irritation—slight or 
moderate and above21

triallylamine air—direct 
contact

0.539 0.48–0.60 1228

Pneumoconiosis (two levels) 
in relation to cumulative talc 
air exposure (inc. dosime-
try)23

talc inhalation 1.330 0.78–2.25 52
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TABLE 5. Detailed listing of observations of systemic pharmacodynamic variability

Parameter and reference Chemical Route Log(GSD) 5%–95% 
conf. limits 

on 
Log(GSD)

Statistical 
weight = 

1/variance of 
LogLog(GSD)

Diuretic efficiency (ml/µg) (Drug induced urine 
flow/drug excretion rate)24

furosemide IV 0.048 0.03–0.07 74

Natriuretic efficiency (ml/µg)  (drug induced 
response/drug excretion rate)24

furosemide IV 0.066 0.04–0.10 74

EC50-effect site concentration producing 50% 
of predetermined maximal EEG changes25

alfentanil IV 0.214 0.12–0.38 43

EC50-concentration producing 50% max. 
monoamine oxidase-A inhibition26

befloxatone oral 0.194 0.14–0.28 117

EC50-effect site concentration producing 50% 
of a predetermined maximal EEG change25

fentanyl IV 0.302 0.17–0.54 43

Proportion of patients receiving more than 95% 
of their individual maximal response in relation 
to plasma conc.15

imiprimine oral 0.253 0.20–0.33 224

EC50-effect site concentration producing 50% 
of a predetermined maximal EEG change25

trefentanil IV 0.319 0.20–0.51 64

Significant hearing loss/one dose of cisplatin15 cisplatin IV 0.195 0.13–0.29 99

Haloperidol toxicity (minimum of four other 
signs mostly neurological)27

haloperidol oral 0.115 0.06–0.22 36

Ataxia/blood level28 MeHg diet 0.232 0.16–0.34 99

Deaths/blood level28 MeHg diet 0.128 0.06–0.28 24

Disarthria/blood level28 MeHg diet 0.186 0.08–0.45 19

Hearing defects/blood level28 MeHg diet 0.143 0.09–0.23 60

Paresthesia/blood level28 MeHg diet 0.382 0.27–0.53 127

Visual effects/blood level28 MeHg diet 0.458 0.33–0.63 135

High β2M urinary excretion vs. occupational 
blood conc X time4

cadmium inhalation 0.697 0.50–0.97 129

High β2M urinary excretion vs. urinary Cd4 cadmium diet 0.445 0.37–0.53 442

High β2M urinary excretion vs. urinary Cd4 cadmium diet 0.452 0.37–0.55 353

Cataracts in relation to TNT hemoglobin 
adducts4

trinitro-tolu-
ene

inhalation 0.502 0.37–0.69 144

Dose-limiting toxicity including malaise, neu-
rotoxicity, pericardial effusion29

suramin IV 0.497 0.19–1.27 16

Analgesia from dental pain (not taking medica-
tion at three and six hours after procedure)30

ibuprofen oral 0.546 0.36–0.82 85

High β2M urinary excretion in relation to diet, 
controlling for age (inc. dosimetry)31,32

cadmium diet, 
females

0.499 0.37–0.66 175

High β2M urinary excretion in relation to diet, 
controlling for age (inc. dosimetry)31,32

cadmium diet, males 0.631 0.42–0.95 86

High β2M urinary excretion vs. occupational 
air conc X time (inc. dosimetry)4

cadmium inhalation 1.016 0.73–1.42 129
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In model calculations we computed a large number of points on confidence dis-
tributions for log-normal distributions with different absolute values of Log(GSD)
and n. We found that the desirable statistical weight for our analysis, the reciprocal
of the variance of the LogLog(GSD) for each data set, was not affected by the abso-
lute value of the Log(GSD) estimates but could be simply described by an empirical
formula depending only on n: 

Weight = 10.6n − 10.33
(approximately proportional to n − 1).

