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Abstract

Risk assessments are performed to estimate the conditions under which individuals or populations may be harmed by exposure to
environmental or occupational chemicals. In the absence of quantitative data in the human, this process is often dependent upon the
use of animal and in vitro data to estimate human response. To reduce the uncertainty inherent in such extrapolations, there has been
considerable interest in the development of physiologically based pharmacokinetic (PBPK) models of toxic chemicals for application in
quantitative risk assessments. PBPK models are effective tools for integrating diverse dose–response and mechanistic data in order to
more accurately predict human risk. Yet, for these models to be useful and trustworthy in performing the necessary extrapolations (spe-
cies, doses, exposure scenarios), they must be thoughtfully constructed in accordance with known biology and pharmacokinetics, doc-
umented in a form that is transparent to risk assessors, and shown to be robust using diverse and appropriate data. This paper describes
the process of PBPK model development and highlights issues related to the specification of model structure and parameters, model eval-
uation, and consideration of uncertainty. Examples are provided to illustrate approaches for selecting a ‘‘preferred’’ model from multiple
alternatives.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Pharmacokinetics is the study of the time course for the
absorption, distribution, metabolism, and excretion of a
chemical substance in a biological system. In pharmacoki-
netic modeling, established descriptions of chemical trans-
port and metabolism are employed to simulate observed
kinetics in silico (Andersen et al., 1995a). Implicit in any
application of pharmacokinetics to toxicology or risk
assessment is the assumption that the toxic effects in a par-
ticular tissue can be related in some way to the concentra-
tion time course of an active form of the substance in that
tissue. Moreover, absent pharmacodynamic differences
between animal species, it is expected that similar responses
will be produced at equivalent tissue exposures regardless
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of species, exposure route, or experimental regimen
(Andersen, 1981; Monro, 1992; Andersen et al., 1995b).
Of course the actual nature of the relationship between tis-
sue exposure and response, particularly across species, may
be quite complex.

Classic compartmental modeling is largely an empirical
exercise, where data on the time course of the chemical
of interest in blood (and perhaps other tissues) are col-
lected. Based on the behavior of the data, a mathematical
model is selected which possesses a sufficient number of
compartments (and therefore parameters) to describe the
data. The compartments do not generally correspond to
identifiable physiological entities but rather are abstract
concepts with meaning only in terms of a particular calcu-
lation. The advantage of this modeling approach is that
there is no limitation to fitting the model to the experimen-
tal data. If a particular model is unable to describe the
behavior of a particular data set, additional compartments
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Fig. 1. Diagram of a physiologically based pharmacokinetic model for
styrene. In this description, groups of tissues are defined with respect to
their volumes, blood flows (Q), and partition coefficients for the chemical.
The uptake of vapor is determined by the alveolar ventilation (QALV),
cardiac output (QT), blood:air partition coefficient (PB), and the concen-
tration gradient between arterial and venous pulmonary blood (CART and
CVen). The dashed line reflects the fact that the lung compartment is
described by a steady-state equation assuming that diffusion between the
alveolar air and lung blood is fast compared to ventilation and perfusion.
Metabolism is described in the liver with a saturable pathway defined by a
maximum velocity (Vmax) and affinity (KM). The mathematical description
assumes equilibration between arterial blood and alveolar air as well as
between each of the tissues and the venous blood exiting from that tissue.
(Adapted from Ramsey and Andersen, 1984).
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can be added until a successful fit is obtained. Since the
model parameters do not possess any intrinsic meaning,
they can be freely varied to obtain the best possible fit,
and different parameter values can be used for each data
set in a related series of experiments.

Once developed, these models are useful for interpola-
tion and limited extrapolation of the concentration profiles
which can be expected as experimental conditions are var-
ied. They are also useful for statistical evaluation of a
chemical’s apparent kinetic complexity (O’Flaherty,
1987). However, since the compartmental model does not
possess a physiological structure, it is often not possible
to incorporate a description of these non-linear biochemi-
cal processes in a biologically appropriate context. For
example, without a physiological structure it is not possible
to correctly describe the interaction between blood-trans-
port of the chemical to the metabolizing organ and the
intrinsic clearance of the chemical by the organ.

Physiologically based pharmacokinetic (PBPK) models
differ from the conventional compartmental pharmacoki-
netic models in that they are based to a large extent on
the actual physiology of the organism (Teorell, 1937a,b).
A number of excellent reviews on the subject are available
(Himmelstein and Lutz, 1979; Gerlowski and Jain, 1983;
Fiserova-Bergerova, 1983; Bischoff, 1987; Leung, 1991).
Fig. 1 illustrates the structure of a simple PBPK model
for a volatile, lipophilic compound—styrene. The model
equations represented by the diagram are described in the
original publication (Ramsey and Andersen, 1984), which
is an Institute for Scientific Information ‘‘citation classic’’.

Instead of compartments defined solely by mathematical
analysis of the experimental kinetic data, compartments in
a PBPK model are based on realistic organ and tissue
groups, with weights and blood flows obtained from exper-
imental data. Moreover, instead of compartmental rate
constants determined solely by fitting data, actual physico-
chemical and biochemical properties of the compound,
which can be experimentally measured or estimated by
quantitative structure–property relationships, are used to
define parameters in the model. To the extent that the
structure of the model reflects the important determinants
of the kinetics of the chemical, the result of this approach
is a model that can predict the qualitative and quantitative
behavior of an experimental time course without having
been based directly on it. In recent years, there has been
an enormous expansion of uses of PBPK modeling in areas
related to environmental chemicals and drugs (Reddy
et al., 2005).

In particular, a properly validated PBPK model can be
used to perform the high-to-low dose, dose-route, and
interspecies extrapolations necessary for estimating human
risk on the basis of animal toxicology studies (Clewell and
Andersen, 1985, 1994; Andersen et al., 1987, 1991; O’Flah-
erty, 1989; Reitz et al., 1990; Gerrity and Henry, 1990;
Johanson and Filser, 1993; Corley et al., 1990, 1994; Cor-
ley, 1996; el-Masri et al., 1995; Mann et al., 1996a,b;
Fisher, 2000; Barton and Clewell, 2000; Clewell et al.,
2000, 2001a,b). The physiological structure of PBPK mod-
els is also useful for examining the effects of changing phys-
iology on target tissue dosimetry, as in the case of early life
exposure (Fisher et al., 1989, 1991; O’Flaherty, 1995; Cle-
well et al., 2001a,b, 2007; Corley et al., 2003; Sarangapani
et al., 2003; Gentry et al., 2003, 2004; Clewell et al., 2004;
Barton, 2005). Target tissue dosimetry provided by PBPK
modeling is also a essential component in models of phar-
macodynamics, such as acetylcholinesterase inhibition
(Gearhart et al., 1994) or mixture interactions (el-Masri
et al., 1995), as well as in biologically based dose–response
models of cancer (Clewell and Andersen, 1989).

