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Executive Summary

The Third National Health and Nutrition Examination Survey (NHANES I1I) is the third
in a series of periodic surveys conducted by the National Center for Health Statistics to
assess the health and nutritional status of the U.S. population. The NHANES III survey
began in 1988 and will continue through 1994. Phase 1 of the survey, conducted in 1988-
1991, involved data collection on a national probability sample of the U.S. population.
This survey is subject to non-negligible levels of unit and item nonresponse, both in its
interview and its examination components. In previous surveys, nonresponse was handled
primarily using weighting adjustments. The goal of this project was to develop and
compare alternative missing-data adjustments based on single and multiple imputation of
missing data, and to assess mixed weighting and imputation strategies.

The data set used to develop the imputation models consisted of a subset of the Phase 1
data of NHANES III. The subset was restricted to adults over 17 years old, and included
6 completely-observed sample frame/household screening variables, namely:

stand, region, SMSA, age, sex, race,
22 interview variables, missing in about one out of every five cases, namely:

education, marital status, family income, self-reported health status, diabetes,
hypertension/high blood pressure (diagnosis, medication ever, medication now),
high cholesterol (diagnosis, medication ever, medication now), chest pain, heart
attack diagnosis, cigarettes now, activity status, food/alcohol/cigarette in last 30
minutes, alcohol, drugs, height, weight, blood pressure (systolic, diastolic);

finally, 12 MEC variables from three components of the examination were included:

Body Measurements: height, weight, waist circumference, buttocks circumference
Blood Pressure: systolic 1-3, diastolic 1-3
Lipids: Serum Total Cholesterol, HDL Cholesterol.

These variables were missing in about one out of every three cases

Three imputation methods were developed as part of this project. Westat, Inc. imputed
about 690 missing values for six MEC variables, namely log height, log weight, systolic
and diastolic blood pressure, total serum cholesterol and HDL cholesterol, using two
closelv-related regression imputation methods. Datametrics Research and Joe Schafer
multiply imputed 23 variables in the adult questionnaire and MEC, for over 4000 cases
involving all types of nonresponse, using a Bayesian simulation method (DMS) for mixed
normal and categorical data.

The major differences in the number of values imputed reflect in part differences in
strategies regarding how much of the missing-data problem should be handled by



weighting adjustments and how much by imputation. Specifically, Westat propose a
strategy (ILO -- imputation-LO) that confines imputation to item nonresponse for
individuals who received the MEC examination, whereas Datametrics and Schafer apply a
strategy (IHI -- imputation-HI) that also imputes all the other sources of unit and item
nonresponse. In this report the relative strengths of weighting and imputation are debated,
and a middle course (IMID) is proposed for current implementation that deals with
nonresponse for individuals missing the questionnaire and MEC examination by a
weighting adjustment, but multiply imputes important variables in the data set subject to
other forms of nonresponse.

Comparisons of the imputes from the Westat and Datametrics / Schafer methods on the
subset of values imputed by Westat indicate that both methods by and large produced
reasonable imputations of the missing values, although Schafer's analysis did uncover the
need to edit out some implausible respondent values. The Datametrics / Schafer DMS
method is recommended, in view of its ability to handle general patterns of missing data,
and to provide multiple imputations of the missing values that allow the uncertainty due to
nonresponse to be incorporated into the analysis using standard complete-data methods.

Our main recommendations based on this study are as follows:

1. We propose the following IMID option for current implementation: cases missing the
entire questionnaire and MEC examination are weighted, using the first-stage weight
adjustments developed in Ezzati and Khare (1992). Missing values for key variables in
other cases are replaced by M = 5 multiple-imputations, created by the DMS methodology
described in this report. Missing-values of less important variables in the analysis file
would be replaced by missing-value codes.

2. Multiply-imputed data bases should include in the documentation some summary of
methods of analysis for multiply-imputed data, including examples of how to create and
analyze repeated complete data sets.

3. In future, multiple imputation methodology can be expanded to more variables and
more incomplete cases, as the method becomes established with users, documentation is
refined, and computing limits are reduced by advances in statistical computing.

4. Ways should be considered of user-friendly packaging of multiple imputations in data
bases, e.g. for SAS, SPSS, BMDP etc. For example, consider whether it is better to a) use
pointers to the multiple imputes, or b) repeat each incomplete variable M times, with
consequent duplication of complete information.

5 Future research on the first-stage weighting adjustment developed in Ezzati and Khare
(1992) should consider the development of weights based on the estimated response
propensity (Rosenbaum and Rubin 1983: Little 1986), and assess the importance of the
component of variability missed by the current procedure.
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6. More generally research is needed on improving the estimation of complete-data
standard errors. Modeling to reduce the excessive variability of current SUDAAN
estimates is needed.

7 Studies should be conducted concerning the reasons of nonresponse in the NHANES,
and a comparison of respondents and nonrespondents with respect to observed
characteristics. Is the missing-data mechanism missing completely at random, or do
respondents and nonrespondents differ? The tables created for the current project and the
work on weighting adjustments in Ezzati and Khare (1992) give some indication that
differences between respondents and nonrespondents are minor, but more systematic
assessments are needed.

8. Finally, projects such as the one we are assessing here demonstrate feasibility, and
provide useful descriptive and comparative information, but they do not provide objective
information about the operating characteristics of procedures - for example, do (1-a)
confidence intervals created from the multiple-imputed data sets developed under the
IMID procedure really cover the target quantity in a proportion (1-ct) of repeated samples
for NHANES? To convince skeptics, what is needed is an honest frequentist evaluation
\ia simulation to assess the methods discussed here. That is, create hypothetical
populations, draw samples from each, and apply existing and alternative procedures to the
samples, and thereby assess the validity of inference a2bout population quantities. The
assessment should distinguish between deficiencies due to complete-data methodology,
such as problems with the SUDAAN standard errors. and deficiencies due to alternative
nonresponse adjustment methods such as weighting or multiple imputation.
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1. Introduction

This report reviews work on imputation for NHANES III by Datametrics, Joe Schafer and
Westat, provides an assessment of how we think imputation might be used in NHANES
public use files currently under preparation, and suggests directions for future research in
this area. Extensive documentation of the impressive body of work upon which these
comments are based is provided in the memoranda listed in Table 1, which are attached as
Appendix 1.