For quantal response parameters we used the Haas17 spreadsheet-based likeli-
hood fitting system cited earlier to calculate ten equally spaced fractiles (from 0.05
through 0.95) of the confidence distribution for each Log(GSD). As can be seen in
the examples plotted in FIGURE 5, these confidence distributions appear to be well
described as log-normal. We simply used these values to derive the variance of the
corresponding LogLog(GSD) values. As for the continuous parameters, the recipro-
cal of this variance was used as the statistical weight in our later modeling.

MODELING THE COMBINED SUSCEPTIBILITY VARIABILITY 
FOR MEDIAN CHEMICALS—DEPENDENCE ON 

TYPES OF TOXICITY AND ROUTE OF EXPOSURE

If we assume that the interindividual variability, for each of several different steps
in the causal sequence, from contact rate to effect, is independent and log-normal,

FIGURE 5. Log-normal probability plots of the likelihood distributions for quantal
pharmacodynamic interindividual variability observations.
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then the population distribution of the overall variability in susceptibility can be de-
scribed simply as a log-normal distribution with variance equal to the sum of the log-
normal variances at the component steps. For example, for an inhaled chronic sys-
temic toxicant,

Based on this approach, we have developed a simple spreadsheet optimization
model to estimate the median-chemical Log(GSD) values for each causal step, from
external exposure to end response, that best correspond to our 226 observations. Giv-
en a set of starting values for the median-chemical Log(GSD) values for each causal
step, and the set of dummy variables assigned to characterize which kinds of vari-
ability are included in each observation, the model makes a prediction of the expect-
ed median-chemical Log(GSD) for that observation. Then, in a series of iterative
trials, the system calculates the set of median-chemical Log(GSD) values for each
causal step that minimize the sum of the squares of the observed versus the predicted
LogLog(GSD) values for all observations combined. This quantity is chosen for
minimization because of the earlier finding that both the variability (FIGS. 2–4) and
the uncertainty (FIG. 5) in Log(GSD) values appear to be reasonably described as
log-normal. Parallel analyses are conducted by minimizing the sum of squares with
and without the statistical weights derived in the previous section. In all cases the
Log(GSD) values for each step are constrained to be nonnegative, because a negative
values for a step-specific estimate of variability would be meaningless. TABLES 6–8
show the median-chemical Log(GSD) values for individual steps between contact
rate and end effects that result from our model. For each table, the individual steps
representing specific types of variability are shown in the first column. Each subse-
quent column represents a set of median-chemical Log(GSD) estimates that results
from a progressive series of selections from the data base of variability observations.
For comparison, the second column in each table gives results from a previous un-
weighted analysis11 of the 126 variability observations that were available as of May,
1997. TABLE 6 shows results of analyses that only include physiological parameter
changes and responses at sites of direct contact with external agents (i.e., those
observations that were individually listed in TABLE 4). TABLES 7 and 8 show analy-
ses of the full data base with progressive exclusions so that the final three columns
combine the contact-rate and pharmacokinetic observations only with pharmacody-
namic data on systemic toxic responses (excluding the direct-contact observations).
TABLE 7 and the upper part of TABLE 6 show the results of unweighted analyses, in
which each observation is treated equally in the optimization process. TABLE 8 and
the lower part of TABLE 6 show the results using the statistical weights, in which the
deviation of each observation from the corresponding model prediction is weighted
in proportion to the inverse of the variance of the primary observation in the optimi-
zation.