2. Model development process

The basic approach to PBPK model development is
illustrated in Fig. 2. The process of model development
begins with the identification of the chemical exposure
and toxic effect of concern, as well as the species and target
tissue in which it is observed. Literature evaluation



Fig. 2. Flow-chart of the PBPK modeling process.
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involves the integration of available information about the
mechanism of toxicity, the pathways of chemical metabo-
lism, the nature of the toxic chemical species (i.e., whether
the parent chemical, a stable metabolite, or a reactive inter-
mediate produced during metabolism is responsible for the
toxicity), the processes involved in absorption, transport
and excretion, the tissue partitioning and binding charac-
teristics of the chemical and its metabolites, and the phys-
iological parameters (i.e., tissue weights and blood flow
rates) for the species of concern (i.e., the experimental spe-
cies and the human). Using this information, the investiga-
tor develops a PBPK model which expresses
mathematically a conception of the animal/chemical sys-
tem (Rescigno and Beck, 1987). In the model, the various
time-dependent chemical transport and metabolic pro-
cesses are described as a system of simultaneous differential
equations. As an example, the differential equation defining
the liver compartment in Fig. 1 is shown below:

dAL=dt ¼ QL � ðCArt � CL=P LÞ � V max

� CL=P L=ðKM þ CL=P LÞ

where AL = the amount of chemical in the liver (mg);
CArt = the concentration of chemical in the arterial blood
(mg/L); CL = the concentration of chemical in the liver
(mg/L); QL = the total (arterial plus portal) blood flow
to the liver (L/h); PL = the liver:blood partition coeffi-
cient; Vmax = the maximum rate of metabolism (mg/h);
KM = the concentration at half-maximum rate of metab-
olism (mg/L).

The specific structure of a particular model is driven
by the need to estimate the appropriate measure of tissue
dose under the various exposure conditions of concern in
both the experimental animal and the human. Before the
model can be used in risk assessment it has to be vali-
dated against kinetic, metabolic, and toxicity data and,
in many cases, refined based on comparison with the
experimental results. Importantly, the model itself can
frequently be used to help design critical experiments
to collect data needed for its own validation. Perhaps
the most desirable feature of a PBPK model is that it
provides a conceptual framework for employing the sci-
entific method: hypotheses can be described in terms of
biological processes, quantitative predictions can be
made on the basis of the mathematical description, and
the model (hypothesis) can be revised on the basis of
comparison with targeted experimental data. Refinement
of the model to incorporate additional insights gained
from comparison with experimental data yields a model
that can be used for quantitative extrapolation well
beyond the range of experimental conditions on which
it was based.

3. Specification of model structure

There is no easy rule for determining the structure and
level of complexity needed in a particular modeling appli-
cation. For example, model elements such as inhalation
and fat storage, which are important for a volatile, lipo-
philic chemical such as styrene (Ramsey and Andersen,
1984), do not need to be considered in the case of a non-
volatile, water-soluble compound such as methotrexate
(Bischoff et al., 1971). Similarly, while kidney excretion
and enterohepatic recirculation are important determinants
of the kinetics of methotrexate, they are not needed in a
model of styrene. As another example, a simple description
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of inhalation uptake as a one-compartment gas exchange
(Fig. 1) may be adequate for some model applications, as
in the case of modeling the systemic uptake of a lipophilic
vapor like styrene. However, a more complicated descrip-
tion is required in the case of water-soluble vapors, to
account for a ‘‘wash-in, wash-out’’ effect in the upper respi-
ratory tract (Johanson, 1986; Mork and Johanson, 2006).
Thus, the decision of which elements to include in the
model structure for a specific chemical and application
requires striking a balance between two primary criteria:
parsimony and plausibility.

The principle of parsimony demands that the model be
as simple as possible for the intended application (but no
simpler). That is, structures and parameters should not
be included in the model unless they are needed to support
the application for which the model is being designed. The
desire for parsimony in model development is driven not
only by the desire to minimize the number of parameters
whose values must be identified, but also by the recognition
that as the number of parameters increases, the potential
for unintended interactions between parameters increases
disproportionately. Moreover, as a model becomes more
complex, it becomes increasingly difficult to validate, rais-
ing the level of concern for the trustworthiness of the model
for extrapolation.

Countering the desire for model simplicity is the need
for plausibility of the model structure. The credibility of
a PBPK model’s predictions of kinetic behavior under con-
ditions different from those under which the model was val-
idated rests on the correspondence of the model design to
known physiological and biochemical structures and an
accurate description of the chemical mode of action
(Andersen et al., 1995a; Kohn, 1995, 1997). In general,
the ability of a model to adequately simulate the behavior
of a physical system depends on the extent to which the
model structure is homomorphic (having a one-to-one cor-
respondence) with the essential features determining the
behavior of that system (Rescigno and Beck, 1987). The
trade-off against the greater predictive capability of physi-
ologically based models is the requirement for an increased
number of parameters and equations.

The process of model identification is an iterative pro-
cess that begins with the selection of a model structure
based on those elements that the modeler considers to be
the minimum essential determinants of a chemical’s behav-
ior in the animal system, from the viewpoint of the
intended application of the model. Comparison with
appropriate data can then provide insight into defects in
the model that must be corrected either by re-parameteriza-
tion or by changes to the model structure. Selection of a
model structure can be broken down into a number of ele-
ments associated with the different aspects of uptake, distri-
bution, metabolism, and elimination. These mechanistic
considerations play a role in most aspects of model devel-
opment, including decisions on tissue grouping, level of
detail in chemical transport and metabolism descriptions,
and inclusion of chemical exposure routes.
Tissue grouping is generally approached in one of two
ways—by lumping or splitting model compartments. In
the lumping approach, the initial model structure incorpo-
rates physiological information at the greatest level of
detail that is practical, and decisions are then made to com-
bine tissue compartments based on the similarity of their
physiological characteristics. The common grouping of tis-
sues into richly perfused and poorly perfused on the basis
of their blood perfusion rate is an example of lumping.
In contrast, the splitting approach starts with the simplest
reasonable model structure and increases the model’s com-
plexity only to the extent required to reproduce data on the
chemical of concern for the application of interest. Lump-
ing requires the greater initial investment in data collection
and, if taken to the extreme, could paralyze model develop-
ment. Splitting, on the other hand, is more efficient but
runs a greater risk of overlooking chemical-specific deter-
minants of chemical disposition. Tissues that are typically
specifically defined in the model structure are the target tis-
sues, those involved in storage, metabolism or clearance of
the chemical, and those required to simulate chemical
exposure depending on the dose routes used in simulated
experiments.