As the next section indicates, NHANES III contains a substantial number of missing
values. There are three major problems created by missing data in data bases such as
NHANES. First, if the units with missing values are systematically different from the units
with complete data, naive analyses that ignore these differences will be biased. Second, the
existence of missing data implies a loss of information, so that estimates will be less
efficient than planned. Finally, most standard statistical methods are designed for complete
(that is, rectangular) data sets; thus missing data often render the analysis of data from a
study more complicated.

One common approach to missing values in public-use data bases is simply to flag missing
values using missing-value codes. The use of missing-value codes is the easiest solution to
missing data for the data producer, and it may be sensible for variables with very modest
levels of nonresponse (for example, 1%-2% of cases), where the effort of developing
imputation models has little pay-off. However, the approach simply passes the problem of
analysis with missing-data on to the user. Most statistical packages discard cases from a
statistical analysis that contain missing values on included variables (the method labeled
complete-case analysis in Little and Rubin 1987), an option that is inefficient and
potentially leading to nonresponse bias. Another problem with flagging missing values is
that investigators may obtain different results for the same analysis applied to the same
data set, because of differences in how the missing data are handled. A final problem with
simply flagging missing values in variables with modest levels of nonresponse is that
modest levels can become substantial in subgroups of interest (for example, in particular
age X race X sex X urban/rural subgroups)

Imputation by the data producer, that is filling in the missing values with suitable
estimates, yields a rectangular file that is amenable to standard analyses, retains incomplete
cases, and promotes a uniform treatment of the missing data by users (to the extent that
the supplied imputes are used). However, simple imputation methods, such as substituting
the overall mean, can lead to worse estimates than those from complete-case analysis. The
imputations need to condition on available information for nonrespondents, and to be
based on a well-chosen implicit or explicit statistical model. For discussions of imputation
methods in surveys see for example Kalton and Kasprzyk (1982, 1986), Madow et al.
(1983, Volume 2), Little (1986, 1988a) and Rubin (1987).

A disadvantage of replacing missing values by a single estimate is that uncertainty in the
imputation is not reflected, and thus inferences based on the filled-in data tend to be



understate uncertainty -- in particular, confidence intervals are too narrow, and P-values
for hypothesis tests are too low. Multiple imputation (Rubin 1987) is an extension of
imputation that replaces each missing value by M > 1 values, drawn from the predictive
distribution of the missing values under a model. This extension retains the ability to
analyze the data by complete-data methods, but also allows uncertainty in the imputation
1o be assessed and formally incorporated into the analysis in a straightforward way, as
discussed in Section 8.

We believe that multiple imputation under a judiciously-chosen model is one of the best
ways of handling missing values in a public-use data base; reasons are given in Rubin
(1987) and Little (1988a). Recent work by Fay (1991, 1992) has attempted to undermine
the method with examples where the imputer and user adopt different models, but we
believe these criticisms are based on a misinterpretation of his results and hence not well
founded. A more serious practical objection is that with large multivariate data sets, the
modeling task of creating multiple imputes for all the missing data may be formidable.
Less valid but simpler methods may be adequate, particularly for variables of secondary
importance.

One alternative to imputation is to drop incomplete cases, but weight the complete cases
to compensate for nonresponse bias. The simplest form of this method is to weight
respondents by the inverse of response rates computed within adjustment cells based on
values of variables measured for respondents and nonrespondents. This method was used
to handle nonresponse in previous NHANES surveys. and weighting methods for
NHANES III are considered in Ezzati and Khare (1992). A useful extension of this
approach is to base adjustment cells on predictions from a logistic regression of a response
indicator on observed covariates (Rosenbaum and Rubin 1983; Little 1986). Weighting
provides a useful mechanism for bias adjustment, but it is not a good tool for controlling
variance, especially with many survey variables. One reason is that weighting provides the
same nonresponse adjustment for all variables, regardless of their degree of association
with nonresponse, whereas imputation allows the nonresponse adjustment to be tuned to
each missing variable. Imputation also has optimal properties if the imputation model is
correct. For more discussion see Little (1986), Rubin (1987).

Two types of missing data are commonly distinguished in surveys -- unit nonresponse,
where basic sample and household information is available for an individual but the survey
information is missing through noncontact or refusal to participate, and ifem nonresponse,
where an interview was conducted but particular variables in the survey are missing. A
common strategy is to deal with unit nonresponse by weighting adjustments and item
nonresponse by imputation. In NHANES III, this simple recipe is complicated by the fact
that the survey has two data collection instruments, namely the questionnaire and the
MEC examination, and more than two if the components of the MEC examination are
treated as distinct. Hence, some thought is needed to assess the most judicious use of
weighting and imputation for this survey.
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The structure of this report is as follows. Section 2 discusses the pattern of missing data in
NHANES III and introduces some terminology for types of missing data. Section 3
discusses general properties of weighting and imputation adjustments, and presents the
specific alternatives considered in this evaluation. Section 4 discusses the current
weighting methods for NHANES III developed in Ezzati and Khare (1992), proposes
future enhancements, and relates this work to the imputation methods developed in this
project. Section 5 presents and argues in favor of the IMID strategy for addressing the
problem of missing data in NHANES IIL. Section 6 discusses the estimation of standard
errors of NHANES III estimates. Section 7 compares the particular imputation models
used by Datametrics / Schafer and Westat in this project, and presents arguments in favor
of the multiple imputation methods of Datametrics / Schafer. Section 8 discusses some
issues in the implementation of multiple imputation, and sketches the analysis of multiply-
imputed data sets by survey users. Finally, Section 9 restates the recommendations given
above in the Executive Summary.