Comparing the first numerical column with the subsequent columns in these ta-
bles, it can be seen that the expansion of the data base from 126 to 226 observations
has not, in itself, given rise to major changes in the overall picture of step-specific

Log(GSD)total

Log(GSD)total( )2 Log(GSD)fraction absorb( )2+

… Log(GSD)functional reserve( )2+ +
=
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TABLE 6. Summary of median variability for specific steps for direct contact
physiological parameter change and response

Previous 
unweighted 

results11

Data only 
including direct 
contact obser-

vations

Data only 
including direct 
contact respira-

tory system 
observations

Direct contact 
observations 

for non-respira-
tory responses

A. Unweighted Analysis

Number of observations 6 18 11 7

All steps up through 
physiological parame-
ter change/active site 
availability

0.393 0.357 0.357 allocation not 
meaningful—
all observa-

tions are 
responses

Functional reserve 
capacity—change in 
baseline physiological 
parameter needed to 
pass a criterion of 
abnormal function

0.499 0.298 0.314 allocation not 
meaningful—
all observa-

tions are 
responses

Summary Log(GSD) for 
direct contact effects

0.635 0.465 0.475 0.455

B.  Weighted Analysis

Number of observations 6 18 11 7

All steps up through 
physiological parame-
ter change/active site 
availability

0.393 0.357 0.357 allocation not 
meaningful—
all observa-

tions are 
responses

Functional reserve 
capacity—change in 
baseline physiological 
parameter needed to 
pass a criterion of 
abnormal function

0.499 0.455 0.470 allocation not 
meaningful—
all observa-

tions are 
responses

Summary Log(GSD) for 
direct contact effects

0.635 0.578

NOTE: The bold-face numbers are used for subsequent risk calculations in TABLE 11.

0.590 0.574
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variabilities. The largest single contributor to overall variability is the last step or two
in the process, representing pharmacodynamic variability (2–4 lines from the bottom
in TABLES 7 and 8). What is somewhat different is that the weighted analyses, done
here for the first time (TABLE 8), indicate somewhat larger variability than the un-
weighted analyses. Evidently the statistically stronger data sets happened to indicate
larger amounts of variability than some of the statistically weaker data sets.

Progressing to the third numerical column in TABLES 7 and 8, it can be seen that
excluding the very small number of data sets that have values for young children
does not materially change the overall results. Furthermore, excluding the four data
points that are likely to include substantial uncertainty in individual dosimetry
(fourth numerical column) results in very little difference in the estimates. By con-
trast, excluding the direct contact observations, moving from the fourth to the fifth
numerical columns in these tables, does cause a noticeable change in the variability
allocated to the final three steps. A modest increase in variability for active site avail-
ability/general systemic availability is more than offset by reductions in the two last
steps. This is further modified when systemic neurological and non-neurological ob-
servations of pharmacodynamic observations are segregated in the final two columns
(although it should be stressed that the data are too few at this stage for us to be con-
fident that the suggestion that non-neurological endpoints are more variable will sur-
vive as additional information accumulates).

One advantage of having these variability results disaggregated by causal steps in
the pathway from contact to effect, is that one can recombine the step-specific results
to estimate overall variability in susceptibility for different types of toxicants pre-
sented to people in different media. This is done by simply combining the logarith-
mic variances for the relevant steps, as illustrated in the previous section with the
equation for the overall variability of an inhaled chronic systemic toxicant. TABLES 9
and 10 show the overall Log(GSD) values that result from a variety of such combi-
nations in the same format that was previously used for TABLES 7 and 8. The aggre-
gate Log(GSD) values for agents causing effects at the sites of direct contact with
external agents were given previously in TABLE 6.

The bold face entries in TABLES 6 and 10 represent the bottom line results that we
believe are most salient as points of departure for estimating risks for different cat-
egories of toxicants. These are used in later risk calculations. Of these, the results in
the second line of TABLE 10 (for an oral agent whose dose is expressed in mg/kg,
without allowing for contract rate variability) provide the single most relevant set of
variability estimates for comparison with expectations for the original Lehman-
Fitzhugh food additive/pesticide residue context. Without further calculation, how-
ever, it can be seen that, because most of the interindividual variability indicated by
the present data base is associated with the pharmacodynamic steps, the details of
route of exposure for systemic toxicants exert mainly second-order effects. Compar-
ing TABLE 6 with TABLE 10, however, it can be seen that there is an appreciable ten-
dency for the direct-contact responses to be associated with greater overall
variability than the systemic toxic responses.
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ASSESSING THE SPREAD OF VARIABILITY 
VALUES AMONG CHEMICALS