Chemical transfer between the blood and tissue com-
partments may be governed by passive diffusion (flow- or
diffusion-limited) or active transport. Many published
PBPK models are flow-limited; that is, they assume that
the rate of tissue uptake of the chemical is limited only
by the flow of the chemical to the tissue in the blood. While
this assumption is generally reasonable, for some chemicals
and tissues the uptake may instead be limited by other fac-
tors such as diffusion. Examples of tissues for which diffu-
sion-limited transport has often been described include the
skin, placenta, mammary glands, brain, and fat (McDou-
gal et al., 1986; Fisher et al., 1989, 1990; Andersen et al.,
2001). If there is evidence that the movement of a chemical
between the blood and a tissue is limited by diffusion, a
two-compartment description of the tissue can be used with
a ‘‘shallow’’ exchange compartment in communication
with the blood and a diffusion-limited ‘‘deep’’ compart-
ment. Some chemicals may be transported against the con-
centration gradient through energy-dependent processes.
These processes are sometimes limited by the availability
of transporter proteins, and such saturable processes are
often well-described using Michealis–Menten type kinetics
(Andersen et al., 2006).

The liver is frequently the primary site of metabolism,
though other tissues such as the kidney, placenta, lung,
skin and blood may be important metabolism sites depend-
ing on the chemical. Metabolism may be described as
occurring through a linear (first-order) pathway using a
rate constant (kF: h�1) or a saturable (Michealis–Menten)
pathway with capacity Vmax (mg/h) and affinity KM (mg/
L). If desired, the pharmacokinetics of the resulting metab-
olite may also be explicitly described in the model. The
same considerations which drive decisions regarding the
level of complexity of the PBPK model for the parent



Table 1
‘‘Typical’’ physiological parameters for PBPK models

Species Mouse Rat Monkey Human

Ventilation

Alveolar (L/h�1 kg)a 29.b 15.b 15.b 15.b

Blood flows

Total (L/h�1 kg)a 16.5c 15.c 15.c 15.c

Muscle (fraction) .18 .18 .18 .18
Skin (fraction) .07 .08 .06 .06
Fat (fraction) .03 .06 .05 .05
Liver (arterial) (fraction) .035 .03 .065 .07
Gut (portal) (fraction) .165 .18 .185 .19
Other organs (fraction) .52 .47 .46 .45

Tissue volumes

Body weight (kg) .02 .3 4. 80.
Body water (fraction) .65 .65 .65 .65
Plasma (fraction) .04 .04 .04 .04
RBCs (fraction) .03 .03 .03 .03
Muscle (fraction) .34 .36 .48 .33
Skin (fraction) .17 .195 .11 .11
Fat (fraction) .10d .07d .05d .21
Liver (fraction) .046 .037 .027 .023
Gut tissue (fraction) .031 .033 .045 .045
Other organs (fraction) .049 .031 .039 .039
Intestinal lumen (fraction) .054 .058 .053 .053

a Scaled allometrically: QC = QCC * BW.75.
b Varies significantly with activity level (range: 15–40).
c Varies with activity level (range: 15–25).
d Varies substantially (lower in young animals, higher in older animals).
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chemical must also be applied for each of its metabolites.
As in the case of the parent chemical, the most important
consideration is the purpose of the model. If the concern
is direct parent chemical toxicity and the chemical is detox-
ified by metabolism, then there may be no need for a
description of metabolism beyond its role in parent chem-
ical clearance. If reactive intermediates produced during
the metabolism are responsible for observed toxicity, a very
simple description of the metabolic pathways might be ade-
quate (Ramsey and Andersen, 1984; Andersen et al., 1987;
Corley et al., 1990). On the other hand, if one or more of
the metabolites are considered to be responsible for the
toxicity of a chemical, it may be necessary to provide a
more complete description of the kinetics of the metabo-
lites themselves (Fisher et al., 1991; Gearhart et al., 1993;
Clewell et al., 1997, 2000; Fisher, 2000).

Other processes that may have significant impact on the
chemical kinetics include protein binding and excretion.
Protein binding in the blood reduces the amount of free
chemical available for distribution into the tissues or clear-
ance via excretion. Binding within tissues may lead to dose-
and time-dependent accumulation, and may need to be
described as a saturable process. Clearance may occur
through urinary or fecal excretion, exhaled air, or even
through loss via hair. This loss may often be successfully
described using first-order clearance terms. However, more
elaborate descriptions are sometimes required for chemi-
cals that are substrates for transporters that transfer the
chemical against a concentration gradient. Some transport-
ers in the kidney and bile can increase clearance of xenobi-
otics, while others, such as those responsible for
reabsorption, may decrease clearance (Andersen et al.,
2006).

4. Specification of mean parameters

Estimates of the various physiological parameters
needed in PBPK models are available from a number of
sources in the literature, particularly for the human, mon-
key, dog, rat, and mouse (Adolph, 1949; Bischoff and
Brown, 1966; Astrand and Rodahl, 1970; ICRP, 1975;
EPA, 1988; Davies and Morris, 1993; Brown et al., 1997;
Gentry et al., 2004). Table 1 shows typical values of a num-
ber of physiological parameters in adult animals.

Estimates for the same physiological parameter often
vary widely, due both to experimental differences and to
differences in the animals examined (age, strain, activity).
Ventilation rates and blood flow rates are particularly sen-
sitive to the level of activity (Astrand and Rodahl, 1970;
EPA, 1988). Data on some important tissues are relatively
limited, particularly in the case of fat tissues.