2. Types of Missing data in NHANES III
Variables in NHANES III can be usefully classified into three groups:

1. Sample frame / household screening variables
2. Interview variables (family and health history variables)
3. Mobile Examination Center (MEC) vanables

Missing data in the sample frame / household screening variables are referred to here as
screening nonresponse. The level of screening nonresponse is minor, and for the purposes
of this report we shall treat household/screening variables as fully observed.

Missing data in the interview variables are referred to here as interview nonresponse. The
interview data consist of family questionnaire variables, and health variables obtained for
sampled individuals. Schafer (Document 3, Table 1) reports 15%-16% of values missing
on the family questionnaire variables, and 18%-23% of values missing on the selected
adult questionnaire variables, the latter reflecting somewhat higher amounts of item
nonresponse. (The high nonresponse rate of 62% for cholesterol diagnosis is misleading,
since much of it attributable to a filter in the questionnaire.)

Missing data in the MEC variables are referred to here as examination nonresponse.
Schafer (Document 3, Table 1) reports levels of nonresponse of 31%-34% of examination
nonresponse.

When missing or present as a set, these three blocks of variables (screening, interview,
examination) have an approximately monotone structure, with screening variables fully
observed, questionnaire variables missing when the interview is not conducted, and
examination variables missing when either (a) the interview is not conducted or (b) the
interview is conducted but the MEC examination does not take place. However,
nonresponse for individual items spoils this monotone structure.



Table 1. Description of Memoranda for NHANES III Imputation Project

Doc Date

1. June 12
2. June 22
3. July9
4. July3l
5. Augs
6. July29
7. Aug 3
8. Aug 4
9. Aug?7
10.  Aug7
11.  Aug?
12.  AuglO
13. Sept3
14.  Sept7

15.  Septll

16. Sept17
17.  Sept.
22

Author
Little/Rubin
Schafer
Schafer

Fahimi
Fahimi

Rowland

Schafer
Ezzati/Khare
Ezzati/Khare
Rowland
Schafer
Ezzati/Khare
Schafer
Schafer
Judkins,

Winglee
Schafer

Title

NHANES Survey: Evaluation of Imputation
Methods

Recommendations on Model for NHANES
111 Imputation Project

Rates and Patterns of Missingness in the
NHANES III Imputation File

Imputation of MEC Variables

Alternative Imputations for the Cholesterol
Measurement

Evaluation of WESTAT Single Variable
Measurements

Tables 1-3 for WES 3

Multiply Imputed Dara Files for NHANES
I

NHANES III Imputation Project

Tables 1 and 2 for memo 10

Evaluation of Single Variable and Multi-
Variable Imputations

NHANES III Impuration Group Meeting
(tables and figures)

NHANES III Imputation Project -
additional tables 1A-D, 2A-D, 3A-B
Model and Procedures Used to Create

Multiply Imputed Datasets for NHANES III

Exploratory Analysis of Imputed Values in
the NHANES III Imputation Project
Variance Estimation with Imputed Data for
NHANES III

Westat's Recommendations on Missing Data

and Variance Estimation Procedures for
NHANES III

Short Title

WES 1
WES 2

WES 3
WES 4
MI 1

MI2
MI 3

The MEC examination involves components corresponding to related sets of

measurements. Item nonresponse for the MEC o
ponent are missed. Thus, item nonresponse for the ME
her component nonresponse, where an individual is examined but all the
sing, or item-within-component

particular com

classified as eit
variables in one component of the exam are mis

nonresponse for particular items, typically a minor problem.

fien arises when all the variables in a
C variables is



3. Weighting vs. Imputation

As noted in the introduction, two general strategic approaches are commonly considered
for dealing with missing values: either drop incomplete cases from the analysis and apply a
weighting adjustment to the remaining cases, or retain cases in the file and impute one or
more values for each missing datum. A key decision concerns the extent to which
weighting and imputation are used to handle the various types of nonresponse.

Westat's (Document 18) proposed procedures for handling missing data, henceforth
labeled WES, handle nearly-all the missing data problems by weighting adjustments,
confining imputation to MEC component and item-within-component nonresponse - that
is, to cases that received the MEC exam but were missing one or.more components of the
exam (e.g. all body measurements), or missing items within a component. For example, as
shown in Tables 4-6 of Document 3, only about 17% of the missing values for the MEC
variables studied here was attributable to component and item-within-component
nonresponse, accounting for about 6% of all missing values. Under this proposal, all cases
not receiving the MEC exam would be dropped from the analysis file, with the remaining
cases reweighted to compensate for this component of missing data. We call this strategy
ILO for imputation-LO, since its use of imputation is limited.

The multiple imputation approach, labeled henceforth as DMS, was developed by
Datametrics and Joe Schafer and implemented on the test NHANES III data sets by Dr.
Schafer. It is based on Bayesian simulation for the general location model for mixed
normal and categorical data (Documents 2 and 14). Maximum likelihood methods for
incomplete data from this model are described in Little and Schluchter (1985), and the
Bayesian methods based on the Gibbs' sampler are described in Schafer's Ph.D.
dissertation (Schafer 1991). DMS was applied to all missing values of variables in the trial
data set. This approach relies much more on imputation and less on weighting than the
Westat approach, since all cases are retained in the file and the role of weighting confined
to sampling adjustments. We call this strategy THI for imputation-HI, since it uses
imputation to handle all nonresponse.

An intermediate strategy between ILO and IHI is to drop and weight for cases missing
both the interview and examination variables, but retain and impute cases with the
interview present but the examination missing. We call this strategy IMID.

