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A New Method for Determining Allowable Daily Intakes. CRUMP, K. S. (1984). Fundam,
Appl. Toxicol. 4, 854-871. The usual method for establishing allowable daily intake (ADI) for -
a chemical involves determining a no-observed-effect level (NOEL) and applying a safety factor.
Even though this method has been used for many years, there appear to be no general guidelines .
or rules for defining a NOEL. The detérmination of a NOEL is particularly uncertain for lesions
which occur naturally in untreated animals. NOELs also have shortcomings in that smaller
experiments tend to give larger values (this should be reversed because larger experiments can
provide greater evidence of safety) and that the steepness of the dose response in the dose range
where effects occur plays little or no role in the determination of a NOEL. This paper proposes
and illustrates the use of a “benchmark dose” (BD) as an alternative to a NOEL. A BD is a
statistical lower confidence limit 1o a dose producing some predetermined increase in response
rate such as 0.01 or 0.i. The BD is calculated using a mathematical dose-response model. This
approach makes appropriate use of sample size and the shape of the dose—response curve. The
BD normally will not depend strongly upon the mathematical model used because the method -
does not involve extrapolation far below the experimental range. Thus the method sidesteps
much of the model dependency often associated with extrapolation of carcinogenicity data to
low doses. The method can be applied to either “quantal” data in which only the presence or
absence of an effect is recorded, or “continuous™ data in which the severity of the effect is
also noted. © 1984 Society of Toxicology.

I. INTRODUCTION (ACGIH, 1976). The term “daily inta

(DIL) has also been employed. In this]

A common approach to quantifying permis-
sible human exposure to a toxic agent is to
establish a no-effect level using experimental
animal data and then to apply a safety factor-—
or uncertainty factor, as it is sometimes
called—to arrive at a permissible exposure
level for humans. Allowable daily intakes for
chemicals (ADIs), such as were employed by
EPA in calculating water quality criteria (EPA,
1980), furnish one example of such calcula-
tions. Threshold limit values (TLVs), which
are provided by the American Conference of
Government and Industrial Hygienists (AC-
GIH) for many chemicals to which workers
are exposed, are calculated in a similar fashion
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we will refer to ADIs as a matter of’
nience, although the discussion will
all such estimates. The calculation of 2
by applying a safety factor to a no-effe
will be referred to as a NOEL-SF apn
In recent years, ADIs for carcinog
sometimes been calculated by fittin;
matical models to experimental dose-
data. These models are used to estimy
dose corresponding to some specified
amount of additional risk. EPA (1980
this approach to set water quality crité
carcinogens, and used a NOEL~SF
for noncarcinogens. This dichotomy wa
upon the supposition that carcinogens;
likely to have a threshold; consequel
NOEL-SF approach would be inappx
because it assumes the existence of a th
The object of this paper is to presen




patical and statistical approaches to
fiting ADIs for effects other than cancer.
next section some potential shortcom-
the NOEL-SF approach are discussed.
owing section describes some math-
jal models and related statistical meth-
fHiese methods have two features that are
Bhat novel. First, some of the models
jo the possibility of thresholds below
?'o effect will occur. Second, methods
gested for application to “severity” or
uous ’ data rather than just on inci-
Rdata. In the next section, a recommen-
§:s made for replacing the NOEL in the
E SFapproach with a “benchmark
his benchmark represents a statistical
seonfidence limit on the dose corre-
$he to a small increase in effect over the
pund level. The amount of increase in
Bsed to define the benchmark is small
liso that the estimate of the benchmark
R reflect the shape of the dose-response
ind it is large enough so that the lower
Pince limit will not depend critically
e mathematical model used in its cal-
b. A number of examples are presented
g the calculation of benchmark doses
fparing them with NOELS.

FFICULTIES WITH THE NOEL-
TY FACTOR METHOD

bor of a NOEL

ficst problem one faces with the NOEL
bis one of definition: Just what con-
2 NOEL? For effects which are un-
Pus because they do not occur in un-
"i: himals, such as acute toxicity or the
gice of rare tumors, determination of

Can be reasonably straight-forward;
RCt is seen in any animal a NOEL is
ficd—otherwise a NOEL is not deter-
fror less well-defined effects, such as
g0 cloudy swelling of the liver, de-
jron of a NOEL requires the use of
2t This problem is compounded when
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considering effects which have nonzero back-
ground levels. Consider, for example, liver
weight; all animals have nonzero background
levels of this “effect.”” Liver welghts constitute
a continuous measure (as opposed to “inci-
dence” or “quantal” data) which can be ob-
tained for each animal. It might happen that
the average liver weight in some, or even all,
of the treated groups is above that of the con-
trol group. Since this could happen by chance,
usually the NOEL is taken to be the largest
dose for which the increase in liver weight is
not statistically significant. However, such a
decision can seem rather arbitrary when there
is a smooth dose~response trend which over-
laps the region where the increase is not sta-
tistically significant.

A NOEL must be one of the experimental
doses.” This constraint can appear unneces-
sarily restrictive in some case$. Consider, for
example, an experiment to detect liver effects
which involves three dose levels. Suppose at
the highest dose level there are very severe
effects, at the middle there are barely discern-
ible effects, and at the low dose no effects at
all are seen. Then the low dose likely will be
designated the no-effect level even if the dose-
response from the middle to high dose indi-
cates that a much higher dose (one slightly
less than the middle dose) would have had no
discernible effect. Furthermore, if the data at
the lowest dose had not been available, this
experiment could not be used at all to define
a no-cffect level.