Many biochemical parameters may be measured directly
from in vitro studies. For volatile chemicals, partition coef-
ficients may be measured using a relatively simple in vitro

technique known as vial equilibration (Fiserova-Bergerova,
1975; Sato and Nakajima, 1979a,b; Gargas et al., 1989).
Partition coefficients for non-volatile compounds are not
as easily measured in vitro (Jepson et al., 1994), and are
therefore often estimated by comparing tissue:blood levels
at steady state from in vivo studies (Lam et al., 1981; King
et al., 1983). Metabolism parameters can be obtained from
parent chemical disappearance (or metabolite formation)
curves in intact cells, tissue homogenate, or microsomal
fractions (Reitz et al., 1989; Kedderis and Lipscomb,
2001; Lipscomb and Kedderis, 2002; Lipscomb et al.,
2004). Rapid in vivo approaches may also be used to esti-
mate metabolic constants based on steady-state extraction
(Andersen et al., 1984) or gas uptake experiments (Filser
and Bolt, 1979; Andersen et al., 1980; Gargas et al.,
1986a, 1990; Gargas and Andersen, 1989), as well as infor-
mation on the total amount of chemical metabolized in a
particular exposure situation (Watanabe et al., 1976).
Determination of stable end-product metabolites after
exposure can also be useful in some cases (Gargas and
Andersen, 1982; Gargas et al., 1986b).

In many cases, important parameters values needed for
a PBPK model may not be available in the literature. In
such cases it is necessary to measure them in new experi-
ments, to estimate them by quantitative structure–activity
relationship (QSAR) techniques (Gargas et al., 1988; Pou-
lin and Krishnan, 1999; Beliveau et al., 2005), or to identify
them by optimizing the fit of the model to an informative
data set. An example of a case where fitting the model to
kinetic data is the only practical approach for parameter
estimation is the attempt to describe enterohepatic recircu-
lation (e.g., Clewell et al., 2000). The residence time of
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chemicals whose conjugation products are transferred into
the bile and subsequently cleaved and reabsorbed in the
intestine depend on a number of processes—such as biliary
excretion into the duodenum, movement through the intes-
tinal lumen, metabolism by intestinal bacteria, and resorp-
tion in the lower intestine—that are not easily measured
in vitro or in vivo, and therefore the parameters in such a
description must be estimated by fitting the overall predic-
tions of the model to kinetic data such as blood concentra-
tion time courses as a function of dose.

Even in the case where an initial estimate of a particular
parameter value can be obtained from other sources, it may
be desirable to refine the estimate using the model. For
example, given the difficulty of obtaining accurate esti-
mates of the fat volume in rodents, a more reliable estimate
may be obtained by examining the impact of fat volume on
the kinetic behavior of a lipophilic compound such as sty-
rene. Of course, being able to uniquely identify parameters
from a kinetic data set rests on two key assumptions: (1)
the kinetic behavior of the compound under the conditions
in which the data were collected is informative regarding
the parameters being estimated, and (2) other parameters
in the model that could influence the observed kinetics have
been determined by other means and are held fixed or
otherwise constrained during the estimation process.

The actual approach for estimating parameters can
range from simple visual fitting, where the model is run
with different values of the parameters until the best corre-
spondence appears to be achieved, to the use of a mathe-
matical parameter estimation algorithm. The most
common algorithm used for parameter estimation is
least-squares minimization. To perform a least-squares
optimization, the model is run to obtain a set of predictions
at each of the times a data point was collected. The square
of the difference between the model prediction and data
point at each time is calculated and the results for all of
the data points are summed. The parameters being esti-
mated are then modified, and the sum of squares is recalcu-
lated. This process is repeated until the smallest possible
sum of squares is obtained, representing the best possible
fit of the model to the data.

In a variation on this approach, the square of the differ-
ence at each point is divided by the square of the predic-
tion. This variation, known as relative least squares, is
preferable in the case of data with an error structure which
can be described by a constant coefficient of variation (that
is, a constant ratio of the standard deviation to the mean).
The former method, known as absolute least squares, is
preferable in the case of data with a constant variance.
From a practical viewpoint, the absolute least squares
method tends to give greater weight to the data at higher
concentrations and results in fits that look best when plot-
ted on a linear scale, while the relative least squares method
gives greater weight to the data at lower concentrations
and results in fits that look best when plotted on a logarith-
mic scale. More sophisticated methods for parameter esti-
mation are also available, including both likelihood
methods (Peck et al., 1984) and hierarchical Bayesian
approaches (Gelman et al., 1996; Bois, 2000; Jonssonm
et al., 2001), but the goal in any case is the same: to esti-
mate a set of parameter values that is most consistent with
the data.

When parameter estimation is to be performed by fit-
ting model output to experimental data, the investigator
must assure that the parameters are adequately identifi-
able from the data (Carson et al., 1981, 1983). Moreover,
the practical reality of modeling biological systems is that
regardless of the complexity of the model there will always
be some level of ‘‘model error’’ (lack of homomorphism
with the biological system) which can result in systematic
discrepancies between the model and experimental data.
This model structural deficiency interacts with deficiencies
in the identifiability of the model parameters, potentially
leading to mis-identification of the parameter values.
Due to the confounding effects of model error and param-
eter correlation, it is quite possible for a parameter estima-
tion algorithm to obtain a better fit to a particular data set
by changing parameters to values that no longer corre-
spond to the biological entity the parameter was intended
to represent.

As the number of fitted parameters in the PBPK model
increases, the level of uncertainty in the accuracy of the
individual values increases correspondingly. The ability to
limit this uncertainty depends on the availability of data
under conditions where the parameters being estimated
would be expected to have a differential impact on the pre-
dicted concentrations. Sensitivity analysis can sometimes
be used to determine the appropriate conditions for such
a comparison (Clewell et al., 1994). The demand that the
PBPK model fit a variety of data also restricts the param-
eter values that will give a satisfactory fit to experimental
data.