Precise formulations of the IMID and ILO strategies require the specification of what is
meant by an interview or exam being present or missing -- for example, an interview
where some basic family questionnaire variables were recorded, but all the adult health
variables were missing, might be treated as missing even though a small number of
interview variables are present. Such details are not addressed here, the focus being on a
broader assessment of the three alternative strategies. The choice between ILO, IMID and
IHI should be based on statistical properties of the methods, as well as more practical
considerations such as ease of implementation and use. Some general comments may assist
in the choice:



In favor of imputation:

1) Imputation (dumb or smart) has the clear advantage of retaining values of recorded
variables in incomplete cases, which are dropped by weighting (or, if retained in the file,
are given zero weight). From this perspective, imputation becomes increasingly attractive
as the relative number of observed variables in an incomplete case increases. In particular
IMIN has the undesirable feature of sacrificing information on individual interviews from
people who were interviewed but missed the MEC exam.

2) Weighting is an inferior tool for missing-data adjustment, particularly when the set of
observed covariates is extensive. It can provide a useful mechanism for bias adjustment if
weighting classes are appropriately formulated, but is not a good tool for controlling
variance, especially with many survey variables. Imputation also has optimal properties if
the imputation model is correct. For more discussion see Little (1986), Rubin (1987).

In favor of weighting:

3) Weighting has the operational advantage of providing a single adjustment for all
variables simultaneously: it is often much less work. As Westat correctly point out
(Document 16), imputing the entire set of examination variables for cases who missed the
\{EC exam could be a mammoth task in multivariate modeling; we are not sure how many
variables are involved, but presumably it is much greater than the set of about 30 variables
included in the test analysis.

4) Weighting avoids potential problems of inconsistencies between imputed values of
missing variables, such as can arise when using an imputation model that fails to satisfy
logical editing constraints. We tend to view this problem as more an inconvenience than a
serious issue, arising from the tendency to want to treat an imputed record as the truth
rather than an estimate with uncertainty. Also, recorded data usually need to be edited for
the same reasons.

3) A more serious issue can occur when imputation models impute subsets of variables
(for example, components of the MEC) independently rather than jointly, and thus fail to
incorporate conditional associations between variables in different sets. Such associations
are preserved by weighting. This potential limitation in imputation methods need to be
documented in user information. However we note that Schafer's analysis managed to
accomplish joint imputation of certain important examination variables that occurred in
three different components of the exam.

More generally, the issue of what constitutes a "correct imputation model" deserves
extended comment, for it in fact is the only theoretical issue that limits the applicability of
multiple imputation: general theory in Rubin (1987, chapter 4) shows that "proper”
imputations under a correct model provides valid subsequent inferences from the model-
based or randomization / frequentist perspectives. Also. certain assumptions of the model
can be relaxed (such as normality of error distributions) without affecting the validity of



multiple imputation inferences in large samples, and approximate models often work
extremely well -- as George Box is quoted as saying, "All models are wrong, but some are
very useful." In general, the propriety of the complete-data model is far more important
than that of the

multiple imputation model, because the latter is only used for the fraction of information

that is missing.

The following guidelines are useful when selecting an imputation model. In principle, any
useful predictor of a missing value should be part of the model, including interactions that
appear to have any predictive power. Predictive ability as measured, for example by R* in
a linear regression, is typically more important than significance tests for coefficients,
especially in small samples. Use of transformations to improve the fit of the model is
highly desirable, just as with complete data analyses. Variables that are known to be used
in future planned analyses should be included, whether or not they appear to be significant
or powerful predictors. This seems to be a prescription for including many, many
variables, and it is. As discussed in Section 7, the technology of iterative simulation (e.g.,
the Gibbs sampler), allows multiple imputation of increasingly large models, as
computational algorithms and available computing resources improve. For the DMS
models fitted here, the software developed by Schafer (1991) also provides the tools for
diagnostic checking, model modification, and editing.

The inclusion of "too many (e.g. zero true coefficient)" predictors does no harm to the
validity of the resulting inferences, nor does their exclusion even if the data analyst decides
10 include them--this is true despite Fay's recent (1991, 1992) proclamations to the
contrary, which are based on a misinterpretation of his analytic and simulation results.
Consequently, the objective is to include all predictive variables in the model, although
worthless variables can always be excluded even if a future analyst uses them; the model
only fails to the extent that the left-out variables orthogonal to the included variables have
predictive power. Note the use here of "orthogonal" components of the left-out vanables,
not the left-out variables themselves--with large data sets and many included variables,
often the left-out orthogonal components are very minor, even if the left-out variables are
important before adjusting for the included variables. Several real world examples support
this claim, e.g., the occupation and industry example briefly described in Rubin and
Schenker (1990) , which has been studied by a varietv of statisticians and social scientists
without any evidence of failure.

4. The Current Proposal for Weighting NHANES 1.

The nonresponse weighting adjustment for NHANES III developed in Ezzati and Khare
(1992) computes weights for the ILO procedure; that is. non-zero weights are assigned
only to individuals who received the MEC examination. The weights are computed as the

product w = w,w,, where w, is the inverse of estimated response rate of individuals for the
survey guestionnaire, and w, is the inverse of the estimated response rate for the individual

exam, given completion of the questionnaire. The weignts w, are computed as inverse

10



response rates within a 72-cell cross-classification of all cases by the screening variables
age (2 categories), race (3), region (3), SMSA (2) and household size (2). The weight w,

is computed within a 72-cell cross-classification of cases responding to the questionnaire,
by screening variables age (2), race (3), household size (2) and questionnaire variables
income (3) and self-reported health status (2). The weights w are then multiplied by the

sample design weight and a post-stratification factor.
We make the following comments about this procedure.

4.1 Consistent with the ILO strategy, cases who responded to the questionnaire but did
not take the examination are assigned a weight w = 0, that is, are effectively dropped from

the file. If two weights were retained in the file, namely w and w,, then analyses involving
the questionnaire variables could include these cases and use a weight based on w,.