Effect of Sample Size

It would be appropriate for larger studies
to tend to produce larger ADIs because they

2 A NOEL is not an inherent property of the animal
system but depends upon the experimental design and
outcome. Thus it represents, in statistical terms, a statistic
or an estimate of a “true no-effect level.” This latter term
refers to the highest dose which is absalutely safe and thus
is an inherent property of the animal system, or, in sta-
tistical terms, a parameter. For an effect for which no
threshold exists, the “true no-effect level” is zero.
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involve less random variation. However, the
NOEL approach has the opposite tendency.
A larger study has a better chance of showing
a statistically significant result and thus wili,
on average, produce a smaller ADI. As an
illustration, suppose at the control and one
treated dose in a study involving 100 rats per
dose, the resulting mean liver fat per animal
was 15.1 g in the control group and 18.4 g in
the treatment group with a standard deviation
of 10.0 g in each group. Then the ¢ statistic
for a difference between the two groups is 3.3,
which is significant at the 1% level. However,
if the identical results came from a study in-
volving only 25 rats per group, the ¢ statistic
is 1.14, which is not significant at the 10%
level. Thus, a NOEL would possibly be esti-
mated for the smaller study but not the larger.

Therefore, rather than encouraging larger
studies to demonstrate greater evidence of
safety, the NOEL-SF instead penalized pro-
ponents of chemicals for conducting large
studies. This topsy-turvy state of affairs has
made it necessary for regulatory agencies to
set minimally acceptable sample sizes. Quite
naturally, many studies use these minimal
values.

Utilization of Dose Response

A NOEL is determined solely by infor-
mation relating to whether or not an effect
was observed; the magnitude of positive effects
and relationships among the effects at the var-
ious doses (i.e., the dose-response trend) is
largely ignored. Consider for example the hy-
pothetical data in Fig. 1. Experiment A shows
a sharply increasing dose response. Experi-
ment B shows a much flatter dose response,
which 1is, in fact, consistent with a linear re-
sponse through the origin. It appears, because
of the sharp decrease in response with de-
creasing dose in-Experiment A, as opposed to
Experiment B, that the NOEL for A should
be larger than the NOEL for B. However, be-
cause the response at dose d,, was barely sig-
nificant, the NOEL for Experiment A is d;,
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O~ results from experiment

dja~ NOEL from experiment

dog~ NOEL from experiment

% of Animals Responding

/A

dg T‘m dup faa
Dose

FiG. 1. Hypothetical responses with 95% conf
limits for two experiments.

which is less than the NOEL day for
ment B. The dose-response methods
discussed in later sections are capable of i
utilization of dose-response trends.

The NOEL-SF Approach Can Entail
essary Restrictions and Expense

Consider the following scenario: A co
wishing to market a new product imple
a thorough toxicological testing prog
required by the regulatory agency inv
Included in this program is a 2-year ¢
toxicity and carcinogenesis bioassay, -
two-generation reproduction and terat
study. Each study involves three treatme:
one control group with doses and sampl
approved by the agency. The reproductio
teratology study is negative. In fact, the
animals reproduce better than the contr
imals. This is apparently related to th
that the control animals are obese. The 78
study likewise shows no effects of treatgh
except for a dose-related weight red
which is apparently due to the fact th
animals were fed the chemical in such
concentrations that their food was dista
As illustrated in Fig, 2, this weight loss ft




- results from initiol study

= results from follow-up study

. Hypothetical average weights with 95% confi-
its from two studies (see text for description).

.

tdose~response trend and the effect is
y significant at the lowest dose tested.
ncy rules that a no-effect level has not
ermined and thus there is no basis
ating a ADIL. The company is then
to conduct another 2-year study. This
o uses three treatment levels, the
f which coincides with the lowest used
evious study. A dose-response trend
btained in the follow-up study as il-
in Fig. 2. The data at the highest
oduce almost exactly the results in
Biier study at that dose level. The weight
the middle dose in the follow-up study
mally significant and the average weight
w dose is comparable to that of the
¢ &roup. The agency rules that the low
¥ the follow-up study is a NOEL; an
then calculated by applying a safety
nd the company is finally allowed to
ts product.

2 shows that the follow-up study was
and only verified the dose-re-
trend of the initial study. If dose-re-
hethods had been used for determining
£ extra expense of the follow-up study
2-year delay could have been avoided.
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Arbitrariness of Safety Factor

The NAS Safe Drinking Water Committee
made the following recommendations for un-
certainty factors (safety factors):

1. Valid experimental results from studies on
prolonged ingestion by man with no indication
of carcinogenicity.

Uncertainty Factor = 0.

2. Experimental results of studies of human
ingestion not available or scanty (e.g., acute ex-
posure only). Valid results of long-term feeding
studies on experimental animals or in the ab-
sence of human studies, valid animal studies on
one or more species. No indication of carci-
nogenicity.

Uncertainty Factor = 100.

3. No long-term or acute human data. Scanty
results on experimental animals. No indication
of carcinogenicity.

Uncertainty Factor = 1000,

These uncertainty factors are used in every
case as a divisor of the highest reported long-
term dose which is observed not to produce any
adverse effect. (NAS, 1977)

The application of a 100-fold safety factor to
results from long-term animal studies is a long-
standing practice. It has be¢n interpreted as
resulting from the product of two 10-fold
safety factors: one factor to account for animal-
to-animal variation, and another to translate
results from animal to man (Weil, 1972).
However, the use of the 100-fold safety factor
probably developed simply because some op-
erational basis for setting allowable exposures
was needed and a factor of 100 seemed “‘rea-
sonable” or “prudent.” The fact that humans
have 10 fingers undoubtedly played a role in
the specific factor selected.

When a safety factor is applied it is im-
plicitly assumed that a threshold exists and
the resulting ADI is below the threshold and
hence safe. However, whether a threshold ex-
ists for a specific effect and, if so, whether the
ADI is below that threshold are open to ques-
tion. Also, as economic co$ts of regulations
become more critical, there is increasing need
for balancing the level of safety provided with
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the costs involved. The NOEL-SF approach
does not lend itself to cost-benefit analyses.