Policies that utilize safety/uncertainty factors as a guide to risk management do
so repeatedly for many chemicals with different toxic effects. Each risk management
choice under such a system essentially makes a random draw from a group of chem-
icals and effects for which the mixed human population is likely to have different
amounts of real interindividual variability in susceptibility. It is therefore important
to assess the extent of real variation among chemicals/effects in the Log(GSD) val-
ues for human susceptibility.

One indicator of the possible extent of this variation is the spread of Log(GSD)
values for similar types of parameters, such as the distributions plotted in
FIGURES 2-4. The slopes of the regression lines in these figures indicate
LogLog(GSD) standard deviations within different parameter types in the range of
0.22–0.33. Unfortunately, these spreads include both real Log(GSD) variability
among chemicals and additional spread due to uncertainties in the estimation of the
individual Log(GSD) values from the samples of people studied. The real variability
is, therefore, likely to be somewhat smaller.

To distinguish real variability among chemicals from uncertainties in the estima-
tion of the individual Log(GSD) values we borrow a technique from meta analyses
and array the observed minus model predicted Log(Log(GSD) value deviations by
the statistical strength of the individual data points, in the form of funnel plots.34 The

FIGURE 6. Funnel plot for pharmacokinetic interindividual variability observations.
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expectation here is that the points will form a funnel shape with a wider variation in
observed minus predicted results for the weaker data points on the left side of these
plots, narrowing to a smaller residual variation (small part of the funnel) for the
stronger points at the right. The basic idea is that the spread at the wider end of the
funnel includes both real and chemical variation in Log(GSD) for a given parameter
and measurement errors. At the narrower end of the funnel, however, the statistically
stronger data points may have measurement errors that are small relative to the real
variability among chemicals. FIGURES 6 and 7 show such plots for the individual
pharmacokinetic and pharmacodynamic observations, respectively. FIGURES 8 and 9
show the observations grouped together to better reveal numerical trends in the
spread among chemicals, quantified as the root mean square error (equivalent to a
standard deviation) of the observed minus predicted LogLog(GSD) values. It can be
seen that in each case the plots appear to converge on the right to a between-chemical
standard deviation of about 0.14 (the weighted average of all the data in the indicated
regions from both plots is 0.138). This number is considerably less than the 0.22–
0.32 range for the raw standard deviation of all the LogLog(GSD) values within var-
ious parameter types. In subsequent risk calculations we will therefore assume that
the susceptibility Log(GSD) values for different chemicals are characterized by log-
normal distributions with geometric means equal to the bold face values in TABLES 6
and 10, and a geometric standard deviation equal to 100.138 = 1.37.

FIGURE 7. Funnel plot for pharmacodynamic interindividual variability observations.
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FIGURE 8. Relationship between root mean square prediction error and Log(statistical
weight) for pharmacokinetic interindividual variability observations.

FIGURE 9. Relationship between root mean square prediction error and Log(statistical
weight) for observations with pharmacodynamic interindividual variability.
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TABLE 11. Weighted analysis: implications of the spread of variability results among
chemicals; expected fraction of people showing a response at one tenth of the dose
that produces the response in 5% of exposed people

50% 
confidence 

(median 
chemical) risk

Arithmetic 
mean 

(expected 
value)

95th percentile 
chemical risk

Ingested systemic chronic toxicant 
(including variability in ingestion 
behavior)

2.2 E–04 6.8 E–04 3.0 E–03

Chronic toxicity from an orally adminis-
tered drug with perfect compliance 
(no contact rate variabity)

7.9 E–05 3.7 E–04 1.8 E–03

Inhaled chronic systemic toxicant 8.1 E–05 3.8 E–04 1.8 E–03

Chronic systemic toxicant delivered by 
other route

1.1 E–04 4.4 E–04 2.1 E–03

Ingested systemic acute toxicant 
(no elimination rate variability)