5. Model evaluation and revision

Once an initial model has been developed, it must be
evaluated on the basis of its conformance with experimen-
tal data. In some cases, the model may be exercised to pre-
dict conditions under which experimental data should be
collected in order to verify or improve model performance.
Model success in reproducing measured data supports the
validity of the mechanistic assumptions, while model fail-
ure suggests that revision of the assumptions is needed.
In fact, model failure is often more informative to mecha-
nistic investigations than success. PBPK models can be
used to test a variety of hypotheses quickly and inexpen-
sively and, based on model results, efficient experiments
can be designed to test the key mechanistic assumptions.
The following examples illustrate the role of model devel-
opment, evaluation and refinement in gaining a better
understanding of chemical kinetics. They also demonstrate
the use of statistical methods (likelihood comparisons) to
evaluate alternative model structures on the basis of their
relative ability to conform to experimental data.
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5.1. Suicide inhibition in trans-1,2-dichloroethylene

metabolism

An effort to characterize the metabolism of trans-1,2-
dichloroethylene (tDCE) provides an example of how
PBPK model failure can aid the evaluation of mechanistic
hypotheses and inform experimental design. In this case, a
PBPK model structure that had been used successfully to
describe the in vivo metabolism of several volatile chemicals
failed to describe tDCE kinetics, and the investigation into
the model behavior led to insights about the processes gov-
erning the chemical’s metabolism. With the development of
closed chamber metabolism studies (Gargas et al., 1986a,b;
Gargas et al., 1990), new and abundant data were made
available describing the disappearance of VOCs after inha-
lation. For chemicals such as methylene chloride, where the
metabolism occurs through parallel saturable and first-
order pathways, this technique provided an efficient
method for estimating metabolism parameters and the
resulting models were able to describe blood time-course
data from separate studies (Andersen et al., 1987, 1991).
However, when the same model structure was applied to
tDCE (Lilly et al., 1998), it failed to predict the time- and
dose-dependent behavior of the experimental data (Fig. 3).

This model failure suggested that the metabolic pathway
was more complex than had been previously assumed. A
revised hypothesis about the mechanism of tDCE metabo-
lism was then developed based on the nature of the discrep-
ancy between the predictions of the model and the
observed data. Two important observations were made:
(1) the decline in tDCE concentration slowed over time,
and (2) the model consistently over-predicted that time-
dependent decline in the lower doses. These observations
suggested that the metabolism of the chemical might be
resulting in the destruction of the metabolic enzyme, and
that this decrease in enzyme capacity was less severe at
lower doses. Based on these observations, the authors pro-
posed four potential mechanisms of suicide inhibition,
Fig. 3. Failure of methylene chloride PBPK model structure to describe
trans-1,2-dichloroethylene gas chamber dose–response data in rats (Lilly
et al., 1998).
which they incorporated into alternative versions of the
model that were then tested against the existing data.

Since the equations describing the alternative mecha-
nisms of inhibition each used the same number of parame-
ters, the identification of the most successful model could
be accomplished by a direct comparison of likelihood esti-
mates. For each of the alternative models, the parameters
for metabolism were optimized against the same experi-
mental data using the extended least squares method in
Simusolv (Dow Chemical), and the resulting log-likeli-
hoods were compared. The model that most successfully
described the time-course data across doses (Fig. 4)
assumed that the reactive metabolite of tDCE disabled
the enzyme–substrate complex. By ascertaining the most
likely mechanism of enzyme inactivation, it was possible
to tailor further experiments to test specifically for the
occurrence of suicide inhibition. This hypothesis could then
be confirmed experimentally (Lilly et al., 1998).
5.2. Storage of octamethylcyclotetrasiloxane in tissue lipids

Modeling of cyclic siloxane kinetics permitted the evalu-
ation of lipid storage sites within tissues as well as lipid
storage depots in blood that are not in communication with
the free siloxanes circulating in blood (Andersen et al.,
2001). Failure of the typical volatile chemical model to pre-
dict the time-course data for the cyclic siloxanes led the
authors to reexamine the assumption that lipophilic chem-
ical behavior was determined only by partitioning and
metabolism, and to describe additional processes that
may play a role in the distribution of all lipophilic chemi-
cals. Octamethylcyclotetrasiloxane (D4) is a common
ingredient in a variety of consumer items and cleaning
products. In addition to low-level consumer exposure, the
volatility of this compound raised concerns about occupa-
tional exposure via inhalation. In order to aid in the assess-
ment of worker risk, Andersen and coauthors attempted to
analyze the distribution data in rats after inhalation of D4
(Plotzke et al., 2000) using a PBPK model. It was originally
Fig. 4. Revised PBPK model prediction of trans-1,2-dichloroethylene gas
chamber dose–response data in rats assuming suicide inhibition (Lilly
et al., 1998).
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assumed that the kinetic behavior of D4 would be similar
to styrene. This assumption was based on the fact that
D4, like styrene, is a volatile chemical, and also like sty-
rene, is cleared by a single, saturable metabolic pathway.
Thus, the same structure that was successfully used for
other volatile, lipophilic chemicals was applied to D4. Ini-
tial model simulations of inhalation exposure showed good
agreement with the time-course data for the pulmonary
exhalation rate, urinary excretion rate, and plasma concen-
tration. However, similar data following oral and IV dos-
ing were poorly simulated. In the case of IV dosing,
model-simulated plasma levels were more than an order
of magnitude lower than measured values.

The inability of the model to describe D4 kinetics led the
authors to reexamine the underlying model assumptions.
They noted that by assuming all of the chemical in the
blood was available for exhalation, the model was over-
predicting the exhaled air concentrations. In contrast to
the model predictions, the experimental data showed a
slower loss of chemical from the blood and lower levels
of D4 in the exhaled air. The authors concluded that a por-
tion of the blood D4 was somehow bound and therefore
unavailable for exhalation. Furthermore, the assumption
that all serum D4 was free, coupled with the high fat:blood
partition coefficient, was causing slow redistribution after
dosing, which also contributed to the under-prediction of
serum D4 concentrations. Also, in assuming that the liver
and lungs were well-mixed compartments, the authors were
forced to use questionably large values for the lung:blood
and liver:blood partition coefficients in order to achieve
measured tissue concentrations, but the model still was
not able to reproduce the kinetic behavior: it over-pre-
dicted tissue concentrations at early times and under-pre-
dicted later time points.