1. FITTING DOSE RESPONSE
MODELS TO TOXICOLOGICAL DATA

Quantitative toxicological data are basically
of two types: quantal and continuous. Quantal
or incidence data specify the number of an-
imals affected, but not the degree of harm.
The numbers of animals with tumors or some
genetic anomaly are examples of quantal data.
On the other hand, with continuous data the
level of harm is specified for each animal. Or-
gan weights, triglyceride levels in livér, and
serum measurements are examples of effects
that are usually recorded as continuous data.

Dose Response Methods for Quantal Data

Quantal data from a toxicological experi-
ment can be represented as a collection of
triplets (N;, X;, d)—one triplet for each treat-
ment or control group—where A, is the num-
ber of animals in the /th group, X; is the num-
ber of affected animals, and d; is the dose. Let
P(d) represent a dose~response model appli-
cable to quantal data, where P(d) is the prob-
ability that an effect will occur in an animal
subject to a dose 4. The parameters of the
model can be estimated by fitting the model
to quantal dose-response data using maxi-
mum likelthood procedures. A number of
dose-response models have been suggested for
use with cancer data. Some of these, such as
the one-hit, multistage, multihit, and Weibull
models can be derived from detailed assump-
tions about carcinogenic mechanisms. Other
models, such as the probit or logit models,
can be thought of as representing 'the distri-
bution of individual tolerances in a large pop-
ulation (Krewski and Van Ryzin, 1981).

In the next section some ways arg suggested
for applying mathematical models to non-
cancer data. The toxic endpoints to which
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these methods could be applied are oy
diverse mechanisms, most of which axe
understood. Therefore, it seems tha
not be fruitful to attempt to develep
response models from detailed asgyy
regarding these mechanisms. Insteaq
pose the use of relatively simple gen"
els. For illustrative purposes we shalj ¢
the following models: the quanty]
regression (QLR) model

P(d) = c+ (1 = o){1 ~ exp[—q\(d

for
=¢ ford<d,

where0 < c< 1,dp = 0, q; = 0; the g
polynomial regression (QPR) model

Pd)=c+ (1 -o){l ~ exp[—aq\(d -
— v o= qld ~ dp)]} for
=¢ ford<d,

where 0 < c< 1, dy 20, ¢, =0 for
..., k; the quantal Weibull (QW) m,

Pdy=c+ (1 —ofl — exp(-'ad"y

where 0 < ¢ < 1,a> 0,and k > 1;:
log-normal (LN) model

Pdy=c+ (1 —-c)Na+ bloga

where0 <c< 1, b2 1and Nisthe
normal distribution function.
Readers familiar with the carci
dose-response literature will recognize
(2) as slightly modified versions of,
tively, the one-hit and multistage
applied to carcinogenesis data (Kre
Van Ryzin, 1981). Each has been m
here to include a threshold dose d,; dos@
low this threshold produce no effect
these models allow for the possibili
thresholds could exist for some effe
ever, the models could be applied v
threshold fixed to 0. Although we h
done so, thresholds could also be incl
the Weibull and log-normal models.
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that the restrictions k = | and b > |
umed for the Weibull and log-normal
respectively, Some restrictions of this

' scem necessary with these models; oth-
e these models can exhibit very extreme

logically implausible behavior. The re-
n k = 1 was selected for the Weibull
because k < | corresponds to a su-
ar curve shape which is implausible for
logical effect (Crump, 1984). Although
riction b = | for the slope parameter

fiog-normal model does not have a strong

cal basis, it does have a precedent, as
ecommended by Mantel et al. (1975)

sponse Methods for Continuous Data

inuous dose-response data consist of
level and the response level for each

B With most continuous effects there
Bvariation about a nonzero value in the

oup. There has been little experience
ng dose~response models to such
possible to convert continuous data
data by considering all animals with
beyond a particular value as “af-
*and all others as “unaffected.” How-
i1s procedure entails a considerable loss
ation as well as requiring the arbi-
ice of a cut-off value. The following
makes more complete use of the data.
ethod will be based upon the sup-

ki that the responses in an animal group
0 a dose d; are normally distributed
n m(d;) and variance o?. There is
Meoretical reason and a pragmatic rea-
assuming the normal distribution.
the Central Limit Theorem of prob-
prcory (Loeve, 1963) the sample means
proximately normally distributed for
nples regardless of the form of the
g distribution. Second, with the nor-
bution, maximum likelihood meth-
be applied knowing only the doses
d;, the numbers of animals at each

» g, and the corresponding sample

means and standard errors (x;, 5}, (X3, §3),
..., (Xg, Sg). If a non-normal distribution
were assumed, maximum likelihood methods
would require knowledge of the individual
animal responses, which usually are not readily
available. The choice of the normal distri-
bution is not a critical decision as this distri-
bution only determines thé error structure,
and not the dose response. The mean function
m(d), which represents the average response
at a dose d, determines the dose response. We
do not require any assumptions regarding the
variances (other than that they are finite); it
is not necessary to assume, for example, that
the variances in the different dose groups are
all equal.