1.8 E–04 5.9 E–04 2.7 E–03

Acute toxicity from an orally adminis-
tered drug with perfect compliance 
(no contact or elim. rate variabity)

5.4 E–05 3.0 E–04 1.5 E–03

Inhaled systemic acute toxicant 
(no elimination rate variability)

5.6 E–05 3.1 E–04 1.5 E–03

Systemic acute toxicant delivered by 
other route

7.6 E–05 3.6 E–04 1.8 E–03

Chronic systemic neurological toxicity 
for an ingested drug with perfect compli-
ance

2.8 E–06 7.0 E–05 3.9 E–04

Chronic systemic non-neruological toxic-
ity for an ingested drug with perfect com-
pliance

4.9 E–04 1.1 E–03 4.3 E–03

Chronic systemic neurological toxicity 
for an inhaled toxicant

3.1 E–06 7.3 E–05 4.1 E–04

Chronic systemic non-neurological toxic-
ity for an inhaled toxicant

4.9 E–04 1.1 E–03 4.4 E–03

Acute systemic neurological toxicity for 
an inhaled toxicant

9.4 E–07 4.3 E–05 2.4 E–04

Acute systemic non-neurological toxicity 
for an inhaled toxicant

4.2 E–04 1.0 E–03 4.1 E–03

All direct contact effects 3.7 E–04 9.2 E–04 3.8 E–03

Direct-contact respiratory effects 4.2 E–04 1.0 E–03 4.0 E–03

Direct-contact non-respiratory effects 3.5 E–04 8.9 E–04 3.7 E–03
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IMPLICATIONS FOR RISK AT ONE TENTH OF AN ED05 DOSE

On this basis, TABLE 11 shows the incidences of response that are expected for
exposure of populations at one tenth of an ED05 dose for different chemicals/re-
sponses within and among different exposure and toxicity types. For the second line
of the table, the case that most resembles the original Lehman-Fitzhugh context of
an orally-administered drug or food additive that causes chronic systemic toxicity af-
ter presentation at a defined mg/kg dose, the risk for a median chemical is expected
to be slightly less than one in 10,000; but a chemical that has more variability than
95% of other chemicals would be expected to cause an incidence of effect exceeding
one in 1,000. Risks for some other categories of exposure mode and response extend
up to several per 1,000 at the 95% confidence level. Thus, if the underlying estimates
of the extent of log-normal response variability are approximately correct, use of the
traditional tenfold safety/uncertainty factor, without any other protective factors,
would appear to run risks of response incidences that are large enough to be of some
concern, although they would generally be difficult to detect directly at those expo-
sure levels in any but the largest and best controlled epidemiological studies of ef-
fects with low background levels of response.

In general, however, the tenfold uncertainty factor for interindividual variability
is not used in isolation, but is combined with other uncertainty factors (e.g., for in-
terspecies projections or use of subchronic data to predict chronic response levels)
many of which may tend to provide additional protection in the cases of typical
chemicals.1,7,35 Full quantitative assessments of the incidences of response expected
in these cases must take the uncertainty distributions of these other factors into ac-
count.

IMPLICATIONS FOR MEAN EXPECTED VALUE INCIDENCES OF 
RESPONSE AT VARIOUS FRACTIONS OF ED05 EXPOSURES

In a number of cases, legislative and administrative authorities concerned with
the economic impacts of measures intended to protect human health have requested
that quantitative analyses be done that would facilitate juxtapositions of health and
economic effects of proposed actions.36 For such comparisons, it is desirable to have
arithmetic mean expected value estimates of health response and health benefits of
control, in addition to the upper confidence limit estimates that others may desire in
order to make judgments of the equity of the risks imposed on protected parties.37

FIGURE 10 shows log-log plots of the results of these arithmetic mean calculations
for various exposure mode and response categories as a function of dose reductions
below a defined 5% incidence level at the ED05. From the correspondence of the
points to the straight lines, it can be seen that these risk versus dose functions are
well described as power-law relationships with exponents ranging from about 1.6 to
3.2 for the different cases shown.