Based on these considerations, the original hypothesis
was revised to account for the difference between the
model-predicted and experimentally observed values. The
authors proposed that the lipophilic D4 was sequestered
in tissue lipid stores and only a portion of the chemical
was freely available for transport. This sequestration would
explain the two-phase clearance, including the initial, rapid
drop due to loss of the free (unbound) chemical and the
secondary, slower decrease resulting from the loss of the
lipid-bound chemical. The existence of chylomicron-type
transport of D4 between the liver and plasma lipid com-
partment was suggested as a biological basis for the pro-
posed kinetic construct, based on the work of Roth and
colleagues with non-volatile chlorinated biphenyls and
dioxins (Roth et al., 1993). The revised model structure
also included two separate fat storage compartments in
order to account for the multiphasic behavior of D4 in
exhaled air. It was suggested that the different phases
in exhaled D4 concentrations could be due to the fact that
D4 was stored in various fat depots, and that the rate of
exchange between the fat and blood was dependent upon
the characteristics of the individual fat stores. When these
changes were applied to the model structure, it successfully
simulated data from all dosing routes in both single- and
repeated-dose studies.

Importantly, the elaboration of the D4 model was
accomplished in such a way that the original and revised
models were nested structures. Therefore it was possible
to use a likelihood ratio test to demonstrate statistically
that the additional features of the revised model signifi-
cantly improved the ability of the model to describe the
kinetic data (Andersen et al., 2001).

It is important to note that previous evaluations of both
the human (Utell et al., 1998) and rat (Plotzke et al., 2000)
inhalation data on D4 had not recognized any major dis-
crepancies from previous data on other volatile chemicals.
In fact, based on the blood time-course curves and the
exhalation data, the assumption was made that the
in vivo kinetics of D4 could be understood in a similar fash-
ion to other volatile hydrocarbons. But when a PBPK
model was applied to the problem, it became clear that
despite the similar shape of the time-course curves, the con-
centrations were actually different from previous expecta-
tions by an order of magnitude. Without a quantitative
model that could account for the differences in blood:air
partition coefficients and other kinetic differences (fat par-
titioning, tissue time-course behavior), this discrepancy
might have continued to go unnoticed. Due to the insights
obtained with the PBPK model, however, these siloxanes
became a source of better understanding of the role of lipo-
philicity in chemical transport and for elucidating processes
for lipid transport of chemicals in the body.

6. Model verification and validation

Model validation should consider the ability of the
model to predict the kinetic behavior of the chemical under
conditions which test the principal aspects of the underly-
ing model structure (Cobelli et al., 1984). While quantita-
tive tests of goodness of fit may often be a useful aspect
of the validation process, the more important consider-
ation may be the ability of the model to provide an accu-
rate prediction of the general behavior of the data in the
intended application (Clark et al., 2004). Thus, if the model
shows some deviation from measured concentrations, yet
can consistently reproduce the trend of the data (biphasic
clearance, saturation of metabolism, etc.) there will be
greater confidence in the accuracy of the model structure
than a model that fits a portion of the data flawlessly.
Indeed, the demand that the PBPK model fit a variety of
data with a consistent set of parameters limits its ability
to provide an optimal fit to a specific set of experimental
data. For example, a PBPK model of a compound with sat-
urable metabolism is required to reproduce both the high
and low concentration behaviors, which appear qualita-
tively different, using the same parameter values. If one
were independently fitting single curves with a model, dif-
ferent parameter values might provide better fits at each
concentration, but would be relatively uninformative for
extrapolation.
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Ideally, model performance should be validated against
data in the species, tissues and exposure scenarios of con-
cern to risk assessors. However, it is not always possible
to collect the data needed for such validation, particularly
in the human. Where only some aspects of the model can
be validated, it is particularly important to assess the
uncertainty associated with those aspects which are
untested. For example, a model of a chemical and its
metabolites that is intended for use in cross-species extrap-
olation to humans would preferably be verified using data
in different species, including humans, for both the parent
chemical and the metabolites. If only parent chemical data
were available in the human, the correspondence of metab-
olite predictions with data in several animal species could
be used as a surrogate, but this deficiency should be care-
fully considered when applying the model to predict human
metabolism. One of the values of biologically based model-
ing is the identification of specific data, such as enzyme
activity and substrate binding assays, which would improve
the quantitative prediction of toxicity in humans from ani-
mal experiments.

Model validation is preferably carried out using data
that was not used in the development of the model and
the estimation of its parameters. In some cases, however,
it may be considered necessary or preferable to use all of
the available data to support model development and
parameterization. Unfortunately, this type of modeling
can easily become a form of self-fulfilling prophecy: models
are logically strongest when they fail, but psychologically
most appealing when they succeed (Yates, 1978). Under
these conditions, model validation can be particularly diffi-
cult, putting an additional burden on the investigators to
substantiate the trustworthiness of the model for its
intended purpose. Nevertheless, a combined model devel-
opment and validation can often be successfully per-
formed, particularly for models intended for
interpolation, integration, and comparison of data rather
than for true extrapolation.

Finally, it is important to remember that in addition to
comparing model predictions to experimental data, model
evaluation involves assessing the plausibility of the model
structure and parameters, and the confidence which can
be placed in extrapolations performed by the model (Kohn,
1995, 1997). This aspect of model evaluation is particularly
important in the case of applications in risk assessment,
where it is necessary to assess the uncertainty associated
with risk estimates calculated with the model (USEPA,
2006; Chiu et al., 2007).

7. Considering parameter uncertainty and variability

When used in the risk assessment process, PBPK models
have often been applied to obtain single-valued estimates
of dose (e.g., Andersen et al., 1987). Such risk assessment
predictions indicate what is expected for an ‘‘average’’ per-
son. However, when the results of a risk assessment are
applied to a population, it is prudent to consider the effects
of inter-individual variability on expected risk. Moreover,
since the parameters in the model can never be known
exactly, it is desirable to characterize the propagation of
uncertainty from the model inputs to the model predic-
tions. Both of these objectives can readily be accomplished
by means of additional analyses performed with the PBPK
model. Using sensitivity analysis, it is possible to determine
which model parameters have the most influence on model
predictions (Clewell et al., 1994), and Monte Carlo tech-
niques make it possible to determine the magnitude of pre-
diction variability associated with variability in the model
parameters (Clewell and Andersen, 1996).

It is important in this discussion to distinguish uncer-
tainty from variability. As it relates to the issue of using
PBPK modeling in risk assessment, true uncertainty should
be understood as the possible error in estimating the ‘‘true’’
value of a parameter for a representative (‘‘average’’) ani-
mal. Variability, on the other hand, should be understood
as a product of inter-individual differences. Understood in
these terms, uncertainty is a defect in knowledge that typ-
ically can be reduced by additional experimentation, while
variability is a fact of life that can only be better character-
ized by additional experiment. Both uncertainty and vari-
ability are important considerations in risk assessment,
regardless of the methodology used (Allen et al., 1996).
One of the attractive features of PBPK modeling is that
it identifies important areas of uncertainty that deserve
experimental determination. At the same time, PBPK mod-
eling can be used to examine the effect of variability. The
model can be run with different parameter values to simu-
late inter-individual differences, such as weight or level of
exertion or metabolic status, and the range of individual
risks corresponding to a given population risk can be esti-
mated (Fiserova-Bergerova et al., 1980; Droz et al.,
1989a,b; Clewell and Andersen, 1996).