For illustrative purposes, we will consider
the following forms for m(d): the continuous
linear regression (LCR) model

m(d)=c+ ql{d— dy) ford=d,
=c ford<dy, (5

where dy = 0, but ¢ and g, are unrestricted;
the continuous polynomial regression (CPR)
model

m(d) = ¢+ qd — do} ++ + -+ qdd — do)*
ford=d,

=¢ ford <d, (6)

where dy = 0 and the g/s are restricted to be
either all positive (increasing dose response)
or all negative (decreasing dose response); and
the continuous power (CP) model

m(d) = ¢ + qi(d — dy)~. (7N

These models are analogous to (1), (2), and
(3), which were suggested for use with quantal
data. ,

With both quantal and continuous data, in
addition to the selection of a dose-response
model, the proper use of statistical confidence
limits is also of critical importance. Often,
different confidence limit procedures yield dif-
ferent results; this makes it important to use
the same procedures when comparing dose-
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response models. A standard method for
computing confidence limits is to base them
upon the asymptotic normal distribution of
maximum likelihood estimates. However,
these confidence limits have been shown to
behave poorly in a low dose extrapolation set-
ting (Crump and Masterman, 1979; Krewski
and Van Ryzin, 1981; Crump and Howe,
1983); the upper and lower limits are often
too close together to be believable. Further,
these limits are not invariant under parameter
transformations, and different transformations
applied to the same model at low doses can
yield vastly different confidence bounds. Cox
and Lindley (1974) noted these difficuities in
a more general context, and argued that con-
fidence limits based upon the asymptotic dis-
tribution of the likelihood ratio statistic ““can
be expected to behave much more sensibly”
than those based upon the asymptotic nor-
mality of maximum likelihood estimates.
Crump and Howe (1983) reviewed confidence
limit procedures for use in dose-response
evaluations and recommended limjts based
upon the distribution of the likelihood ratio
statistic as the method of choice. This method
for constructing confidence limits is outlined
in the Appendix and will be used exclusively
throughout this paper.

IV. THE BENCHMARK-SAFETY
FACTOR METHOD FOR
COMPUTING ADIs

In this section we examine the implications
of modifying the NOEL-SF method for cal-
culating ADIs by replacing the NOEL by a
“benchmark dose’ {BD) calculated using the
methods described in the last section. A BD
is defined as a lower statistical confidence limit
for the dose corresponding to a specified in-
crease in level of health effect over the back-
ground level. The increased level of effect upon
which the BD is based would be near the lower
limit of the experimental range; i.c., near the
lower Limit of increases in health ¢ffects which
can be measured with reasonable accuracy in
toxicological studies. This value is estimated
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to be something on the order of a 10g,
from background at typical samp},
Benchmark doses calculated in thig
will have several advantages over
They will reflect the dose-response g
a much greater degree than NOELg,
also make more reasonable use of sampy
(larger experiments will tend to produce?
BDs, which is not true of NOELs), It
be necessary to define a NOEL in g4
determine an ADIL Because these B
respond to risks in the experimental
their value will not depend strongly upg
particular dose-response model used ig
calculation. ;

For quantal data we define the BD
dose d which corresponds to a specified’
for the extra risk

[P(d) — P(O)/[1 ~ P(O)].

Extra risk can be interpreted as the prol
of an effect at dose 4 given that no effect
have occurred in the absence of the do
interpretation is valid irrespective of v
there is independent action between th
ground and the stimulus. Extra risk
greater weight upon the same increase
for a common lesion than for a rare
For example, it takes an increase of
the background level for a lesion with
background rate to attain a 10% extsl
compared to only a 5% increase for
with a 50% background rate. Because
property, some may prefer using the ad
risk P(d) — P(0) to extra risk.

For continuous data we define the §
be a dose 4 which corresponds to a
amount of absolute change in the mea
relative to the mean value in the ab
the dose—i.e., the dose d correspondi
specific value for the “extra response’

m{d) — m(0)
m(0) )

Other terms, such as the standard erro!
responses in control group, could be
the denominator in place of 74(0) to no
this expression.

[5
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TABLE 1

QUANTAL DATA USED TO ILLUSTRATE QUANTITATIVE DOSE-RESPONSE METHODOLOGY

jourea (ETU) (Khera, 1973}
Fetal anomalies in rats

0 5 10 20 40
Fyffected/total No. 0/167 0/132 17138 14/81 142/178

etrachlorodibenzo-p-dioxin (TCDD) (Khera and Ruddick, 1973)
Intestinal anomalies in rat fetuses

0 0.125 0.25
0/24 0/38 1/33

Rats dead at birth

0 0.001
22/318 16/224

obenzene (HCB) (Khera, 1974)
14th rib anomaly in rat fetuses

g/kg) 0 10 20
ted/total No. 0/80 4779 8/91

toxin—Type A (Food Research Inst., Univ. of Wisconsin) (FSC, 1978)
Death due to Botulinum

01 015 .020 024
0/30 0/30 0/30 0/30
034 037 040 .045

11/30 10/30 16/30 26/30

of Benchmark Doses Calculated N

ate application of the benchmark
0 quantal data, we have applied it
of quantal dose-response data, in-
Posures to ethylenethiourea (ETU);
achlorodibenzo-p-dioxin (TCDD)
sets); hexachlorobenzene (HCB);
tum toxin—Type A (BT-A). The
ed in Table 1. A summary of the
four models to these data is given
Graphs of the data, along with the
® QPR model (which was the only e -

40

BLfit al] five data sets adequately) are Doser  (mg? kg)

2 - 1 .

§ 8. 3-7. Doses corresponding 0 g 3 probability of fetal anomaly in rats (Khera et
els of extra risk are furnished in al., 1977) from exposure to ETUl with 90% confidence
: bars and best-fitting polynomial régression model.

in rats

Fetal anomalies
o
¢
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TABLE 2

SUMMARY oOF FIT5 OF MODELS TO QUANTAL
DATA IN TABLE 1

Data Model® x? df pvalue

0,0007
1.0
0.73
0.93

092
091
0.85
0.89

QLR 17

QPR 0.0
QW 1.3
LN 0.46

QLR 0.17
QPR 0014
QW 0.32
LN 0.23

QLR
QPR
QW
LN

QLR
QPR
QW
LN

QLR 7.0
QPR 44
Qw 162
LN 159

TCDD (Khera and
Ruddick, 1973)

TCDD (Murray
et al., 1979)

0.95
0.76
0.95
0.86

0.54
0.73
1 0.00001
- 0.00001

Botulinum toxin

OO NN DOCO WWm NN W

2Code: QLR = quantal linear regressi;:)n, QPR

= quantal polynomial regression, QW = quantal Weibull,
LN = log-normal.