4.2 The need to limit the variance from small adjustment cells results in variables that are
very coarsely classified (for example, age in two categories). A refinement that might be
useful in this context is to form adjustment cells based on the response propensity,
estimated from a logistic regression of response/nonresponse on the classification
variables.(E.g. Rosenbaum and Rubin 1983; Little 1986; Czajka et al., 1992; Judkins et al.
1992).

4.3 If the THI method were adopted, nonresponse weights would be set to one, and
weighting confined to adjustments for the survey design and post-stratification. If the
I\MID method were adopted, cases who missed the interview and MEC examination

would be dropped and remaining cases assigned the nonresponse weight w;.

4.4 The results in Ezzati and Khare (1992) suggest that bias is not a major concern here.

The ranges of the stage 1 weights w, (1.02 to 1.37), and the stage 2 weights w, (1.00 to
1.42) are quite small compared with the range of the final weights (0.4 to 2.6).
Furthermore, most of the associations of questionnaire variables with MEC response are
modest in size and statistically insignificant after adjusting for the screening variables.
Given these findings, the main utility of the questionnaire data may lie in imputation for
variance reduction rather than weighting for bias reduction, particularly since Schafer
notes in Document 17 that the questionnaire data contain good predictors of some MEC
variables.
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5. A Proposal for Discussion: IMID.

Taking the previous considerations of into account, we propose the following form of
IMID as a baseline for discussion, in the context of current plans for addressing
nonresponse in NHANES III:

A) Delete cases missing both the interview and MEC exam, and apply their nonresponse
weight w, to the remaining cases (with adjustments for the survey design and post-
stratification).

B) For cases with some interview data present (that is, not dropped in A), multiply-impute
for item nonresponse in the interview variables, and also for nonresponse in important
examination variables. This strategy allows the observed data in the personal interview to
be retained for these cases, and used to predict the missing values of key MEC variables.
Other MEC variables are assigned missing value codes.

This scheme is preferred to IHI on pragmatic grounds, since it avoids the imputation of
entire records for "unit nonrespondents” that contain only screening variables. The
decision seems justified on grounds of simplicity given that covariate information for
prediction is limited for these cases. A practical reason for avoiding imputation for these
cases is that it tends to reduce the number of multiple imputes per missing value needed
to adequately reflect the imputation uncertainty. The analysis of ten multiple imputes
(Document 13) suggested that when imputation is applied to unit nonrespondents, 5, and
for some estimands more than 5, multiple imputes are needed to stabilize the between-
imputation variance. If nonrespondents missing the interview and the MEC examination
are weighted, 5 appears to be a reasonable number - this was the number used successfully
in the Census Industry and Occupational Recoding project (Rubin and Schenker 1987,
Treiman, Bielby and Cheng 1988; Clogg, Rubin, Schenker, Schultz and Weidman 1991).

The TMID scheme is preferred to ILO since a) interview data on cases with interview
present and MEC missing are retained in the file, and used to predict key MEC variables.
The analysis in Ezzati and Khare (1992) suggests that residual nonresponse bias after
adjustment for the screening variables is small. This implies that the information carried in
the second-stage weight w, is small, and the ILO scheme is approximately equivalent to
simply discarding the interview data for interview present/MEC missing cases. With
regard to the MEC variables, this approach is equivalent to the strategy of retaining these
cases and assigning them missing-value codes to all the MEC variables. The IMID scheme
improves on this scheme by selectively imputing the more important MEC variables. We
expect the set of variables and cases to be multiply imputed could gradually increase as
more experience is gained about imputation models for the NHANES data set, and as
computational resources improve.



6. Standard Errors: Propagating Uncertainty from the Missing Data
6.1 SUDAAN Linearization vs Replication

A major problem with assessing and properly reflecting the added uncertainty from
missing data in NHANES 111 is that it is widely agreed that current SUDAAN linearization
methods for assessing standard errors from the complete data are problematic, given the
small number of clusters. The wild fluctuations in design effects across multiple
imputations (e.g. Document 10, Table 1) are a reflection of this problem.

Westat's view (Document 16) is that elaborate methods for propagating the additional
uncertainty from imputation may not be worth the effort, given their ILO proposal to limit
imputation to component and item-within-component nonresponse, and the poor quality
of the SUDAAN standard errors. For weighting, they note that SUDAAN methods are
not easily applied to assess the added uncertainty from estimating the nonresponse
weights; the size of this uncertainty is unclear. They propose applying replication methods,
where nonresponse weights are computed for a set of replicate samples, as an alternative
approach to variance estimation that takes into account the added uncertainty from
nonresponse adjustment. Since this method formally incorporates the component of
uncertainty from nonresponse weighting missing in the SUDAAN analyses, Westat
suggests that it could form a basis for calibrating the SUDAAN estimates.

However, as Schafer notes in his response (Document 17), the replication method does
not overcome the major defect in the SUDAAN approach, that is, the instability of
estimates caused by the small number of clusters. Given the instability as reflected in the
design effects from multiple imputation, it may be very difficult to measure the added
component of sampling error from the estimated nonresponse weights, except perhaps at
very gross levels of aggregation. Our view is that better methods of variance measurement
require some form of modeling. The development of more reliable estimates of sampling
error for their survey designs seems an important research priority for NCHS.

6.2 Imputation Error: Multiple Imputation vs Adjusmment Factors

The other issue with variance estimation concerns the assessment of imputation error.
Westat (Document 16) argues that multiple imputation requires "sophisticated computing
equipment and large storage capacity for the multiple sets of imputed data", and proposes
formulae for adjusting standard errors of singly-imputed data.