Several investigators have attempted to estimate the
impact of parameter uncertainty and variability in PBPK
models on risk assessment predictions using the Monte
Carlo approach (Farrar et al., 1989; Portier and Kaplan,
1989; Bois et al., 1990; Clewell and Jarnot, 1994; Clewell,
1995; Allen et al., 1996; Clewell et al., 1999). Briefly, in
the Monte Carlo method a probability distribution for
each of the model parameters is randomly sampled, and
the model is run using the chosen set of parameter values.
This process is repeated many times until the probability
distribution for the desired model output is generated.
The sensitivity of the model output to a given input param-
eter can then be characterized by the relative contribution
of the parameter to the total model output variability.
The chief difficulty in all of these studies is the lack of
experimental data on the uncertainty and variability of
many of the model parameters. An approach for dealing
with this limitation, known as fuzzy logic, has been an area
of increasing interest in drug development and evaluation
(Gueorguieva et al., 2004). The hierarchical Bayesian
approach, mentioned earlier with regard to parameter esti-
mation, also makes it possible to refine prior estimates of
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parameter uncertainty and variability on the basis of exper-
imental data. An implementation of the hierarchical Bayes-
ian approach known as Markov chain Monte Carlo
simulation has been used to characterize the uncertainty
and variability in PBPK model predictions (Gelman
et al., 1996; Bois, 2000; Jonsson and Johanson, 2001; Hack
et al., 2006; Covington et al., 2007).

Typical ranges of parameter uncertainties are shown in
Table 2 (Clewell, 1995). Physiological parameter variabili-
ties are often based on estimates of standard error included
in a review of the physiological literature originally per-
formed by Lindstedt for the ILSI Risk Science Institute
Physiological Parameters Working Group (Brown et al.,
1997). Partition coefficient variability has been directly
measured for perchloroethylene (Gearhart et al., 1993).
Except for ventilation, the experimental data typically do
not justify use of physiological parameter uncertainties of
greater than 30% or of partition coefficient uncertainties
of greater than 20%; however, variation in metabolism in
the human can be 10- to 100-fold or more (Clewell and
Andersen, 1996).

Table 2 also displays the distributional forms that are
often used for the input parameters in PBPK models. Phys-
iological parameters are usually described with a normal
distribution, which is consistent with the available data
from the physiological literature. Partition coefficients are
obtained as a ratio of the measured concentrations in
two media; assuming the measurements themselves are nor-
mally distributed, the ratio would be expected to be lognor-
mal. Finally, metabolism parameters are generally expected
to be lognormally distributed, consistent with the standard
practice for analyses of enzyme activity measurements in
hospital patients. In every case, truncated distributions
are recommended to avoid physiologically implausible val-
ues (negative, or outside the range of physiological limita-
tions). It is always important, however, to determine the
extent to which the truncation alters the sample distribu-
tion, particularly for asymmetric truncation (e.g., non-neg-
ative bounding of a normal distribution with a mean within
a small number of standard deviations of zero will shift the
sample mean).

There are several reasons why the actual impact of
parameter variability on risk estimates is likely to be much
less than that predicted by a typical simulation analysis.
Most important is the high degree of correlation that exists
between various parameters. For example, in the Monte
Table 2
Typical range of coefficients of variation for PBPK model input
parameters

Parameters CV (%) Distribution

Tissue volumes 6–30 Truncated normal
Blood flows 8–30 Truncated normal
Ventilation 15–50 Truncated normal
Partitions 15–20 Truncated lognormal
Metabolism 30–70 Truncated lognormal
Carlo sampling typically performed, the value for the frac-
tional blood flow to a tissue is taken to be independent of
the fractional tissue volume. Physiologically, these param-
eters are highly correlated, because their ratio—known as
the perfusion ratio—is critical for oxygenation of tissues.
Pairing a high blood flow with a low tissue volume (or
vice-versa) would exaggerate the variation in kinetic behav-
ior of the tissue. Other correlations that are likely to be
important, but that Monte Carlo analyses typically ignore,
include those between ventilation and perfusion (QPC and
QCC), among partition coefficients, and among metabolic
parameters. These correlations can often be directly
addressed during the execution of the Monte Carlo analysis
(Allen et al., 1996). The impact of neglecting correlations
may also be exacerbated by the use of lognormal distribu-
tions for the metabolic parameters, since the lognormal dis-
tribution has a significant ‘‘tail’’, which may include
physiologically improbable values.

8. Model documentation

In cases where a model previously developed by one
investigator is being evaluated for use in a different applica-
tion by another investigator, adequate model documenta-
tion is critical for evaluation of the model. The
documentation for a PBPK model should include sufficient
information about the model so that an experienced mod-
eler could accurately reproduce its structure and parame-
terization. Usually the suitable documentation of a model
will require a combination of one or more ‘‘box and
arrow’’ model diagrams together with any equations which
cannot be unequivocally derived from the diagrams (e.g.,
Fig. 1). Model diagrams should clearly differentiate blood
flow from other transport (e.g., biliary excretion) or metab-
olism, and arrows should be used where the direction of
transport could be ambiguous. All tissue compartments,
metabolism pathways, routes of exposure, and routes of
elimination should be clearly and accurately presented.
All equations should be dimensionally consistent and in
standard mathematical notation. Generic equations can
help to keep the description brief but complete. The values
used for all model parameters should be provided, with
units. If any of the listed parameter values are based on
allometric scaling (Dedrick, 1973; Dedrick and Bischoff,
1980; EPA, 1992), a footnote should provide the body
weight used to obtain the allometric constant as well as
the power of body weight used in the scaling.