The ETU data involve a sizable number of
animals and are characterized by a NOEL at
5 mg/kg foliowed by a steeply rising dose re-
sponse that reaches 100% response at 80 ppm.
Each of the models except the QLR model
fits these data quite adequately. Also, except
for the QLR model, MLEs and lower confi-
dence limits for doses corresponding to various
levels of increased risk computed using the
various models agree rather closely for extra
risks of 0.1, 0.05, and 0.01. However, doses
corresponding to extra risks of 107° differ by
larger amounts,

The Khera and Ruddick (1973) TCDD data
on intestinal anomaties involve a dose-related
increase in response for doses larger than a
NOEL of 0.125 ug/kg. However, 'the confi-
dence intervals on responses at the experi-
mental doses are wider than those for the ETU

Intesting! anomalies in rat fetuses

Y
5

Doses (ug/kg)

FIG. 4. Probability of intestinal anomaly in 1y
from exposure to TCDD (Khera e al., 1973),
confidence bars and best-fitting polynomial #
model, ;

data (Figs. 3 and 4). As a result, all:
the models fit these data quite well
Predictions of the four models 2
closely down to extra risks of 0.01
considerably at extra risks of 107°,

Rats dead of birth

Doses {(ug/xg/day)

FI1G. 5. Probability of fetal death in rats from
to TCDD (Murray et al., 1979), with 90% confid
and best-fitting polynomial regression model.
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&4

Doses (mg/kg)

Birobability of 14th rib anomaly from exposure
$Khera, 1974), with 90% confidence bars and
§ polynomial regression model,

fhe Murray ez al. (1979) TCDD data
Batal survival and the Khera (1974)
ff on rib anomalies are nearly linear
flescribed well by all four of the mod-
bs calculated from the models corre-
B 10 extra risks of 0.1, 0.05, and 0.01
fin close agreement.

on probability of death after ex-
B Botulinum Toxin (FSC, 1978) ex-

T AL T T Y
02 RAOZT03 BAOI7T 04 045 08

Wility of death from exposure to botulinum
2 (Food Research Inst., Univ. of Wisconsin,
 With 90% confidence bars and best-fitting
*eSSi0n model,
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TABLE 3

Doses CORRESPONDING TO GIVEN LEVELS OF EXTRA
Risk FOR QUANTAL ETU Data®

863

Dose (mg/kg)

95% 99%
Model Extra nisk MLE fower lower
QLR 0.1 12.2 11.8 1.6
QPR 16.4 13.9 13.2
QW 17.9 15.7 14.7
LN 17.1 15.3 14.6
QLR 0.05 1L0 10.6 10.4
QPR 13.2 1.6 11.0
Qw 14.5 12.2 1.3
LN 14.8 13.0 12.2
QLR 0.01 10. 9.7 9.5
QPR 10.2 12 6.0
QW 89 7.0 6.2
LN 1.2 9.5 8.8
QLR 1% 107 99 9.5 9.2
QPR 9.4 4.0-1 1.5.3%
QW 5.9-1 2.9-1 2.1-1
LN 42 31 4.

“ Source. Khera, 1977,
%1.5-3 means 1.5 X 1073,

TABLE 4

DoSES CORRESPONDING TO GIVEN LEVELS OF EXTRA
RISK FOR QUANTAL TCDD DATA®

Doke (mg/kg)
95% 99%
Model Extra risk MLE lower lower
QLR 0.1 4.6-1¢ 3.2-1 2.8-1
QPR 5.0-1 3.2-1 2.8-1
QW 5.2-1 3.6-1 3.0-1
LN 49-1 3.5-1 2.9-1
QLR 0.05 3.1-1 2.1-1 1.5-1
QPR 3.3-1 2.2-1 1.5-1
Qw 3.6-1 2.0-1 1.5-1
LN 3.5-1 2.1-1 [.4-1
QLR 0.01 2.0-1 5.7-2 3.0-2
QPR 1.7-1 4.9-2 3.0-2
QW 1.6-1 4.3-2 2.9.2 ‘
LN 1.8-1 6.4.2 3.0-2 1}
QLR I X 107 1.7-1 7.8-3 3.0-6 %
QPR 1.3-1 4.9-6 3.0-6
Qw 1.6-3 4.3-6 2.9-6
LN 2.0-2 §4o4 .14 i

¢ Source. Khera and Ruddick, 1973,
54.6-1 means 4.6 X 107\,
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TABLE § TABLE 6
Doses CORRESPONDING TO GIVEN Leverg

DosEs CORRESPONDING TO GIVEN LEVELS OF EXTRA
RisSK FOR QUANTAL HCB Dara®

Risk FOR QUANTAL MURRAY POSTNATAL SURVIVAL
DATA®

Dose (ug/kg/day) 95%
Model Extra risk MLE lower

_ 95% 99% QLR 0.1 217 17.4
Model  Extrarisk MLE lower lower QPR 22.3 17'4

QW 220
QLR 0.1 9.3-3% 5.3-3 443 N 510 }Zg
QPR Same as QLR IR .
QW 9.6-3 533 443 Q : 10.6 85

PR 1.0 g
LN 9.33 4.6-3 353 Q 5
Qw 10.8 85

QLR : 49-3 263 2.1-3 LN 1Ll 6.1
QW 6.2-3 26-3 213 gpR 29 e
LN 5.5-3 153 Qw 52 7

QLR ) 1.6-3 6.1-4 424 LN 34 13
QPR Same as QLR QLR 2.1-4%

QW 2.3-3 5.1-4 4.24 QPR 2.2-4

LN 2.0-3 4.14 3.24 QW 2.6-4

QLR 804 518 428 N 5.02
QPR Same as QLR “ Source. Khera, 1974.