Schafer (Document 17) points out theoretical limitations of the latter approach compared
with the general validity of multiple imputation approach. He also suggests that the
practical difficulties have been overestimated. Since the analysis of multiply-imputed data
sets simply involves repeated complete-data analyses with different sets of imputes
substituted, "sophisticated computing software" is not required of the user -- indeed the
avoidance of specialized missing-data software is one of the main rationales for multiple
imputation, rather than direct analysis of the incomplete data. With regard to storage



requirements, additional storage is only needed for variables that have missing values and
are multiply-imputed. A simple but wasteful approach to storage with five multiple
imputes is simply to replace the incomplete variable by five copies, with each set of
imputations substituted. Since singly-imputed data requires an additional storage location
for a missing-value flag, the number of locations for each multiply-imputed variable is
increased from two to five. Since we suggest that only a subset of important variables are
multiply imputed, the net increase in the size of the file would be less than a factor of two.
Other arrangements of the multiply-imputed data could reduce the additional storage
capacity to much lower levels, at the expense of some added data-base manipulation. We
do not see this as a limitation.

7. Comparisons of Imputation Methods

In this section we provide our assessment of the test evaluations of the alternative
imputation procedures conducted by Westat (WES) and Schafer / Datametrics (DMS).

7.1 Three imputation methods were developed as part of this project. WES imputed about
690 component and item-within component missing values for six MEC variables: log
height (LGHT), log weight (LGWT), systolic blood pressure (D-SYS), diastolic blood
pressure (D-DIAS), total serum cholesterol (TCRESULT) and HDL cholesterol
(HDRESULT), using two closely related regression imputation methods (Document 5).
DMS was used to multiply impute 23 variables in the adult questionnaire and MEC, for
over 4000 cases involving all types of nonresponse (Documents 2 and 14), a much more
extensive imputation exercise.

7 2 Since the methods applied seem to be very different, it is worth noting their
similarities. Both essentially apply linear regression models to predict means of missing
variables, and then add noise to create a draw from the predictive distribution of the
missing values. WES adds noise in the form of residuals or values from matched cases,
whereas DMS in essence adds normal deviates.

7 3 WES fills in variables sequentially, which is appropriate for data with a monotone
missing-data pattern. However, DMS works for any missing-data pattern. Although the
missing-data pattern from missing entire questionnaires and entire examinations is close to
monotone, questionnaire nonresponse for particular items, and component and item-
within-component nonresponse in the MEC (which is the type of nonresponse to which
WES is applied) does not have a monotone pattern, and thus ad-hoc fixes are needed to
deal with multivariate imputation under the WES approaches.

7.4 In his implementation of DMS, Schafer included the survey design variable, STAND,
as a predictor in his models, which was omitted in the WES models. This inclusion is in

principle necessary for valid inferences from the design-based perspective.

7 = DMS adds normal noise, and hence may be somewhat more sensitive to deviations
from normality for some estimands. However, scatter plots of observed and imputed
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values (Document 15) suggest that this problem is effectively resolved by transformations
of the non-normal variables. Schafer's comparisons of the MEC component and item-
within-component imputations (Document 15) suggest that in broad terms the imputes
fom all the methods reflect the distribution of the variables quite well. However, Schafer's
careful data analysis revealed a number of gross outliers in the data set (see for example
Figures 1-3 in Document 14), which were not adequately handled by Westat. Removal of
these outliers improved the DMS model and apparently prevented some isolated
problematic imputations that surfaced in the WES results (Document 15).

7.6 DMS also provides "proper" multiple imputations that include the uncertainty from
estimating the parameters of the model, and allow the added component of uncertainty
from imputation to be included in inferences (see Section 6.1 below); the WES
imputations are single, and (unlike DMS) do not provide simple and rigorous procedures
for assessing imputation uncertainty. The effects of ignoring the added uncertainty from
imputation can be serious, particularly for hypothesis tests involving vector parameters
(Li, Raghunathan and Rubin 1991). Adjustment factors are proposed by Westat
(Document 16), but as noted by Schafer (Document 17), these appear limited to estimates
of means and have questionable theoretical properties.

7.7 We regard the DMS analysis with ten multiple imputes (MI10) as the gold standard,
since it deals adequately with the multivariate missing data pattern, it reflects all sources of
uncertainty, and the model, editing and estimation procedures are superior.

7 8 The MI10 results include an analysis of the fraction of missing information. Estimates
tend to be highly variable because of instability of the SUDAAN estimates of within-
imputation variance. However, it is clear that the percent missing information is generally
low for item-within-component nonresponse (&.g. 3%), and higher for component and unit
nonresponse (e.g. 25%).

7.9 Design effects vary remarkably across the multiply-imputed data sets, reflecting the
instability of the SUDAAN standard errors. This problem hinders the comparisons of MI3,
\MI5 and MI10. However, our assessment is that M =5 multiple imputes should be
sufficient, particularly under the proposed IMID strategy that weights for cases missing
the interview and MEC examination.

710 As noted in Section 3, imputation has theoretical advantages over weighting in that it
uses available information about covariates in an optimal way. Gains in efficiency are
difficult to assess given the noisy variance estimates, although the high R2 values for some

of the predictive models (Document 14) suggest that imputation yields good predictive
power for some MEC variables.

7 11 In contrast, Westat (Document 16, Table 2) provide a table suggesting that the
increase in variance from discarding cases missing the MEC is surprisingly modest,
averaging about 5% over all the variables considered. The smaliness of the increase seems
10 arise because the estimated design effects for estimates based on all persons (n=11662)



average about 10% more than the estimated design effects for estimates based on
examined persons only (n=8212). This finding suggests that the information loss from
discarding incomplete cases is muted by the effects of clustering. Note that such an effect,
if real, would tend to be reduced for estimates for subclasses of the sample, which tend to
have smaller design effects due to clustering of the sample. However, given the
unreliability of the design effect estimates we think this issue needs further study before
any firm conclusions can be reached.

7.12 From our perspective, DMS methods are more principled in that they flow directly
from the choice of model and rigorous principles of probabilistic predictive inference (e.g.
Rubin 1987, chapter 5), whereas WES methods tend to be hampered by the need for
repeated ad-hoc fixes to deal with the problems of non-monotone missingness. (We
ourselves have considered such fixes: see Little, 1988) Since such fixes are not needed in
the DMS approach, effort can be concentrated on the details of the model (e.g. which
variables to include as predictors), editing and other data analysis to monitor model fit.