In conclusion, the generic analysis of the ensemble of all studied chemicals and
toxic responses provided here permits preliminary pathway-specific estimates to be
made of likely health benefits in the absence of detailed information about the
Log(GSD) values associated with a particular chemical and toxic response. 
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CAVEATS AND LIMITATIONS

This analysis should be understood as an early effort on the road toward quanti-
tative analyses of effects that are produced by threshold (homeostatic system over-
whelming) mechanisms. Not all non-cancer effects may be best treated in this way.
Several other strategies for quantification dependent on different features of causal
mechanisms were summarized in a previous paper.4 Additionally, even within the
context of effects whose mechanisms lend themselves to treatment as individual
threshold responses, several notes of caution are in order:

• First, we have assumed that the data base of variability observations, for a
highly diverse set of chemicals and toxic responses, is reasonably representa-
tive of the interindividual variability in cases that might be presented for eval-
uation by agencies charged with managing specific types of non-cancer risks.
Some chemicals for which we have pharmacodynamic adverse effect informa-
tion may have had that information collected and interindividual variability
quantified just because there has been some visible toxic problem to be inves-
tigated by epidemiologists or toxicologists. The current data base may not be
an unreasonable reflection of the spectrum of chemicals and effects encoun-
tered by an agency such as the U.S. Occupational Safety and Health Adminis-
tration, which generally deals with problem chemicals for which toxicity of
some sort has usually been noticed in human workers at not-uncommon expo-
sure levels. However, these sets may not be entirely similar to the general pur-
pose chemicals that are likely to be presented for decision-making by a

FIGURE 10. Log Log plots of model projections of the mean risk of toxicant exposures
at various fractions of an ED05 dose or exposure level.
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regulator of food additives, for example; or even for the EPA Office of Toxic
Substances, that evaluates new general industrial chemicals.

• Second, throughout this analysis we have assumed log-normal distributions of
individual susceptibility in people, and, in the final analysis, log-normal dis-
tributions for the Log(GSD) values themselves. These assumptions appear to
be generally compatible with the available data, but when projections are
made to very low effect levels, the unsuspected presence of discrete subpopu-
lations with unusual sensitivity could cause departures from population log-
normality that would add uncertainty to the estimates of low dose risks.

• We have also implicitly assumed that each parameter included in our variabil-
ity observations has a direct proportionate and independent effect on individ-
ual susceptibility (the dose at which an individual will experience a response),
and that the combined effects of all the variability parameters are simply mul-
tiplicative. Correlations (positive or negative) between contact rate, pharma-
cokinetic, and pharmacodynamic variability parameters could appreciably
modify the expected proportions of people who appear at the extreme tails of
the population distribution of susceptibilities.

• Finally, we have not analyzed the measurement error and short term within-
individual variability implicit in the individual estimates of human Log(GSD)
values for various parameters. This could lead to a tendency to estimate higher
risks than are actually likely to be present for chronic exposures. On the other
hand, the populations studied for the original observations were generally less
diverse than actual human populations likely to be exposed to toxicants.
Investigators rarely include in their study groups very old or very young peo-
ple, or people known to be suffering from serious pathologies that might make
them specially vulnerable to the toxicants. This would be expected to result in
understated risks relative to those likely to be experienced by more diverse
groups of exposed people.

Nevertheless, recognizing these limitations, later efforts can strive to gather more
extensive and better data, quantify as yet unanalyzed sources of uncertainty and vari-
ability, and eventually provide the foundation for risk analyses that can more frankly
and fairly inform decision-makers, and the public, about the likely benefits of alter-
native policies to control exposures to chemicals posing toxic hazards.
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