Qw 9.6-6 5.0-8 - 4.2-8 22 14 means 2.1 X 107,
LN 6,0-5 1.5-6 1.2-6

@ Source. Murray et al,, 1979. TABLE 7 A
59 3.3 means 9.3 X 1073, DoOsES CORRESPONDING TO GIVEN LEVELS ©

RISK FOR QUANTAL BOTULINUM TOoXM B
Dose (ng) =
5%

hibit a very rapid rise in response for doses
larger than the NOEL of 27 ng. Neither of . £ 0 MIE  lower
the nonthreshold models—QW or LN-—-fit
these data. However, both the QLR and QPR QLR 01 3020 282

. 5 QPR 302 29-2
models fit quite adequately (Table 2). All four oW 332 272

of the models give comparable doses corre- [y 332 312
sponding to given extra risk levels, even down
to levels of extra risk of 1076, g;jﬁ ) §§§ igg
Table 8 compares NOELs with BDs cor-  gw 302 2292
responding to three levels of extra risk. With LN 3.12 29-2
the exception of the HCB data, the NOELs
] . QLR X 292 2.7-2
generally correspond to the BDs forextransks  opg , 2.7-2 252
between 0.01 and 0.05. However, these were  ow 2.4-2 16-2
all reasonably large studies and involved effects LN 292 2.5-2
not seen in control animals; for smaller studies o g 29.2 272
or for effects which can occur spontaneously, QPR 27.2 232
NOELs are liable to be larger relative to QW 733 1.8-3
the BDs. LN 2.0-2 1.6-2
The data for HCB illustrate a particular ad- = Source. FSC, 1978.
vantage the benchmark approach has over the ®3,0-2 means 3.0 X 1072,
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TABLE 8

COMPARISON OF BENCHMARK DOsSES WITH NOELS FOR QUANTAL DATA

Benchmark doses‘j* corresponding to

% extra risk
Data set Dose units NOEL 10% 5% 1%
hera, 1973} mg/kg 5 139 11.6 7.2
g(hem and Ruddick,
ue/kg 0.125 0.32 0.22 0.049
8 (Murray et al, 1979) ug/kg/day 1.0-3 5.3-3 2.6-3 5.1-4
'?"e, ra, 1974) mg/kg ND? 17.4 8.5 1.7
ym toxin {Food Research
e, Univ. of Wisconsin} . ng 0.027 0.029 0.927 0.025

approach Since a NOEL was not de-
gd, the NOEL~SF method can not be
Math these data to determine an ADL
, these data would present no diffi-
i determining an ADI from a BD.

Ples of Benchmark Doses Calculated
¥ Continuous Data

3

e 9 contains dose-response data on
M in rats after exposure to carbon tet-

rachloride {Alumot ef al, 1976), mean body
weights in rats after exposure|to hexachloro-
butadiene (HCBD) (Kociba et al., 1977), and
thymus weights in rats aftér exposure to
TCDD (Murray et al., 1979). Figures 8-10
contain graphs of the responses and 90% con-
fidence intervals, along with th¢ dose-response
curve obtained by fitting the continuous poly-
nomial regression (CPR) model to the data.
In the Kociba et al. data numbers of animals
were not provided and the total number on

TABLE 9

. ConTinuous DATA USED TO ILLUSTRATE QUANTITATIVE DOSE-RESPONSE METHODOLOGY

-

;v tetrachioride (Alumot et al., 1976)

Average liver fat in male rats

Bee (ppm in diet) 0
Je. + SE (mg/g) 610+ 66
0f animals 6

3 orobu:adlene (HCBD) (Kociba et al., 1977)

e (mg/kg/day) 0

. + SE (gm) 586 + 43
., Of animals 90

Mean body weight of male rats

Tﬂmchlorodzbenzo-p—dtoxm (TCDD) (Murray et al., 1979)
'. : Thymus weights of male offspring, f; generation

,:' {ug/kg/day) 0
i+ 5E (g) 0.19 + 001
* of animals 5

150 275 520
710+ 6.0 136 + 21 229 + 49
6 6 6

0.2 2.0 20.0
568 + 53 557 + 52 494 £ 15
40 40 40
0.001 0.01
0.19 + 0.06 0.08 + 0.02
5 4
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Dosss (ppm in diet):
FiG. 8. Mean liver fat in rats exposed to carbon tet-
rachloride (Alumot ef al, 1976), with 90% ;confidence
bars and best-fitting continuous linear regression model.

test was assumed. Also, values reported by
Kociba et al. as “s.d.” were assumed to mean
“s.e.” As Table 10 shows, all of the models
fit each of these data sets adequately.

Tables 11-13 show that the estimates of
doses corresponding to given levels of extra
response calculated using the four models are

€004

4007

200+

Mean body weight of male rats

oz 2 20
Doses (mg/kg/day)

FiG. 9. Mean body weights in rats exposed to HCBD
(Kociba er al.,, 1977), with 90% confidencd bars and best-
fitting continuous linear regression model.