7.13 Westat argues against DMS on the grounds of excessive complexity. However the
computational tools underlying DMS methods are simply the standard tools of regression
combined with chi-squared and normal random number generation, and (on the WES
side), matching algorithms that deal appropriately with the multivariate pattern of missing
data are not simple to devise and program.

The DMS method follows the theoretically most rigorous approach to multiple
imputation, drawing from the posterior predictive distribution of the missing values under
an appropriate model. Until very recently, this task has been extremely demanding even in
relative small multivariate data sets. Much has changed recently, however, with the
advent of iterative simulation methods (see for example Tanner, 1991). The task still is
not necessarily easy, but the major limitation in many contexts involves practical issues of
computational storage and speed, rather than theoretical breakthroughs.

The DMS method is based on iterative simulation using the Gibbs sampler and data
augmentation (Schafer 1991; Tanner 1991; Tanner and Wong 1987). The underlying
general location model assumes a multivariate normal distribution for missing continuous
variables with a mean that is linear in observed continuous and discrete variables, and has
broad applicability in many applied settings. The basic computational ideas are quite
straightforward, although Schafer's software is full of intelligent options, shortcuts, and
diagnostics. This software is currently available and will be fully documented in a
forthcoming Chapman and Hall monograph. Recent work by C.H Liu, a current Ph.D.
student of D.B. Rubin, has further increased the efficiency of the computations. Liu's
speeded algorithms are working and available, although lacking the extensive
documentation and diagnostic displays in Schafer's software. Both programs have been
used extensively on personal computers, both in the U.S in academic and government
environments and in Europe. When planning for the future, it seems unwise to be very
concerned about current computational limitations; as we have seen, even in our hurried
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exploratory project, we have been able to handle substantial aspects of a rather large real
world problem.

We feel that ultimately the proof of the imputing is in the results. The fact is that Schafer
accomplished a much larger imputation task than Westat in a similar time-frame, and at the
same time provide a wealth of useful diagnostic information concerning the choice of
covariates and outliers. Moreover, DMS software is more readily applicable to missing
data in other data bases, since it handles a more general pattern of missing data and has the
ability to handle categorical-data.

8. Specific Issues Associated with Multiple Imputation
8.1 File Storage and Analysis of Multiply-Imputed Daia

We propose that multiple imputation be confined (at least initially) to a set of important
variables for analysis, and that missing values of unimportant variables are handled by
assigning missing-value codes. We suggest that M = 3 multiple imputes be created for
each missing value, by creating five versions of each variable, with one set of multiple
imputations substituted for the missing cases, and the observed value substituted for the
observed cases. This scheme is somewhat wasteful in terms of storage space, but makes
analysis as simple as possible for the user. An analysis of the multiply-imputed file simply
requires a complete-data analysis to be repeated five times, once with each version of the
multiply-imputed variables. For example, suppose that the analysis is a regression of Y on
X1, X7 and X3, where Y and X7 are multiply-imputed and X1 and X3 are fully observed
(e.g. design variables). Then the five analyses consist in regressing Y(m) on X1, X2(m),
and X3, form=1,....5, where Y(m) is the version of Y with the mth set of imputes
substituted, etc. The key point is that each regression (or any other analysis procedure
adopted) is a complete-data analysis of the filled-in data, that is, no special software is
required to allow for the fact that some data are imputed.

Large-sample inferences involve simple manipulations of the results from the complete-
data analyses. In particular, for inferences about a scalar quantity Q (say the regression

coefficient of Xy in the above example), let Qm be the estimate of Q from the mth
complete-data analysis, and let U, be the associated estimate of variance. The quantities
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are computed, where M is the number of imputed data sets. A 100(1-a)% confidence
interval for Q is then

Q- it»(l—alz)“ﬁ:: (4)

where
T=U+(1+M™")B,
is the total variance, and ,,_,, is the 1-o/2 quantile of the t distribution with

v=(M-1)(1+1/ r)? degrees of freedom (Rubin 1987; Rubin and Schenker 1986).

\fethods for multivariate statistics and associated variance-covariance matrices are also
described in Rubin (1987). These methods usually work well and have much better
coverage properties than single-imputation methods. More refined methods are described
in Li, Raghunathan and Rubin (1991), and are very accurate. Methods for directly
combining P-values from complete-data analyses are described in Li, Meng, Raghunathan
and Rubin (1991); these methods can be inaccurate with large fractions of missing data,
but should work well for the levels of nonresponse in NHANES III. Methods for working
with likelihood-ratio functions are described in Meng and Rubin (1992), and are very
accurate. Specific formulae for these procedures are given in the review article (Rubin and
Schenker 1991) attached as Appendix 2.

It is important to realize that these multivariate analyses on a multiply-imputed data set
are nearly as easy to carry out as scalar analyses. For example, consider the multivariate
estimand consisting of prevalence estimates by age, sex, and race, where each complete-
data analysis produces the three-way table of estimates with associated standard errors, as
well as p-values for several log-linear models. Each complete-data analysis on each
multiply-imputed data set produces this collection of statistics. The M tables are averaged
to produce the estimate of the three-way prevalence rates, and the standard errors are
combined exactly as with scalar estimates. There are several options for combining the p-
values. The easiest is to directly combine them using the method of Li, Meng,
Raghunathan, and Rubin (1991). The most accurate is to use the method of Meng and
Rubin (1992), which uses the estimates under the log-linear models and a second pass
through the M data sets to obtain precise p-values. A third option is to estimate the
complete-data correlations among the prevalence rates and use the equivalently accurate
method of Raghunathan and Rubin. A fourth option, being developed by Raghunathan
and Rubin will be available shortly. All of these methods are computationally
straightforward, the first being extremely simple. More experience in the context of
particular data sets is needed to formulate reliable advice on when it is worthwhile going
beyond the first method, which s no more difficult than the computation of the total
variance from within and between imputation components.