However, adequate documentation of a PBPK model
requires more than just a description of the model structure
and parameters. It should also identify the key aspects of
the model development, as diagrammed in Fig. 2. It is par-
ticularly important that the description of the model begin
with a clear statement of the purpose of the model; that is,
what it was designed to be able to do. For example, in the
case of a model intended for use in risk assessment, a
description of its purpose would include information on
the type of risk assessment it is intended to support (e.g.,
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cancer or non-cancer, acute or chronic, etc.), the aspects of
the assessment it is designed to perform (e.g., cross-route or
cross-species dosimetry), and the mode-of-action hypothe-
ses underlying the model structure (e.g., toxicity from a
reactive metabolite vs. receptor binding). The documenta-
tion should then convey the literature and experimental
basis for the assumed modes of action, metabolism path-
ways, and other biochemical and physiological constructs
that underlie the model structure and parameters. Finally,
good model documentation not only provides a description
of the final model, but also discusses the alternative models
that were considered or investigated, and the rationale for
their rejection. The goal of such an extensive documenta-
tion is to convey, as much as possible, the insights gained
by the model developer to the model reviewer or user.

9. Discussion

9.1. ‘‘Best modeling practices’’

The process of PBPK model development described in
this paper is intentionally iterative. Physiological and bio-
chemical systems are highly complex, and it is foolhardy
to expect a successful description on the first attempt.
Too often, model developers propose a single model struc-
ture and then struggle to parameterize it, without seriously
considering alternative structures. The two examples given
in this paper illustrate a process that consists of (1) envi-
sioning and then specifying alternative model structures
based on a combination of experimental inference and bio-
chemical knowledge, (2) performing a quantitative evalua-
tion using objective statistical methods (e.g., likelihood
comparisons) and, when possible, (3) verifying the underly-
ing biological hypothesis (e.g., suicide inhibition) by sepa-
rate experiment. The development of a PBPK model
strictly on the basis of existing data is more properly char-
acterized as analysis rather than research, the key difference
being the iterative nature of the latter. As it has been said,
‘‘If we knew what we had to do when we started, they’d call
it search, not research.’’

The most effective way to develop a PBPK model is to
exercise the model to generate a quantitative hypothesis;
that is, to predict the behavior of the system of interest
under conditions ‘‘outside the envelope’’ of the data used
to develop the model (at shorter/longer durations,
higher/lower concentrations, different routes, different spe-
cies, etc.). In particular, if there is an element of the model
which remains in question, the model can be exercised to
determine the experimental design under which the specific
model element can best be tested. For example, if there is
uncertainty regarding whether uptake into a particular tis-
sue is flow or diffusion limited, alternative forms of the
model can be used to compare predicted tissue concentra-
tion time courses under each of the limiting assumptions
under various experimental conditions. The experimental
design and sampling time which maximizes the difference
between the predicted tissue concentrations under the two
assumptions can then serve as the basis for the actual
experimental data collection.

Once the critical data have been collected, the same
model can also be used to support a more quantitative
experimental inference. In the case of the tissue uptake
question just described, not only can the a priori model pre-
dictions be compared with the observed data to test the
alternative hypotheses, but the model can also be used a

posteriori to estimate the quantitative extent of any
observed diffusion limitation (i.e., to estimate the relevant
model parameter by fitting the data). If, on the other hand,
the model is unable to reproduce the experimental data
under either assumption, it may be necessary to re-evaluate
other aspects of the model structure.

There is an unfortunate tendency in PBPK model devel-
opment to rely heavily on previously published models for
other chemicals. For example, recently published PBPK
models are still sometimes described by the authors as
being based on the original styrene model (Ramsey and
Andersen, 1984), and make use of essentially the same
physiological structure and parameters. However, a great
deal of progress has taken place over the score of years
since the publication of the original styrene model, includ-
ing the convening of expert working groups to recommend
physiological parameter values. Moreover, the structure of
the original styrene model reflects an appropriate use of
parsimony and pragmatism consistent with the purposes
of that modeling effort. For example, the volume of the
intestines is included in the richly perfused tissues compart-
ment, while their blood flow is included in the liver com-
partment, and a further increase in liver blood flow was
used to account for extra-hepatic metabolism. More recent
descriptions of other volatile, lipophilic compounds have
sometimes found it necessary to use a different physiologi-
cal description in which the intestinal tissues are described
as a separate compartment and metabolism is included in
extra-hepatic tissues (Clewell et al., 2000). Every aspect of
the development of a new model should be subject to skep-
tical criticism and careful evaluation by experimental mea-
surement and simulation, rather than by reference to a
previous model.

9.2. Data limitations

Current knowledge of physiological parameters is lim-
ited at best, with well-characterized values only for the lar-
ger tissues and organs, and little data on skin, fat and the
smaller organs. Available data are restricted primarily to
humans, rats, and to a lesser extent, mice, dogs, and mon-
keys; there are almost no data on other species. Data are
primarily on adult animals, with little information on the
perinatal period other than tissue weights. There are even
less data on the variability of physiological parameters,
let alone their interdependencies.

Literature data on partitioning are restricted primarily
to the volatile lipophilic compounds. In vitro experimental
methods exist for estimating thermodynamic partitioning
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(lipophilicity) of both volatile and non-volatile compounds.
QSAR methods for estimating partitioning have been dem-
onstrated for volatile, lipophilic compounds, but not in
general. For many compounds, the apparent distribution
ratio between plasma and tissues is determined, at least
in part, by specific or non-specific binding to proteins or
other cellular components; methods for estimating param-
eters in this case are not as well developed.

Literature data on metabolism are usually limited to
measurements of ‘‘activity’’ (rate of metabolism under
excess substrate conditions) rather than the multiple-con-
centration studies that are necessary to separately deter-
mine enzyme affinity and capacity. There are a variety of
in vitro experimental methods available for determining
metabolism rate constants that can be used in a PBPK
model, but these have been reliably demonstrated only in
the liver. The collection of in vitro metabolism data from
other tissues, such as kidney, lung, nose or testes is more
problematic, and more reliable methods are needed. Often
the key issue is the inability to detect metabolism in the
human target tissue, which compromises the usefulness of
the PBPK model to predict a metric of risk for that tissue.

Perhaps the most critical need is for the development of
ethically acceptable approaches for conducting in vivo

kinetic studies in humans for non-pharmaceuticals. While
it is certainly arguable that it should be possible to develop
a human PBPK model on the basis of a validated animal
model together with human physiological data and
in vitro metabolism data, there is no question that the reli-
ability of the model would be in doubt in the absence of
in vivo pharmacokinetic (ADME) validation data.
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