Doses (ug/kg/day)

FiG. 10. Mean thymus weights of male of
generation (Murray et al,, 1979), with 90% co
bars and best-fitting continuous linear regress; *

2y

quite similar. In fact, correspondinf :
confidence limits are almost identical in”
12-14. In Table 11 the 95% lower limi#
by as much as a factor of 2 for an ¢
sponse of 0.0 and by larger amoi
smaller values of extra response. .3
Table 14 compares BDs with NOE
the continuous data. Question marks;
cluded beside the NOELs because it;
clear when a NOEL has been dete
example, although fur the data for
rachloride the average liver fat in 15
animals is not statistically different fr
of control animals, there is an increase
ppm that appears to be part of a dose-1¢
trend (Fig. 8). For these three data 58
BD corresponding to an extra responsg:
are roughly comparable to the NOELS

o

V. DISCUSSION

o

In this paper we have examined
native to the NOEL-SF approach whi
volves fitting a mathematical model té
cological dose-response data. The mo
used to define a BD, which represents;
tistical lower limit on the dose correspd




TABLE 10
SUMMARY OF FITS TO MODELS TO CONTINUOUS DATA IN TABLE 9

DETERMINING ALLOWABLE DAILY INTAKES

Data Model®

F statistic

df‘

p value

tetrachloride (Alumot

CLR

CPR

CP

CP (no threshold)

ik ociba ef al, 1977),
. body weights CLR
CPR
cp
CP (no threshold)

urray et al., 1979) CLR
CPR
CP (no threshold)

0.2%
0.29
0.29
1.25

0.14
0.14
0.14
0.14

0
0
0

(1, 20)
(1, 20)
(1, 20) .
(2,200

2, 206)
(2, 206)
@, 206)
(2, 206)

N§*
NS
NS
NS

NS
NS
NS
NS

NS
NS
NS

«,CLR = continuous linear regression, CPR = continuous polynomial regression, CP = tontinuous power.

g not significant (p value greater than 0.1).

picific increase in risk between | and
Bis suggested that such a BD replace
tional NOEL. We believe this ap-

TABLE 11

LORRESPONDING TO GIVEN LEVELS OF EXTRA

,‘*o CONTINUOUS CARBON TETRACHLORIDE

Dose (ppm)
E Extra
3 response MLE  95% lower
3 0.1 141 102
. 141 63
3 141 61.2
feshold) 95.6 47.1
0.05 134 94,1
134 376
134 4.7
Ethold) 68.0 29.2
' 0.01 129 87.9
129 9.48
129 17.3
old) 30.8 9.53
0.001 127 86.5
127 1.03
127 4.4

Bhold) 9.90 1.89

umot et al., 1976.

proach mitigates several of the problems raised

in Section II concerning

method.

TABLE

12

e

NOEL-SF

Doses CORRESPONDING TO GIVEN LEVELS OF EXTRA

REesPoNSE FOR CoNTiNuous HCBD

BoDy WEIGHTS?

.DATA ON MEAN

Ddses (mg/kg/day)
Extra :
Model response  MLE 95% lower

CLR 0.1 14.% 9.14
CPR 14,1 9.14
CP 4.1 9.14
CP (no threshold) 14.1 9.14
CLR 0.05 7.03 4.57
CPR 7.03 4.57
CP 7.03 4.57
CP (no threshold) 7.03 4.57
CLR 0.01 1.41 9.14-1°
CPR 1.4p 9.14-1
CP 1.40 9.14-1
CP (no threshold) 1.41 9.14-1
CLR 0.001 1.40-1 9.14-2
CPR 1.4141 9.14-2
Cp 14141 9.14-2
CP (no threshold) 1.41-1 9.14-2

e Source. Kociba et al., 1977,
59 14-1 means 9.14 X 107! = 0.914.
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TABLE 13 ADIs cannot be determined until a Ngjg
Doses CORRESPONDING To GIVEN LEVELS OF ExTRa  been established. An otherwise wel)
RESPONSE FOR CONTINUQUS TCDD DATA® experiment may therefore be congide
appropriate for calculating an ADI if p.
Extra Dose (ug/ke/day) g established. In such a case, dete ,
Model response  MLE  95% lower ADI could require an additional expe
resulting in considerable additiona] u
CLR 0.1 2.55-34 1.32-3 delays. On the other hand, the or
CPR 2.55-3 1.32-3 periment might be quite acceptal
CP (no threshoid) 6.37-3 1.32-3 culating a BD. This situation 15 mble\:
CLR X 1.78-3° 6.61-4 the quantal data for HCB (Fig. 6).
CPR 1.78-3 6.61-4 A BM-SF approach to setting AD)
CP (no threshold) 5.53-3 6.61-4 allow proponents of chemicals more!
CLR . 1.16-3. 1.32-4 in the design of experiments than is g
CFR 1.16-3 1.324 under the NOEL-SF approach. With g
CP (no threshold) 1.21-3‘ 1.32-4 method minimum sample sizes must %
CLR X 1.02-3 1.32-5 ified by the regulatory agencyin order o3l
CPR 1.02-3 1.32-5 that NOELs are established to the
CP (no threshold) 1963 1325 gatisfaction. With a BM-SF appro
@ Source. Murray et al., 1979. v agency would still in some cases need L
59 55.3 means 2.55 X 1073 = 00255. methods for choosing the maximum
the sample size to be used at this dose,
otherwise important effects might not;
A BD is calculated using a mathematical tected at all. Beyond this requiremei
dose-response curve estimated from all of the ever, proponents of a chemical could &
dose-response data. Thus the benchmark wide latitude in selecting dose levels ay
should better reflect the shape af the dose re- ple sizes. Of course, the larger a
sponse than the NOEL. Because,a benchmark  better designed it is to estimate the
represents a statistical lower limit, larger ex- higher the benchmark is liable to
periments will tend on average to give larger accurate benchmark is considered cri
benchmarks, thus rewarding godd experimen- experimentors may wish to conduct®
tation. As we pointed out, NOELs have the study and consider carefully the placen
opposite tendency. With the NQEL approach, the experimental doses; otherwise,

TABLE 14
COMPARISON OF BENCHMARK DOses WITH NOELS FOR CONTINUOUS DATA

t

Benchmark doses? correspon
% extra risk

Data set Dose units NOEL 10% 5%

Carbon tetrachloride

{Alumot ef al,, 1976) ppm 15078
HCBD (Kociba et al., 1977)

mean body weights méjkg/day 2.0?
TCDD (Murray er al., 1979) ug/kg/day 0.0017

i
“Benchmark doses = 95% lower lingits derived from QPR model.
® 7 indicates that it is doubtful whether a NOEL has been established.