Documentation of public-use data sets that include multiple imputations of some variables
should include material on how to carry out these inferential procedures, together with
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some worked examples. It is noteworthy that other organizations have released multiply-
imputed data sets (Clogg et al. 1991; Kennickell 1991) for use by non-specialists, so this
task is practically feasible.

8.2 Efficiency of Mulltiple Imputation

All of the imputation methods in this project impute a draw from the predictive
distribution rather than a mean. This approach is strongly recommended since imputing
means yields biased estimates of quantities that are estimated by nonlinear functions of the
data (for example variances or percentiles). However, imputing draws does lead to some
loss of efficiency relative to asymptotically efficient procedures such as maximum
likelihood. Multiple imputation reduces this loss of efficiency, since the estimate of O in

the inference (4) is an average O overthe M multiplv-imputed data sets -- the loss of
efficiency tends to zero as M tends to infinity.

Specifically, assuming proper imputations from a correct model, the variance of estimates
from multiple imputation is increased asymptotically by the factor

(-5

where ¥ is the fraction of missing information, and is estimated in the multiple-imputation
output by the quantity r/(1+r) where 1 is given by (3). The fraction of incomplete cases to
be imputed under our proposed IMID scheme is less than 20% of all cases, since
individuals missing the entire questionnaire and MEC examination are weighted. The
fraction of missing information is typically less than this, since the fraction of incomplete
cases does not take into account information in the incomplete cases used to predict the
missing values. Setting y =0.15, the increase in variance is 15% with single imputation
(\i=1) and 3% with multiple imputation with M = 5, corresponding to increases in
standard error of 8% and 1.5%, respectively. In practice values of y for the whole sample
are generally smaller than 0.15, although larger values may be found in subsets of the data
with high levels of nonresponse and poor predictors of the missing values. Thus multiple
imputation provides some useful improvements in efficiency over single imputation, in

addition to its advantages with respect to reflecting imputation uncertainty.

It should be noted that these losses in efficiency are relative to fully-efficient estimation
methods, and not to sub-optimal fixes such as weighting class adjustments, which could be
considerably less efficient even than single imputation. The loss of information seems very
minor compared with the practical benefits of multiple imputation for users. Since the data
can be analyzed using complete-data methods, multiple imputation takes care of the
missing-data problem once and for all, eliminating differences between results that are
artifacts of different ways of treating the missing values (Little and Rubin 1987, Part 1).
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9. Recommendations for Current Practice and Additional Research

In summary, we think this project has demonstrated the feasibility of multiple imputation
methods based on Gibbs' sampling for missing data in NHANES 3. Public-use data bases
that are multiply imputed have been released by other agencies. The DMS methods are
state-of-the-art, and if implemented would demonstrate the agency's commitment to high-
quality and rigorous statistical methodology in this area. Our recommendations are as
follows:

9.1 We propose initially the IMID option, where cases missing the entire questionnaire
and MEC examination are weighted, using the first-stage weight developed in Ezzati and
Khare (1992). Furthermore, multiple imputation would be confined to a subset of
important variables, with missing values of other variables left as missing-value codes.

9.2 Multiply-imputed data bases should include in the documentation some summary of
methods of analysis for multiply-imputed data, including examples of how to create and
analyze repeated complete data sets.

9.3 In future, multiple imputation methodology can be expanded to more variables and
more incomplete cases, as the method becomes established with users, documentation is
refined, and computing limits are reduced by advances in statistical computing.

9.4 Ways should be considered of user-friendly packaging of multiple imputations in data
bases, e.g. for SAS, SPSS, BMDP etc. For example, consider whether it is better to a) use
pointers to the multiple imputes, or b) repeat each incomplete variable M times, with
consequent duplication of complete information.

9 5 Future research on the first-stage weighting adjustment developed in Ezzati and Khare
(1992) should consider the development of weights based on the estimated response
propensity (Rosenbaum and Rubin 1983: Little 1986), and assess the importance of the
component of variability missed by the current procedure.

9.6 More generally research is needed on improving the estimation of complete-data
standard errors. Modeling to reduce the excessive variability of current SUDAAN
estimates is needed.

9 7 Studies should be conducted concerning the reasons of nonresponse in the NHANES,
and to compare respondents and nonrespondents with respect to observed characteristics.
Is the missing-data mechanism missing completely at random, or do respondents and
nonrespondents differ? The tables created for the current project and the work on
weighting adjustments in Ezzati and Khare (1992) give some indication that observed
differences between respondents and nonrespondents are minor, but more systematic
assessments are needed.
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9.8 Finally, projects such as the one we are assessing here demonstrate feasibility, and
provide useful descriptive and comparative information, but they do not provide objective
information about the operating characteristics of procedures - for example, does the
multiple-imputation interval (4), as implemented in DMS, really cover the quantity Q in 2
proportion (1-o) of repeated samples for NHANES, and similarly for the WES proposals?
To convince skeptics, what is needed is an honest frequentist evaluation via simulation to
assess the methods discussed here. That is, create hypothetical populations, draw samples
from each, apply existing and competing alternative procedures to the samples, and
thereby assess the validity of inference about population quantities. The assessment should
distinguish between limitations due to complete-data methodology, such as SUDAAN
standard errors, and those due to alternative nonresponse adjustment methods such as
weighting or multiple imputation.

Although such a project requires a major effort, methods for drawing samples as in the
NHANES and deriving inferences from the samples are already available. The primary
new task involves design and implementation of the software needed to create
hypothetical populations that provide useful information for the NHANES setting. Also,
software is needed to create missing values in a realistic manner. Software to assess the
performance of sample inferences appears relatively easy to develop.
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