pay be considered adequate. Any prior
ation on the shape of the dose-response
e tbould be used in optimally designing an
@ment. Such prior information might
Efrom pﬂot studies or studies of similar
. Given such choices, proponents of
feals should be able to design studies
in keeping with their needs and bud-
b constraints  without compromising

example of how experimental design
ations could be put to effective use,
b a company knows the smallest ADI
uld permit the marketing of their
i It would be simple to calculate the
r that would produce this ADL
¥huld then design an experiment that
e optimal under the assumption that
,fla benchmark is in fact the true
jark. If the true benchmark were lower
fat they were hoping for, the statistical
¢ used in calculating the benchmark
i, isure that human safety would not be
ed. On the other hand, if the
k were near that for which the ex-
‘ was designed, the extra care that
Prthe design might allow the marketing
bduct that could not have been mar-
ess optimal design had been used.
ety factors are largely arbitrary, one
for choosing safety factors to use with
ks would be to make the resulting
parable, on average, to those cal-
§ previously using the NOEL-SF
B This could be accomplished by cal-
benchmarks for a number of sub-
which ADIs have been developed
OEL-SF method, and then deter-
safety factor that, when applied to
narks, would on average vield the
Of course, ADIs calculated using
SF and BM-SF methods could dif-
ably in specific cases.
0 we have not discussed the use of
gucal models for extrapolation of
Biogenesis data to low dose and thus
P28 safety factors, this is another pos-
fication of these methods. Our re-
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luctance to recommend this application stems
from the uncertainty as to the shape of the
dose-response curves at low dpses for toxic
effects in general. Dose—response curves which
are linear at low doses have been used to set
upper bounds for low dose cancer risks (EPA,
1980). This approach has been justified on the
grounds that cancer mechanisms that would
produce linear dose responses at low doses
appear quite plausible and those that would
produce supralinear responses seem highly
implausible. The low dose linearity concept
could be used to determine upper limits of
risks of noncarcinogenic effects as well. How-
ever, many of these effects appear threshold-
like. The assumption of a linear response could
greatly overestimate risk in cases where a
threshold exists. The threshold models dis-
cussed in this paper might be used to deter-
mine risks at low doses for effects which appear
to be threshold-like. However,, we have not
recommended this in this paper because of
both the uncertainty as to the existence of a
threshold and because these threshold esti-
mates are apt to differ widely depending upon
the specific model used.

The model-fitting techniques proposed here
have fairly minimal data requirements. When
quantal data are used, the basic needs are the
doses, number of animals in each group, and
the number of these animals which are af-
fected. With continuous data gne needs the
doses, number of animals in each group, the
average response in each groupﬁand the stan-
dard errors of these responses. Some effects,
such as cloudy swelling of the liver, are in-
herently difficult to quantify and are normally
classified qualitatively, such as by present/ab-
sent or mild/severe. Even for effects which are
quantifiable, the data needed to apply dose~
response methods are frequently not reported
in the literature. Thus, it will not be possible
to apply these methods universally. However,
the introduction of these methads would en-
courage more complete presentanon of data,
as well as generally encouraging the use of
quantitative methods in toxicolpgy.

It should be kept in mind that determining
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ADIs does not involve purely statistical meth-
ods. Toxicological evaluation of data on nu-
merous species and biological endpoints may
be required. Included in the many consider-
ations should be differences in species sensi-
tivities to various chemicals and the need for
affording different levels of protection for dif-
ferent toxicological effects. The statistical
methods proposed in this paper should be
useful in this process but they should not sup-
plant a careful toxicological evaluation of all
the data.

APPENDIX

Description of Maximum
Likelihood Procedures

Likelihood for Quantal Data

Consider an experiment with g dose levels
dy, ..., dg, and let N; and X; be, respectively,
the number of animals tested and the number
of animals affected at the ith dose level. Let
P(d) be the probability of a response fat a dose
d. Assuming that X; has a binomial distri-
bution with parameter N, and P(d), the like-
lihood of the data can be written as

2
L =[] XFP@y (1 — P},

i=1

Likelihood for Continuous Data

Consider an experiment with g dose levels
di, ..., dg; let N; be the number of animals
in the ith dose group, and let x;, = 1,...,
N, i=1,..., grepresent the response of the
Jth animal in the ith dose group. It _is assumed
that x; has a normal distribution with mean
m(d;) and variance o . The parameters in the
model consist of those involved in the defi-
nition of m(d), plus o, . . ., o,. Let x; be the
sample mean in the ith dose group, i.e.,

Ni
f,‘ = E XU/N i

J=1

CRUMP

and s7 the sample variance, ie.,
N; %
st = 2 (= XN, - 1y,
j=1
Then the likelihood of the data can bei
as g

£
L= Qn)*2[] o7 exp[~(N, — 1)s2-

i=1

- Ni(-fc‘ - In(

Estimation and Confidence Intervalg

The parameters are estimated as th
which maximize the appropriate lik
The “likelihood method” (Cox and 1§
1974; Crump and Howe, 1983) is us
culate confidence limits. For examp}
using quantal data the lower 95% ling
dose d corresponding to an extra ’

P(d) - P(O) _
T=PO) 0.1

is calculated as the smallest 4 which:

P(d) = P(O) _
I ~ P(0) 0.1
and

2 log(Lmax/L) = (1.645)

where Ly, is the maximum value of}
lihood L. When using continuous
same approach is followed except the.
for extra response replaces the one f
risk. ‘

Computer Programs

These methods require iterative m
calculations. We have developed
programs to perform these calculatit
intend to have them available for the
public in the near future.
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